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Abstract— Hopping is a highly dynamic motion requiring
precise input over brief moments of ground contact in order
to achieve desired performance. While this problem has been
approached from multiple perspectives, this work provides a
comparative analysis of two robot models. The first model uses
an actuator to store energy in a spring and release it during
the ground phase, while the second uses an actuator to move
an additional mass vertically to generate force on the spring. In
the first model, analytic expressions are used to find the desired
controllers, while trajectory optimization is used in the latter.
Orbital stability of each model under the conditions of uncertain
damping and poor estimation of the hop height is examined. To
this end, Poincaré analysis is used to give a metric of stability
in the presence of different initial conditions and parameter
uncertainty. Simulations show that the first model converges
quickly to a point near the desired height determined by the
amount of uncertain damping present. The second model is less
robust to uncertainty, but is be made to converge to a desired
height with the addition of PD control around the optimal
trajectory. This robustness is improved with different gains in
the controller. In experiments performed on hardware for the
second model, stability is observed through convergence to a
periodic orbit within several hops.

I. INTRODUCTION

The hopping motion is fundamentally hybrid in nature,
consisting of multiple phases of differing governing dynam-
ics as well as discrete events [1], [2]. Similar to the case
of bipedal running [3], [4], there are two different domains
of continuous dynamics separated by very dramatic discrete
impacts. These impacts cause energy to be lost beyond what
would normally be lost in a robot due to friction alone. In
order to make up for this disruption and reach a desired
hopping height, the robot must add energy back in through
actuation. The easiest way to do this is by applying a force
on the world while the robot is in contact with the ground,
and then spend the time in the air preparing for that action.
However, the duration of the ground phase tends to be much
smaller than that of the aerial phase, leading to a need for
very brief and powerful actuation during this time.

Robotic hopping is not a new problem, but one that has
been studied for decades [5], [6], [7], with many approaches
to the problems of actuation and control. Two methods of
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Fig. 1: A 1-Dimensional, moving-mass hopping robot used
to experimentally demonstrate the results of this paper

overcoming the issue of inputting energy during the short
ground phase have been followed. The first is the idea of
decreasing the amount of energy lost at each impact, to
therefore reduce the amount that must be input back to
the system by the actuator. This has been accomplished by
decreasing the mass of the robot's foot [8], or by taking
shorter and higher frequency hops [8], [9]. The second way
of improving actuation is to increase the amount of time
spent on the ground to allow for longer durations of energy
input. This is typically done by using a leg with a large range
of motion and an elastic element [10], [11]. By increasing
the duration of the ground phase, the on-board actuators
can be less powerful and lighter while still having sufficient
time to provide the required energy to the system. Work has
also been done to increase the capabilities of robots to jump
higher [12], [13] or over difficult terrain [14]. For the case
of the Urban Hopper and the Sand Flea robot, extreme jump
heights were achieved using compressed energy that could be
released at a chosen moment. However, storing the amount
of energy needed to jump to these heights required more
time than the robot was in the air, preventing the immediate
succession of another jump. This type of energy release could
also be unsafe due to the high impulse force.
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Fig. 2: Model coordinates for the Compress-Release (left)
and Moving-Mass (right) hopping robots.

With the end goal of developing robots which can freely
hop around in safe ways, the group at Disney Research
and Development began working towards hopping with safe
actuation via their LEAP robot [15]. The idea of safe
actuation entails placing an elastic element between the robot
and the world and, in doing so, creating a limit on the
impulse that can be transmitted between the two. This can be
best seen in the patent [16], detailing a robotic bouncing ball
consisting of an elastic shell and internal actuators. Given the
size constraints of this elastic element and the robot itself,
further limits on the duration of the ground phase, the range
of motion for the robot, and total amount of energy storage
are placed on the system. Such constraints prevent the use
of certain energy input strategies during the ground phase.

The goal of this work is to begin examining methods
of hopping which will work in such a scenario while still
achieving sufficient stability in the process. The two methods
analyzed here for storing energy in the spring are a clutch-
release method, similar to the style of the Bow Leg hopper
[6], and a moving-mass method, as in [17], to generate force
during the ground phase. The model dynamics and hybrid
domain structure for each of these robots will be described
in Section II, along with the exact method of actuation
used. Analysis of each system will be performed through
simulation using Poincaré mapping in Section III, with the
goal of observing the effects of model uncertainty and poor
estimation of hop height. Experiments were performed for
the moving-mass hopping model in order to validate the
results of that analysis, and as a proof of concept for that
model. These results are presented in Section IV, followed
by discussion and conclusions in Section V.

II. MATHEMATICAL MODELS OF 1D HOPPERS

Two hopping robots are examined in this work, with differ-
ent designs and methods of actuation. The coordinates, q, of
each model represent the heights of the individual entities
from the ground, as shown in Fig. 2. The corresponding
configuration space is given by q ∈ Q ⊂ Rn, where n is the
number of coordinates for the given model. For the tangent
bundle with coordinates (q, q̇)∈T Q⊂R2n, the hybrid control

system is defined as the tuple,

H C = (Γ,D ,U ,S,∆,FG) (1)

• Γ = {V,E} is a directed cycle containing vertices V and
edges E

• D = {Dv}v∈V is the set of admissible domains
• U ∈ R is the set of admissible control inputs
• S = {Se}e∈E is the set of guards for domains, which

represents the transition point between domains
• ∆ = {∆e}e∈E is the set of reset maps between domains
• FG is the set of vector fields representing continuous

dynamics of the domains
Fig. 3 contains a visual representation of the hybrid domain
cycle for each model.

The dynamics during each domain can be written as

Mq̈+H(q, q̇) = Bu+ JT
v (q)Fv (2)

where M ∈ Rn×n is the mass matrix, H ∈ Rn is a matrix
containing the gravity, damping and spring forces, B ∈ Rn

is the actuation distribution matrix, and u ∈ R is the input
force from the actuator. In addition, Jv ∈Rn is the Jacobian of
the holonomic constraint in Dv and Fv ∈R is the magnitude
of that holonomic constraint force. The method of defining
these constraints and their forces is based on the work in
[18]. During the ground phase this holonomic constraint
represents the foot being held in place by ground forces.
The beginning of the aerial domain is subject to another
holonomic constraint in the form of a hardstop around
the spring, preventing the spring from extending past its
equilibrium length. As a consequence of this constraint, the
foot and body of the robot will move as one entity together
until a compressive force is placed on the spring again. The
purpose of this hardstop is to allow for a simpler spring
design and to cause the robot to leave the ground at a known
moment, i.e. when the spring reaches its equilibrium length.

Some of the transitions between domains involve what
are assumed to be perfectly plastic impacts, leading to
reset maps governing sudden changes of velocity for some
coordinates. In Fig. 3 the reset maps at landing and take-
off are represented by ∆L and ∆T , respectively. The method
of getting a reset map is based on the work in [19], where
the velocity change is deemed a result of an instantaneous
impulse force. The map for landing sets the velocity of the
foot to zero instantly, while the reset map at take-off is a
conservation of momentum equation between the foot and
body given by

ż f+ = żb+ = ∆T żb− =
Mb

Mb +M f
żb− (3)

where Mb and M f are the masses of the body and foot, and
the scripts − and + represent information from before and
after the reset, respectively. This means that as the body of
the robot rises up and the spring reaches the hardstop, then
the foot and body velocities will instantaneously change to
a new and equal value.
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Fig. 3: Hybrid cycles for both the Compress-Release Hopper (left) and the Moving-Mass Hopper (right).

The following subsections will further detail each robot
and their corresponding hybrid control system.

A. Compress-Release Hopper (CRH)

The CRH hopper uses an actuator within the body to
compress a spring and store energy while in the air, and
then releases that energy during the ground domain. In order
to simplify analysis, a hardstop is placed around the spring
which prevents extension past its equilibrium length. This
results in the air phase being split between two parts. The
first aerial domain has the hardstop active and the spring
un-compressed, while the second aerial domain is the spring
compression phase when the hardstop is no longer active.
The end result is a hopping motion with three domains, as
seen in the left half of Fig. 3. This cycle starts with the
robot entering the first air domain, Da1, with the hardstop
in effect until a certain time, t = ts. The robot then begins
compressing the spring, removing contact with the hardstop
and entering a second air domain, Da2, where there is no
internal constraint. This continues until the foot contacts the
surface, beginning the ground domain, Dg. While on the
surface, the robot reverses direction and leaves the ground
when the body extends to the hardstop length, L0. At this
moment, time is reset and the cycle repeats. The definitions
for these domains and their boundary guard surfaces are

Da1 = {(t,q, q̇) ∈ R×TQ : z f ≥ 0, t ≤ ts} (4a)
Sa1 = {(t,q, q̇) ∈ Da1 : t = ts} (4b)
Da2 = {(t,q, q̇) ∈ R×TQ : z f ≥ 0, t > ts} (4c)
Sa2 = {(t,q, q̇) ∈ Da2 : z f = 0, ż f < 0} (4d)
Dg = {(q, q̇) ∈ TQ : z f = 0,zb ≤ L0} (4e)
Sg = {(q, q̇) ∈ Dg : zb = L0, żb > 0} (4f)

where here, q = [zb,z f ]
T and Q⊂ R2.

For the CRH model, there is a specific amount of pre-
compression to generate in the spring during the aerial phase,
δ ∗, that will yield the correct return height of the robot after
a full period of motion. Once δ ∗ has been calculated, as
done in Section III, a cubic Bezier polynomial is used as the

desired profile for the compression of the spring given by

B(τ) = δ
∗(3(1− τ)τ2 + τ

3) (5)

τ = mod(t, ts)/ti (6)

where ts is the time after entering Da1 to begin spring
compression, and ti is the anticipated time to impact from
ts which can be calculated from height and velocity infor-
mation. To minimize energy consumption of the motor, it is
best to set ts as large as possible; however, in order to ensure
that the hardware is capable of following the given trajectory,
B′(τ)≤ vmax and B′′(τ)≤ amax need to be enforced over the
compression profile, where vmax and amax are the maximum
velocity and acceleration of the motor, respectively.

B. Moving-Mass Hopper (MMH)
The second hopper utilizes a moving mass within the body

of the robot, which is actuated in series with the spring via a
ball screw in order to apply a force to the spring during the
ground phase, as seen in Fig. 2. The dynamics for this hopper
are setup in the same way as in (2), but with a few minor
changes. The inherent differences between this model and
the CRH model revolve around this third mass: the mover.
Firstly, there are now three coordinates used to represent
the hopper as seen in Fig. 2, so q = [zb,z f ,zm]

T ∈ R3 and
Q⊂R3. Secondly, the actuator is now a motor moving itself
along a ball screw and is therefore acting between the body
and mover, which will be reflected in the actuation matrix, B.
Lastly, there is no actuator force across the spring so there is
only one domain within the aerial phase leading to a simpler
domain cycle, as seen in Fig. 3. There are still the same two
impacts due to the ground and a hardstop around the spring,
but the aerial domain and its guard are now defined as

Da = {(q, q̇) ∈ TQ : z f ≥ 0} (7a)
Sa = {(q, q̇) ∈ Da : z f = 0, ż f < 0}} (7b)

III. ANALYSIS

In this section, orbital stability analysis will be performed
for each hopper model using a Poincaré map [20]. The
Poincaré section is placed at the hop apex, given by

Σ =
{
(q, q̇) ∈ TQ : z f > 0, żb = 0

}
(8)

5719



Four cases of damping and control action will be examined
in simulation. The first is with actuation assuming there is no
damping in the robot joints and the simulation also includes
no damping. The second case will take this same action but in
simulation containing damping to see how it performs. The
third trial will use actuation based on a robot model with
damping during the ground phase and in a simulation with
that exact same amount of damping present. The final case
will show how the actuation from the third case performs
with a larger amount of damping in the simulation.

A. Compress-Release Model
The value of compression needed in the spring, δ ∗, is

found through calculating the amount of spring energy that
will make up for the losses from friction and impacts,
as well as any desired height change. The complexity of
determining this compression value gets increasingly difficult
when including the damping terms of the dynamics. In order
to analyze the stability of the hopper and its control methods,
we will begin with the case where damping is not considered
and then work towards the case with damping during the
ground phase. By not considering these damping terms, we
can determine whether or not the robot is able to converge
to the goal height with corresponding model uncertainty.

Due to the spring hardstop, the foot coordinates are fixed
relative to the body during flight, which leads to the Poincaré
section of this model being a one-dimensional curve in the
zb coordinate. The simplicity of this section allows for the
Poincaré map to be easily plotted as a scalar map, as seen
in the subplots of Fig. 4.

The control input for this system is the amount of potential
energy to generate through spring compression during the
second aerial domain. In order to calculate these controllers,
we also define the following height characteristics:
• Hk, the actual apex height of the current hop
• H∗, the desired height to reach at the apex of the next

hop
• Hk+1, the actual apex height reached on the next hop
• Hc, the value given to the controller as the apex height

of the current hop
Note that this Hc variable is used as a means of simulating
uncertainty in the state measurement for the body height. By
giving incorrect information to the system, we can observe
any bounds on the allowable uncertainty.

1) Undamped Cases: In order to find the amount of
energy needed to input, we must first find how much energy
is expected to be lost during our next hop if we were to reach
the desired height. We will do this by calculating the energy
lost in each impact and also the energy required to make
any anticipated height change. In the case without damping,
these are given by

EL(Hc) = M f g(Hc−Ls) (9a)

ET (H∗) = (Mb +M f )g(H∗−Ls)
(M f

Mb

)
(9b)

EH(Hc,H∗) = (Mb +M f )g(H∗−Hc) (9c)

(a) Undamped model (b) Unmodeled damping

(c) Damped model (d) Additional damping

Fig. 4: Poincaré maps for the CRH.

where EL is the energy lost in the landing impact due to
the foot contacting the ground, ET is the energy lost in the
take-off impact due to the foot being picked back up off the
ground, and EH is the potential energy required to change
height from the current hop height to the next. In order to
reach the desired hop height, the energy we input in the
spring, u(Hc,H∗), must be equal to the sum of these three
energy values

u(Hc,H∗) = EL(Hc)+ET (H∗)+EH(Hc,H∗) (10)

and from this, we get the desired compression:

δ
∗ =

√
2u(Hc,H∗)

ks
(11)

where ks is the stiffness of the spring.
With this controller in mind, we can assess the stability

around a desired hop height. A simple closed-form solution
exists for this undamped case. We are able to calculate the
total amount of energy lost from impacts for a hop using the
given input spring energy, and then determine the final hop
height. The total amount of energy added into the system
after impact losses is

∆E = H∗g(Mb +M f )−
HcM2

b g
Mb +M f

−
Hkg(2MbM f +M2

f )

Mb +M f
(12)

Using this added energy value, we can find the correspond-
ing height change

∆H =
∆E

(Mb +M f )g
(13)

With this, we can find the actual final height for the system

Hk+1 = P(Hk,Hc,H∗) = Hk +∆H (14)
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which is also the Poincaré map of the system under this
controller. Substituting (12)-(13) into (14) yields the full
form of the Poincaré map

P(Hk,Hc,H∗) = H∗−
M2

b(Hc−Hk)

(Mb +M f )2 (15)

Illustrated in Fig. 4a is the Poincaré mapping for control
action taken based on two different choices of Hc: either
Hc = H∗, labeled as U∗, or Hc = Hk, labeled as Uk. In the
case of the former, we would not be measuring the actual
height of the robot, but instead always choose the control
input that is associated with our theoretical periodic solution.
On the other hand, when we set Hc = Hk we are using the
exact information of the current hop height. The convergence
of each of these cases, i.e. the stability of the Poincaré map,
can be seen in the figure, or found by taking the derivative
of the Poincaré map with respect to the current hop height:

∂P
∂Hk

=
M2

b
(Mb +M f )2 (1−

∂Hc

∂Hk
) (16)

When Hc = Hk, this derivative evaluates to 0, which shows
that our controller would drive the robot to the desired height
in a single hop as a deadbeat controller. For the case where
Hc = H∗, the derivative is slightly less than 1, which still
yields asymptotic convergence, albeit slowly.

Due to the damping present in the hardware, the plots in
Fig. 4a do not show an accurate representation of the return
height for a hop starting from each Hk. In order to see the
performance of the controlled system with damped equations
of motion, these same controllers were used in simulation
which integrated the dynamics through each domain to give
the return height. The same controllers from before were
used, and yet still gave convergence as seen in Fig. 4b. Here
the solid lines are the curves from the damped dynamics,
while the dashed lines are that from the previous case. It
can be seen that both controllers still lead to convergence,
just to a different point then our desired height. Now, using
the actual previous height yields not only faster convergence,
but convergence to a height that is closer to our desired
height. As the damping value increases away from the ideal
un-damped model, the convergence point will start to move
away from the desired height.

2) Ground Damping Cases: We now consider the case
when damping during the ground phase of hopping is added
in the form of spring material damping. Since the air domains
here remain deterministic, the key calculation only relates to
the dynamics of the ground domain. To this end, only the
height of the body needs to be used, as the foot is always
fixed to the ground during this time. To simplify notation in
this section, the body height coordinate is referred to as z.
The dynamics of the ground phase become that of a single
degree of freedom spring-mass-damper system, which has a
known solution of

z(t) = eat(z(0)cos(bt)+
−az(0)+ ż(0)

b
sin(bt)) (17)

a =−cs/(2Mb)

b = (ks/Mb− c2
s/(4M2

b))
1/2

where z(0) and ż(0) are the starting position and velocity
of the body, and cs is the damping coefficient of the joint.
Note that this is the solution around the equilibrium length
of the spring. Therefore, the L0 term will be excluded until
later since this will only shift the curve. For our case, (17)
represents the equation of motion during the time between
impact and take-off. For a given hop height, Hk, and spring
compression, δk, the height of the next hop can be calculated
from the known initial conditions at the landing impact,
zL, żL, and moving forward in time to the known boundary
condition at take-off, zT = 0. With this information, the
duration of the ground domain can be found analytically
through the expression

tg =−
2
b

arctan
[

c
b
+

a
b
− żL

bzL

]
(18)

c =
√

a2z2
L−2azLżL +b2z2

L + ż2
L

Substituting tg into the derivative of (17), the velocity of
the robot before take-off, żT−, can be found. The height of
the next hop is then found using this velocity and the impact
map of take-off yields

Hk+1 =
(∆T żT−)

2

2g
+L0 (19)

Conversely, the method of determining the required
amount of compression to reach a certain hop height in-
volves using the desired states at take-off, and then working
backwards towards the initial conditions at landing. The take-
off states are found by using the same boundary conditions
as before. The landing states are unknown, but each are a
function of the desired spring compression, δ ∗. Taking these
conditions along with (17) and its derivative, and simplifying
yields the equation

e2atg(
a2

b2 sin2(btg)+cos2(btg)) =
2g
v0

(
eatg

a
sin(btg)−

Hk−L0

v0
)

(20)
which is only a function of the ground phase duration, tg,
that is now a negative value. Solving this transcendental
equation for tg must be done numerically. Substituting that
value into (17) along with the take-off conditions, will yield
the desired compression needed to overcome even the energy
lost from damping. Using the fsolve function in MATLAB to
find this value, a similar Poincaré plot is created and shown
in Fig. 4c. Once again, exact convergence can be achieved
in a range around the desired hop height with proper height
measurement, and quick convergence elsewhere. Even in the
case where steady-state control is used, the convergence is
slightly faster than that of the un-damped case which is
shown by dashed lines in the figure.

Simulation was also performed for the case with damping
set 50% higher than the controller model. The results of this
in Fig. 4d, show that once again the point of convergence
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Fig. 5: Example trajectories for the y coordinate for both the
damped and undamped models.

is lowered from the desired point. The dashed lines here
represent the curves from the ideal damped case. The exact
convergence height relative to the desired is based on the
level of uncertainty for both the height measurement and
model damping. These results show that the robot should be
stable under this control method, even with poor measure-
ment of the hop height and some uncertainty in the damping
estimation. It is clear that having a better estimate of the
actual damping in the system will allow for a better choice
of compression actuation.

B. Moving-Mass Model

This model uses an additional moving mass inside the
body to input energy, which gives a third coordinate in
the dynamics, zm, and another source of internal friction.
The presence of this moving mass inherently allows for
many possible motions that will lead to a desired hop height
change, since this is determined by the energy propagated
to the spring during the ground phase. However, due to the
indirect method of adding energy into the system and the
extra friction, it becomes non-trivial to find those solutions.
These issues point towards using trajectory optimization
to generate the desired motions, and then tracking those
trajectories during simulation or in practice. Consequently,
characterizing the stability of these motions will be done
numerically in MATLAB.

1) Generating Periodic Motions: The trajectory optimiza-
tion package used in this project is GPOPS-II [21], which
utilizes the ipopt solver. This software package allows users
to specify the continuous and discrete dynamics, constraints,
initial conditions, and the cost function in a convenient way
within MATLAB and then maps those setup criteria into the
form needed by the solver. An initial guess for the solution
can be given in this framework as well. For this problem, it
was found that the initial guess needed to be feasible, but
not accurate in order to yield a solution.

The general optimization formulation is

Fig. 6: Phase space representation for the zb and y coordi-
nates for both damped and undamped models.

minimize:
J(t) =

∫ t f

t0
U2(t)dt (21)

subject to:

ẋ = f (x)+g(x)U(t)

xmin ≤ x≤ xmax

ymin ≤ y≤ ymax

ẏmin ≤ ẏ≤ ẏmax

−umax ≤U(t)≤ umax

x(t0) = x(t f )

where U(t) is the computed trajectory of the input force,
x = (zb,zm,z f , żb, żm, ż f )

T is the system state, and y = zm−zb
is the relative degree of freedom that is directly controlled
by the actuator. For a given hop height, the initial conditions
for the body and foot states are fixed, while the remaining
mover states are only given bounds within the optimization
framework. Note that the trajectory U(t) is different from
the control input u, so that the controllers may be formulated
using this trajectory as a feed-forward term.

Using this method and the model parameters from hard-
ware, trajectories were generated for the robot spanning
a hop height range 0.32 m to 0.42 m. For this section,
trajectories for a 0.38 m height with and without damping
will be explored as an example. Fig. 5 shows the trajectory
of the y coordinate for these example motions, while Fig. 6
shows the phase space orbits of both the body and relative
coordinates of the robot.

2) Stability Analysis: Two controllers were run in simu-
lation: open-loop (22), and open-loop with PD feedback on
the y coordinate (23).

u(t) =U(T ) (22)
u(t) =U(T )+ kp(ya− yd)+ kd(ẏa− ẏd) (23)

where T = mod(t, t f ) and t f is the duration of the generated
hop motion. Once again, Poincaré analysis was used to assess
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Fig. 7: CAD model of the MMH, with a clear view of the
core components.

the stability of the system under these controllers. With the
additional coordinate, the Poincaré section for this model
becomes a three dimensional surface along (zb,zm, żm)

T . De-
spite that the value of the mover coordinate is not critical for
reaching the desired height, it still needs to be stable within
the allowable range of motion due to hardware constraints.
This necessitates achieving stability for all three dimensions
of the Poincaré section, which can be determined by looking
at the Jacobian of the section and its eigenvalues, λi, which
are found using the MATLAB function fsolve. The system
is stable if |λi|< 1 for all eigenvalues.

This was first done with the open-loop controller. The
results in Table I show that the undamped system is not
stable, while the optimal motion for the damped model is
stable. However, the open-loop controller on this damped
system had a small domain of attraction and was not robust
to uncertainty in the damping terms. From here, a PD
controller was added to improve stability and the domain
of attraction. The gains of this controller were tuned to give
optimal stability, while maintaining the input limits of the
hardware. The right side of Table I shows that stability was
dramatically improved with this controller. The domain of
attraction also improved, now allowing for a wider range in
initial conditions that lead to convergence.

TABLE I: Eigenvalues of Poincaré Map Jacobian

OL OL OL+PD OL+PD OL+PD
Undamped Damped1 Undamped Damped1 Damped2

λ1 1.4941 0.5177 0.0368 0.0757 0.5942
λ2 0.8647 0.6395 0.0170 0.0312 0.3942
λ3 1.4733 0.0630 0.0952 0.1277 0.0054

This stability analysis shows that (23) is robust to uncer-
tainty in the hop height measurement, but it does not take
model uncertainty of the damping terms into account. With
simulation, it was shown that the chosen gains were not able
to keep the system stable with uncertainty greater than 5%
for the damping terms of the spring and the internal relative
joint. The right-most column of Table I contains the stability

Fig. 8: Experiment hopping data (shaded blue) compared
with simulated trajectory (dark curve), showing the existence
of a periodic orbit.

analysis of the controller when gains were tuned to perform
better with unmodeled damping. Compared with the ideal
case, this controller took a larger number of hops to stabilize,
but was able to do so with parameter uncertainty of up to
20% in the damping terms.

IV. EXPERIMENTS

Running experiments with robots is valuable for showing
the performance of these concepts in the real world. Cur-
rently, a robot for the MMH model has been custom built for
this purpose. Fig. 7 shows the CAD model for the robot and
a clear view of the inner workings. The force is input from
a brushless DC motor connected to a ball screw via pulleys
and a belt. This motor moves itself and some additional mass
vertically along the ball screw, generating force onto the body
of the robot, and therefore, onto one end of the spring. Using
the known specifications of this motor and the ball screw
transmission, max linear force and velocity of the actuator
were found to be 100 N and 1.75 m/s, respectively. Due to
the size of the body, the relative coordinate, y, is limited to ±
0.1 m, restricting the range that the mover can deviate from
the body. The breakdown of mass within the robot is 55%
in the body, 31% in the mover, and 14% in the foot.

These model parameters and constraints were given to the
optimization described in Section III-B, resulting in hopping
motions up to 0.42 m. The max force of the motor and mass
of the foot prevent the robot from hopping any higher. These
trajectories were taken and given to the controller on the
robot in the form of desired input versus time. Experiments
were run for each control method described previously, with
the initial conditions being provided by the user dropping the
robot from a chosen height. Data was collected from two on-
board encoders monitoring the height of the body and the y
coordinate. The hopper is constrained to be vertical at all
times by linear bearings and rails on either side of the robot.

Experiments were run for at least 30 consecutive hops to
show long term stability. It was seen in experiment that the
initial condition of the drop did have to be fairly close to the
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Fig. 9: Motion tiles of MMH robot over two consecutive hops.

ideal, but did not need to be perfect. This was apparent since
the hopper needs to settle into the periodic orbit. This could
take anywhere from 1 to 15 hops, depending on the timing
and height of the initial drop. Fig. 8 shows data collected
from an experiment for a hop height of 0.34 m, containing
about 40 hops and an initial condition that was too high. The
robot took about 8 hops to settle into its stable hop height.
The data shows that the robot was able to remain around the
simulated periodic orbit throughout the experiment. The two
sections of data near the top and bottom of the plot show
an oscillation in velocity of the robot that is not seen in
simulation. This is likely due to the assumption of perfectly
plastic impacts being not entirely true, showing that these
impacts had a small bounce before coming to completion.
Fig. 9 shows motion tiles of a two consecutive hops from
the same experiment on our rail system. See submitted video.

V. DISCUSSIONS AND CONCLUSION

Analysis was performed for two different one-dimensional
models of hopping robots for the purpose of understanding
how to stabilize their vertical motion. Each of these me-
chanical models fit into the idea of safe actuation, which
requires an elastic element to be placed between the robot
and the world. It was shown that both cases were stable,
even with non-ideal conditions and uncertainty. For the case
of the moving-mass model, this stability was reached under
the addition of PD control around the relative coordinate of
the third mass within the body of the robot. This was further
seen in experiments for the moving-mass model where the
robot successfully stabilized itself using standard PD control
along the nominal trajectory given from optimization.

The next steps of this work will be towards increasing
the height of jumping, which will require more efficient me-
chanical designs. The changes will include lighter foot mass,
stronger actuation, and higher energy storage capacity in the
spring. Future work will also move towards 3-dimensional
hopping with a similar emphasis on safe actuation.

REFERENCES

[1] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek. Hybrid zero
dynamics of planar biped walkers. IEEE Transactions on Automatic
Control, 48(1):42–56, 2003.

[2] R. W. Sinnet, M. J. Powell, R. P. Shah, and A. D. Ames. A human-
inspired hybrid control approach to bipedal robotic walking. IFAC
Proceedings Volumes, 44(1):6904–6911, 2011.

[3] W. Ma, S. Kolathaya, E. R. Ambrose, C. M. Hubicki, and A. D Ames.
Bipedal robotic running with DURUS-2D: Bridging the gap between
theory and experiment. In Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Control, pages 265–
274. ACM, 2017.

[4] J. Park, J. Lee, J. Lee, K. Kim, and S. Kim. Raptor: Fast bipedal
running and active tail stabilization. In 2014 11th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI),
pages 215–215, Nov 2014.

[5] M. H. Raibert. Hopping in legged systems - modeling and simulation
for the two-dimensional one-legged case. IEEE Transactions on
Systems, Man, and Cybernetics, 14(3):451–463, May 1984.

[6] H. B. Brown and G. Zeglin. The bow leg hopping robot. In Robotics
and Automation (ICRA), IEEE International Conference, 1998.

[7] P. Fiorini and J. Burdick. The development of hopping capabilities
for small robots. Autonomous Robots, 14(2):239–254, 2003.

[8] G. Zeglin. The bow leg hopping robot. Diss. Carnegie Mellon
University, 1999.

[9] M. H. Raibert, H. B. Brown, and M. Chepponis. Experiments in
balance with a 3d one-legged hopping machine. IJRR, 3(2):75–92,
1984.

[10] D. W. Haldane, J. K. Yim, and R. S. Fearing. Repetitive extreme-
acceleration (14-g) spatial jumping with salto-1p. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages
3345–3351, 2017.

[11] J. Hwangbo, V. Tsounis, H. Kolvenbach, and M. Hutter. Cable-driven
actuation for highly dynamic robotic systems. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 8543–8550. IEEE, 2018.

[12] J. R. Salton et al. Urban hopper. SPIE, 7692:7692 – 7692 – 9, 2010.
[13] Sand Flea Hopper. https://www.bostondynamics.com/

sandflea.
[14] C. M. Hubicki, J. J. Aguilar, D. I. Goldman, and A. D. Ames. Tractable

terrain-aware motion planning on granular media: An impulsive jump-
ing study. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3887–3892, Oct 2016.

[15] Untethered One-Legged Hopping in 3D Using Linear Elastic Actu-
ator in Parallel (LEAP). https://www.youtube.com/watch?
v=M0ZXmGRCuts.

[16] L. S. Smoot, G. D. Niemeyer, A. D. Ames, and D. L. Christensen.
Robot bouncing ball. US Patent #: 10,092,850, Date of Patient:
October 9 2018.

[17] J. Aguilar and D. I. Goldman. Robophysical study of jumping
dynamics on granular media. Nature Physics, 12(3):278, 2016.

[18] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction
to Robotic Manipulation. CRC Press, Boca Raton, March 1994.

[19] J. W. Grizzle, C. Chevallereau, A. D. Ames, and R. W. Sinnet. 3D
bipedal robotic walking: models, feedback control, and open prob-
lems. In IFAC Symposium on Nonlinear Control Systems, Bologna,
September 2010.

[20] R. T. M’Closkey and J. W. Burdick. Periodic motions of a hopping
robot with vertical and forward motion. The International journal of
robotics research, 12(3):197–218, 1993.

[21] M. A. Patterson and A. V. Rao. Gpops-ii: A matlab software for
solving multiple-phase optimal control problems using hp-adaptive
gaussian quadrature collocation methods and sparse nonlinear pro-
gramming. ACM Trans. Math. Softw., 41(1):1–37, Oct 2014.

5724


