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Abstract— Robotic hopping requires high performance and
precision, due to its extreme interactions with the environment.
Designing a system that will perform optimally, or even stably,
for this motion primitive is a significant challenge. In previous
work, it was shown that designing a robot with two springs
(one in series and one in parallel with the actuator) could
dramatically improve performance. However, selecting these
springs was an intricate process since their dynamics were
tightly coupled, and accomplished through trial and error. This
work presents a general optimization framework for intercon-
nected systems that designs the time-based hopping motion,
while also designing the shape of nonlinear springs on the
robot to yield efficient hopping. Utilizing this method, hopping
motions and spring designs were generated simultaneously and
experimentally verified on a novel hopping robot.

I. INTRODUCTION

The study of system design optimization has a long and
rich history in both academia and industry. Shape design in
aerodynamics [22], [18] using computational fluid dynamics
(CFD) focuses on designing aircraft shape against airflow
from the front and lateral directions. Logic optimization was
used by the automated electronic design industry in circuit
design given volume constraints for optimal manufacturing
cost [8]. Structural optimization [15] designs mechanical
systems according to metrics such as minimal weight or
increased strength according to specific application scenarios.
Lastly, the genetic algorithm uses evolution of population to
guide the design of static components for complex environ-
ments [21].

One such example of design optimization study was from
the realm of industrial robotic manipulation tasks, which
could greatly benefit from even small improvements to
efficiency [26]. Here, springs were placed in parallel to joint
motors and optimized alongside the motion trajectories to
boost efficiency. In this case, researchers were able to find
a closed-form solution for the optimal spring parameters in
terms of the trajectories, which allowed for the optimization
to again be considered as a classic trajectory optimization
problem. In another example from the field of robotic hop-
ping, model-free design optimization techniques were used
to streamline the design iteration process [25]. This method
involved hopping experiments, using a robot which could
have certain design parameters changed quickly between
separate tests rather than using prior simulation to yield a
single final design.
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Fig. 1: Evolution of the moving-mass hopping robot. Mark I (left,
[3]), Mark II (center, [2]), and now Mark III (right) is modified to
feature the curved-springs for this work.

However, most traditional system design optimization
problems often craft the design variables for a specific task.
The goal of this paper is to make a first step towards simul-
taneously generating high-performance motions for robotic
systems and finding their optimal design parameters. This
is achieved through controlling and designing the hopping
robot in Fig. 1 (right side). A related example is the leg
design of quadrupedal robots such as [9].

Previous studies of designing motions and control laws
for compliant bipeds [24] and hoppers [10] have demon-
strated the effectiveness of model-based approaches using
collocation-based optimization [17]. We have also explored
different design methodologies of spring-loaded hoppers [3],
and hopping with parallel elasticity [2]. These first two
hopping robots can be seen in the left and center positions
of Fig. 1. In this paper, we further exploit the use of high-
performance mechanisms via curved plate springs to enhance
performance. Plate springs have the advantage of being easy
to design for a variety of nonlinear stiffness profiles, which
can provide for improved energy storage and acceleration
profiles [7], [20]. However, the nonlinear and compliant
nature of these springs cannot be easily characterized by a
traditional relationship, such as Hooke’s law, and is thus a
memoryless system. Instead, beam theory [5] must be used to
develop the spatial-domain dynamical equations that govern
the springs. To incorporate this with traditional time-domain
dynamics of the torso, which are largely used to charac-
terize robotic systems [11] and legged locomotion [14], we
take inspiration from interconnected dynamical systems [4].
Through shared variables of spring force and length, the
torso and the spring subsystems are dynamically coupled. We
represent this formulation as an interconnected time-spatial
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Fig. 2: The system’s configuration coordinates, with a look at the
core mechanism features.

dynamical system. A similar idea was used to decouple
quadrupedal dynamics as two coupled bipedal subsystems
[23]. Further, we can configure the curved spring design
as decision variables for an optimization algorithm. This
allows the optimization to concurrently find the solution to
the interconnected dynamical system and the optimal spring
design parameters. The end result is a custom-made hopping
robot driven by the full-body dynamics and optimal design,
which can hop stably and with greater energy efficiency.

Our main contributions are twofold. First, we propose a
time-spatial dynamic modeling of the hopping robot that
utilizes the curved springs in Fig. 1. Based on this, a generic
optimization formulation is presented to solve for a solution
to this dynamical system with a corresponding hopping
motion, and find the optimal design variables for the curved
springs. Secondly, the construction of a hopping robot, on
which experiments are conducted and stable hopping is
achieved. Therefore, we demonstrate the complete process of
system and controller design, and experimental validation.

We organize the paper as follows. In Sec. II, we construct
the dynamic model of this hopping robot as an interconnec-
tion between the traditional time-domain dynamics of the
torso and the spatial-domain dynamics of the curved springs.
In Sec. III we lay out an optimization algorithm to find the
solution to this dynamical system, which is a periodic orbit
representing a hopping motion, and the optimal value of the
design variables. Lastly, we experimentally show the desired
motion of this hopper that was designed in Sec. IV. Sec. V
discusses the results and future work.

II. INTERCONNECTED DYNAMICS

The dynamics of the hopping machine in Fig. 2 are
composed of two main parts: the time-domain dynamics of
the “torso”, whose electric motors’ controller is our control
target; and the spatial-domain dynamics of a curved spring,
whose physical parameters are our design target. The two
subsystems are interconnected through the shared spring
force and length variables, Fs and L. We will introduce
each subsystem first, then show the interconnected full-body
dynamics. Note that we used the following notations to
distinguish the two types of derivative:

�̇ ,
∂�
∂t
, �′ ,

∂�
∂s

.

Fig. 3: Directed graph for the hybrid hopping system. Each phase
of dynamics can be represented by a interconnected system as given
by (13)(14). The blue arrows indicate the order of phases followed
in this work.

A. Time-domain dynamics of the torso

As Fig. 2 shows, the torso contains all of the robot other
than the curved springs. Hence, as detailed in [2], we can
obtain the torso’s time-domain dynamics with configuration
coordinates q = (zb, y, δ)

> ∈ R3 and using the Euler-
Lagrangian methods to obtain the equations of motion.
Without considering any constraint, we have

M(q)q̈ +H(q, q̇) +BsFs = Bu+ J>v (q)λv, (1)

with

M(q) =

 M0 −Mm Mf

−Mm Mm 0
Mf 0 Mf

, H(q, q̇) =

cbżb +M0g
Fp −Mmg

Mfg

,
and the actuation matrices B>s = (0, 0, 1), B> = (0, 1, 0).
Mm, Mf , and M0 are the mass of the mover, foot, and total
robot. cb is the damping of the body as it moves vertically.
The internal spring creates a standard linear extension force
given by Fp = kpy + cpẏ, where kp and cp are the stiffness
and damping coefficients, respectively. Fs is the extension
force of the curved springs being examined in this work.

There exist four different dynamic domains, denoted by
Dv with v ∈ {1, 2, 3, 4}. Each domain has a holonomic con-
straint representing certain locking mechanisms. Fig. 3 shows
the domain map for this hybrid system. The hopping motion
followed here contains three continuous-time domains: one
aerial domain, D1, and two ground domains, D3 and D4.
The two ground domains are distinguished by whether the
mover is in contact with the body. During each domain, a
holonomic constraint is used to represent the contacts with
internal components and the ground. In this case, these are

h1(q) , (y, δ)>, h3(q) , (zb + δ), h4(q) , (y, zb + δ)>. (2)
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Fig. 4: The geometry properties of the curved spring from a front
view (left) and side view (right).

and the corresponding Jacobian matrices can be defined as

Jv ,
∂hv(q)

∂q
.

Therefore, we can explicitly solve the constraint force λv for
domain Dv , and (1) simply becomes

M(q)q̈ +Hv(q, q̇) +Bs,vFs = Bvu. (3)

In D1 the mover and foot are each locked to the body due
to hard-stops present in the system. In both cases the spring
forces will tend to keep the coordinates y and δ fixed to
that of the body coordinate, zb. When the robot contacts the
ground, the system enters D3 and the foot becomes fixed to
the surface, leading to a holonomic constraint acting on the
foot, while the mover continues downward. During this phase
the actuator will input force to the system until the mover
reestablishes contact with the body, and the system enters
D4. This final ground domain is very short and lasts until the
curved springs extend back to their equilibrium length and
the hardstop engages, at which time the system re-enters the
air domain, D1, and the cycle repeats.

In order to distinguish the effects of the actuator input and
curved-spring forces from the other dynamics, we write the
equations of motion from (3) in an ODE format:

ẋ1 =

[
q̇

−M−1Hv

]
︸ ︷︷ ︸

fv(x1)

+

[
0

M−1Bv

]
︸ ︷︷ ︸

gv(x1)

u+

[
0

−M−1Bs,v

]
︸ ︷︷ ︸

ḡv(x1)

Fs. (4)

where x1 = (q, q̇)> ∈ R6 are the time-domain states.

B. Spatial-domain dynamics of the curved springs

Normally for linear springs, the spring dynamics are given
as a linear map: Fs = −kL − cL̇ according to Hooke’s
law, where k is the stiffness and c is the coefficient of
an additional damping term. However, the curved spring
of interest here is governed by spatial-domain dynamics,
which will be detailed next. Designing the springs from
curved plates serves as a way of controlling their stiffness
profile. This will allow for the timing of the ground phase
to be synced with a desirable force input from the actuator,

resulting in a more efficient motion than would be possible
by having two coils springs in the system as was done in
[2].

Fig. 4 details the basic model of the curved, plate spring
that will be used in this problem. Based on the work in [13],
the internal relations for the moment along the beam and
its derivative can be described in terms of the parameterized
arclength, s, as

M(s) = (A(s)Eern)γ′(s) (5)
M ′(s) = −N(s) (6)

where s ∈ [0, s0] is the position along the arc length of the
beam’s neutral surface, which is shown as a grey, dashed arc
within the beam in Fig. 4. M(s), N(s), and γ(s) are the
internal moment, force, and resultant deflection at that point
due to the loading force, Fs. Fs ∈ R is the external force
acting on the spring along the vertical direction. Note: α(s)
represents the natural angle of the beam at point s when
the spring is unloaded. The deflection angle γ(s) is relative
to this α(s) value. Furthermore, E represents the Modulus
of Elasticity of the spring material, rn is the radius of the
unloaded spring’s neutral surface, and e is the eccentricity of
the neutral surface from spring center due to the curvature
of the spring.

Throughout this paper, the radius of the neutral surface and
the in-plane thickness of the spring, d, will be held constant,
while the width, w(s), is allowed to vary along the length
of the spring. From these spatial metrics, the cross sectional
area of the spring at the given position, A(s) = dw(s), can
be found. For this work, we define the variable width to be

w(s) =

(
wmin − wmax

2

)
sin(

2π

s0
s) + (

wmin + wmax
2

),

where wmin and wmax are the minimum and maximum
width of the spring. This width profile was chosen to make
the ends of the spring narrow while the middle is wider. This
will allow for a better distribution of stress along the beam
[7]. The internal normal force N(s) is given by

N(s) = −Fs cos(α(s) + γ(s)) , N̂(s)Fs. (7)

Rearranging the governing equations (5)-(7) gives the final
deformation as:

γ′′(s) ,
∂2γ

∂s2
= −N(s) + EernA

′(s)γ′(s)

A(s)Eern

= −A
′(s)

A(s)
γ′(s)− N̂(s)

A(s)Eern
Fs. (8)

We now define the spring’s states as x2 = (γ(s), γ′(s))> ∈
R2 and ρ = (d,wmin, wmax, E) ∈ R4 as the static param-
eters, i.e., design variables. We then can write (8) as in the
form of an ordinary differential equation (ODE):

x′2 = fρ(s, x2) + gρ(s, x2)Fs. (9)

For this system, the independent variable is now s rather
than time, and the dependent variable is the deflection angle
γ , γ(s). Hence the solution to (9) can be expressed as

x2(s)> = (γ(s), γ′(s)), ∀ s ∈ [0, s0]. (10)

7075



Fig. 5: The signal-flow diagram of the interconnected full-body
dynamics.

Since s is a spatial characterization of the spring dynamics,
we call (9) the spatial-domain dynamics of the curved-spring
subsystem.

Boundary condition and numerical solution. For the
subsystem (9), a boundary condition is required to uniquely
determine the solution. Since the ends of this spring are
pinned, there is no moment transferred at these points [12],
and we can set the boundary condition as γ′(0) = γ′(s0) =
0. We then can solve for the numerical solutions x2(sj) for a
specified grid j ∈ {0, 1, 2 . . . ,K}, where sj = js0/K. This
will be detailed in the next section.

Output. The output of the curved-spring subsystem is the
vertical length of the spring, i.e. L(t, s) for at a given time
t ∈ [0, T ]. This can be calculated from the natural shape of
the spring in conjunction with the deflection angles as,

y(s) , L(t, s) =

∫ s0

0

sin(α(s) + γ(s))ds (11)

≈ s∆

∑
j

sin(α(sj) + γ(sj)) (12)

Note that (11) defines the exact value while (12) is the
trapezoidal approximation.

C. Full-Body Dynamics

Due to the fact that the curved-spring subsystem evolves
according to a spatial-domain, independent variable s, the
full-body dynamics of the hopper in design becomes a
interconnected time, spatial-domain system. This is achieved
through an interconnected mechanism, characterized by the
shared variables L(t, s), Fs. Concretely, we summarize the
full-body dynamics from (4) and (10) as:

S1 : ẋ1 = fv(x1) + gv(x1)u+ ḡv(x1)Fs (13)

S2 :

x
′
2 = f2(s, x2) + g2(s, x2)Fs

L ≈ s0

K2

∑K2

j sin(α(sj) + γ(sj))
(14)

where x1(t) , (q, q̇)>, x2(t) , (γ, γ′)>, j = 0, 1, . . . ,K2,
and sj = js/K2. As the block diagram shown in Fig. 5, this
interconnection between the two subsystems happens at the
output level instead of the states level, resulting in a coupled

Fig. 6: Output results of the optimization: desired trajectory of the
actuated mover coordinate (top), and expected spring force in each
curved spring (bottom).

control system [23]. Since the curved springs only deflect
while the robot is on the ground, we only need to match the
shared variables during phases D3 and D4. Throughout D1,
L ≡ L0 and Fs ≡ 0.

III. SYSTEM-LEVEL OPTIMIZATION

The goal of this section is to use optimization [6], [19]
to simultaneously design highly-dynamic hopping motions
and a curved spring of nonlinear stiffness which allows for
such motions with high energy efficiency of the electric
motor. Leveraging the previous construction of the multi-
phase interconnected dynamics, we introduce a general op-
timization formulation that solves for a solution to the full-
body dynamics, given by (13)-(14), and find the optimal
spring parameters ρ. These parameters will be later used to
guide our manufacturing of a hopping robot.

Decision variables. We first discretize the time horizon as
an evenly distributed grid {ti}i=0,1,...,K1 where tKi = T
for the time-domain dynamics. Then we similarly define the
spatial grid as {sj}j=0,1,...,K2

. We denote the time-domain
states at time ti as xi1 and the spatial-domain states at sj

as xj2. Correspondingly, the shared spring force at time ti is
defined as F is . Define the decision variable as:

X , {x0
1, P, (γ

0)i, F is , ρ} with i = 0, 1, . . .K1

where x0
1 is the initial condition of (13) when t = 0, P

is the vector of Bezier polynomial coefficients describing
the desired motion of the mover coordinate, y, and γ0 is a
boundary value of (14). Note that (γ′)0 = 0 was a given
condition, and (γ0)i is the boundary value at time ti. The
mover coordinate is the degree of freedom which is directly
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Fig. 7: Final spring force profile as a function of deflection showing
the softening nature of the designed springs.

controlled by the actuator, and will be the key trajectory to
track on the actual hardware in experiments.

Optimization problem. We denote p(xi) ≤ 0 as the path
constraints for the time-domain dynamics, then we have the
optimization problem using a direct-shooting method as:

System-Level Design Optimization:
min
X

J(X) (OPT)

s.t. C1. x
i+1
1 = x

i
1 +

∫ ti+1

ti

(
fv(x1) + gv(x1)u(x1) + gv(x1)F

i
s

)
dt

i = 0, . . . K1-1

C2.


x
j+1
2 = x

j
2 +

∫ sj+1

sj
fρ(s, x2) + gρ(s, x2)F

i
s j = 0, . . . K2-1

s0

K2

K2∑
j

cos(s
j

+ γ
j
)− Li = 0 i = 0, . . . , K1

C3. (γ
′
)
0

= 0, (γ
′
)
K2 = 0

C4. p(x
i
1) ≤ 0 i = 0, . . . , K1

C5. b(x
i
1) = 0 i = 0, . . . , K1

Essentially, for the initial condition x0
1 and every spring force

F is picked by the optimization algorithm, C1 solves for its
states at time ti with the assumed closed-loop controller
uv(x1) (details of the tracking controller can be found in
[3]) for all phases Dv . We post the boundary condition as an
equality condition C3, so that for each sampling time ti and
the shared spring force F is from C1, the dynamics of (14) is
then solved. Its output Li is also shared by (13) as one of
the torso’s states. Note that this characterization of F is and
Li is the same as the Lagrange multiplier. Further, we posted
a range of inequality constraints such as hopping height and
max spring deflection, δmax, in C4. This max deflection was
based on the max allowable travel given the size of the robot,
as well as the max stress that the plates can handle before
failure. A set of equality constraints C5 is additionally used
to enforce the boundary conditions of the torso dynamics
to match each other through the ground impact, so that the
optimization solution is periodic within the interconnected
dynamics. This periodic solution then can be implemented
on the hardware as a cyclic hopping motion. Lastly, the
cost function was chosen to be J(X) =

∫ T
0
u(x1)2dt, to

minimize the effort of the actuator over a single hop within
the constraints described.

Fig. 8: Phase portrait of the body coordinate with simulated
trajectory (dark blue) and experimental results from 20 consecutive
hops (light blue).

Optimal hopping motion and design variables. This opti-
mization problem was implemented as described in MATLAB
using fmincon. In order to facilitate manufacturing of the
springs, the material’s elastic modulus of the curved-springs
was set for Al-7075 (E = 72GPa), while the other spring
design parameters were allowed to vary. Other materials such
as steel and titanium would be better suited for large strain
deformation like this, but were not considered here for the
sake of time and limited manufacturing resources at hand. In
order to stay within the yield stress limit of Al-7075, σy =
503 MPa, the feasible height of hopping was limited. The
optimization was able to generate results for hop heights up
to 17 cm off the ground, before the max stress of the material
reached unsafe levels. Fig. 6 shows the mover trajectory and
temporal spring force profile for the result of a 9 cm hop
height, which requires a max input force of 49 N.

The chosen spring design was based on this same 9 cm
hop result which gave the geometric spring properties of
d = 3.25 mm, wmin = 24 mm, and wmax = 41 mm. The
resultant spring force profile for this spring design is shown
in Fig. 7. The stiffness of these springs vary from 2390 N/m
at zero deflection to 1080 N/m at 10 cm of deflection. At
this 10 cm mark, the springs are storing 16.45 J and the
max stress within the plates is 283 MPa. The duration of
the ground phase using this result is 0.18 s, which is almost
3 times longer than what was seen in previous work with a
stiff coil spring. The ground phase elongation alone allows
for lower peak actuator force and less stressful impacts on
the robot. This resultant spring and motion design was taken
and implemented as described in the next section.

IV. ROBOT DESIGN AND EXPERIMENTS

The robot used for the experimental validation of this
spring design and hopping motion was previously con-
structed using two linear coil springs [2]. To replace the
lower coil spring, a set of curved springs were machined out
of Aluminum 7075-T651 and mounted to this robot through
slight modifications to the top and bottom of the robot’s body
(see Fig. 1). A linear guide was also attached in order to
constrain the spring deflection to the vertical direction.
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Fig. 9: Tiles from the experiment over a single hop.

The hopping robot was connected to a frame of vertical
rails to facilitate its 1-dimensional motion. Experiments were
run utilizing an open-loop input of motor force as a time-
based trajectory as in [2]. The trajectory used here was
generated through optimization for a hop height of 9 cm
off the ground. Experiments were performed for trials of 20
consecutive hops. A phase portrait of the body coordinate,
zb, for one of these trials is shown in Fig. 8. Vibration of
the rails and curved springs was visually observed during the
trials and was present in the state tracking data as seen in the
phase portrait. The plot shows the consistent nature of both
the overall hop height and the effects of the ground impact
and system vibrations, despite the motion being driven by an
open-loop playback of the input trajectory. Motion tiles of a
single hop are shown in Fig. 9, which show the full extent
of the deflection within the plate springs. The supplemental
video shows the experiments in real time and slow-motion.

V. CONCLUSION

The end result of this work is a method of modeling
connected systems of time and spatial domains through
their dynamics and shared variables, with the goal of fully
capturing their interactions. We were able to formulate an
optimization which could generate both optimal motions
and physical design parameters for a hopping robot. This
method and results were verified on hardware using a novel
hopping robot, confirming the efficacy of modeling this as a
coupled system. Future work will involve implementing this
optimization scheme within FROST [16], as well as using
machine learning to characterize the relationship of spring
deflection and force of the nonlinear curved springs in an
attempt to treat this as a solely time-based system.
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