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Abstract—Safety critical systems involve the tight coupling
between potentially conflicting control objectives and safety
constraints. As a means of creating a formal framework for
controlling systems of this form, and with a view toward
automotive applications, this paper develops a methodology that
allows safety conditions—expressed as control barrier functions—
to be unified with performance objectives—expressed as control
Lyapunov functions—in the context of real-time optimization-
based controllers. Safety conditions are specified in terms of
forward invariance of a set, and are verified via two novel
generalizations of barrier functions; in each case, the existence
of a barrier function satisfying Lyapunov-like conditions implies
forward invariance of the set, and the relationship between these
two classes of barrier functions is characterized. In addition,
each of these formulations yields a notion of control barrier
function (CBF), providing inequality constraints in the control
input that, when satisfied, again imply forward invariance of
the set. Through these constructions, CBFs can naturally be
unified with control Lyapunov functions (CLFs) in the context
of a quadratic program (QP); this allows for the achievement
of control objectives (represented by CLFs) subject to conditions
on the admissible states of the system (represented by CBFs).
The mediation of safety and performance through a QP is
demonstrated on adaptive cruise control and lane keeping,
two automotive control problems that present both safety and
performance considerations coupled with actuator bounds.

Index Terms—Control Lyapunov function, Barrier function,
Nonlinear control, Quadratic program, Safety, Set invariance

I. INTRODUCTION

Cyber-physical systems have at their core tight coupling
between computation, control and physical behavior. One of
the difficulties in designing cyber-physical systems is the need
to meet a large and diverse set of objectives by properly
designing controllers. While it is tempting to decompose the
problem into the design of a controller for each individual
objective and then integrate the resulting controllers via soft-
ware, the integration problem is far from being a simple one.
Examples abound in, e.g., robotic and automotive systems, of
unexpected and unintended interactions between controllers
resulting in catastrophic behavior. In this paper we address
a specific instance of this problem: how to synthesize a
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controller enforcing the different, and occasionally conflicting,
objectives of safety and performance/stability. The overarching
objective of this paper is to develop a methodology to design
controllers enforcing safety objectives expressed in terms of
invariance of a given set, and performance/stability objectives,
expressed as the asymptotic stabilization of another given set.

Motivated by the use of Lyapunov functions to certify sta-
bility properties of a set without calculating the exact solution
of a system, the underlying concept in this paper is to use
barrier functions to certify forward invariance of a set, while
avoiding the difficult task of computing the system’s reachable
set. Prior work in [1] incorporates into a single feedback law
the conditions required to simultaneously achieve asymptotic
stability of an equilibrium point, while avoiding an unsafe set.
Importantly, if the stabilization and safety objectives are in
conflict, then no feedback law can be proposed. In contrast, the
approach developed here will pose a feedback design problem
that mediates the safety and stabilization requirements, in the
sense that safety is always guaranteed, and progress toward the
stabilization objective is assured when the two requirements
“are not in conflict” [2]. The essential differences in these
approaches will be highlighted through a realistic example.

A. Background

Barrier functions were first utilized in optimization; see
Chapter 3 of [3] for an historical account of their use in
optimization. More recently, barrier functions were used in the
paper [4] to develop an interior penalty method for converting
constrained optimal control methods into unconstrained ones1.
Barrier functions are now common throughout the control
and verification literature due to their natural relationship
with Lyapunov-like functions [5], [6], their ability to establish
safety, avoidance, or eventuality properties [7], [8], [9], [10],
[11], and their relationship to multi-objective control [12].
Two notions of a barrier function associated with a set C are
commonly utilized: one that is unbounded on the set boundary,
i.e., B(x) → ∞ as x → ∂C, termed a reciprocal barrier
function here, and one that vanishes on the set boundary,
h(x)→ 0 as x→ ∂C, called a zeroing barrier function here.
In each case, if B or h satisfy Lyapunov-like conditions, then
forward invariance of C is guaranteed. The natural extension of
a barrier function to a system with control inputs is a Control

1Although the techniques employed are different from ours, there are
conceptual similarities as can be seen by noticing the similarity between (2)-
(4) defined later in our paper and the inequalities appearing in Proposition 4,
item (g), in [4] characterizing membership to the set used to define a Gauge
function.
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Barrier Function (CBF), first proposed by [6]. In many ways,
CBFs parallel the extension of Lyapunov functions to Control
Lyapunov functions (CLFs), as pioneered in [13], [14], [15]
and studied in depth in [16]. In each case, the key point is to
impose inequality constraints on the derivative of a candidate
CBF (resp., CLF) to establish entire classes of controllers that
render a given set forward invariant (resp., stable).

The Lyapunov-like conditions that define a (control) barrier
function are intrinsically coupled to the class of controllers
that achieve forward invariance of a set C. As emphasized in
[17] and [18], it is therefore essential to consider how one
defines the evolution of a barrier function away from the set
boundary, as this will translate directly to conditions imposed
on a CBF. In the case of reciprocal barrier functions, existing
formulations impose invariant level sets of B [5], via, Ḃ ≤ 0,
as was done in earlier work on zeroing barrier functions (or
barrier certificates) [11] via ḣ ≥ 0; yet, in both cases, these
conditions are too restrictive on the interior of C.

B. Contributions

The first contribution of this paper is to formulate condi-
tions on the derivative of a (reciprocal or zeroing) barrier
function that are minimally restrictive on the interior of C.
These conditions will be formulated with an eye toward their
extension to control barrier functions. It is clear that less
restrictive conditions for a barrier function will translate into
a control barrier function that admits a larger set of inputs
compatible with controlled invariance; this will be important
when integrating performance with safety later in the paper.
Less obvious considerations include robustness of a controlled
invariant set to model perturbations, Lipschitz continuity of
feedbacks achieving controlled invariance, and, as pointed out
by [10] for barrier certificates, convexity of the set of control
barrier functions when computing them numerically.

For reciprocal barrier functions, we allow for B to grow
when it is far away from the boundary of C in that we only
require that Ḃ ≤ α(1/B), for a class-K function α. In the
case of zeroing barrier functions, we adopt a condition of the
form ḣ ≥ −α(h). The latter condition may be somewhat
surprising in view of the well-known Nagumo’s Theorem,
which states that for a system without inputs and a C1 function
h, the condition ḣ ≥ 0 on ∂C is necessary and sufficient
for the zero superlevel set to be invariant. Importantly, under
mild conditions on C, it is demonstrated that the conditions
we propose are also necessary and sufficient for forward
invariance, and result in the relationships shown in Fig. 1.
Moreover, it is shown how our conditions lead to Lipschitz
continuity of control laws, robustness, and convexity of the
class of control barrier functions.

Safety-critical control problems often include performance
objectives, such as stabilization to a point or a surface, in
addition to safety constraints. An important novelty of the
present paper is that a Quadratic Program (QP) is used to “me-
diate” these (potentially conflicting) specifications: stability
and safety. The motivation for this solution comes from [19],
[20], [21], which developed CLFs to exponentially stabilize
periodic orbits in a class of hybrid systems. The experimental

Theorem 1:

Propositions 1 and 3:
(Assume C is compact)

Int(C) is invariant

C is invariant

RBF

ZBF

Theorem 2:
(Assume C is compact

and contractive)
Int(C) is invariant

RBF

ZBF

Fig. 1. Relationships among reciprocal barrier functions (RBFs), zeroing
barrier functions (ZBFs), and forward invariance that are developed in the
paper. The underlying analysis can be found in Theorem 1, Proposition 1,
Proposition 3 and Theorem 2. The relations established for barrier functions
then extend to control barrier functions.

realization of CLF inspired controllers on a bipedal robot
resulted in the observation that, since CLF conditions are affine
in torque, they can be formulated as QPs [22]. Moreover, this
perspective allows for the consideration of multiple control
objectives (expressed via multiple CLFs) together with force-
and torque-based constraints [23], [24]. The present paper
extends these ideas by unifying CBFs and CLFs through QPs.
In particular, given a control objective (expressed through a
CLF) and an admissible set in the state space (expressed
via a CBF), we formulate a QP that mediates the tradeoff
of achieving a stabilization objective subject to ensuring the
system remains in a safe set. In particular, relaxation is used to
make the stability objective a soft constraint on the QP, while
safety is maintained as a hard constraint. In this way, safety
and stability do not need to be simultaneously satisfiable, and
continuity of the resulting control law is provably maintained.

An alternative approach to controlled invariance has been
developed in [25], [26], [27], [28], [29] under the name
of invariance control. This elegant body of work is based
on an extension of Nagumo’s condition to functions h of
higher relative degree [30], namely, it focuses on derivative
conditions on the boundary of the controlled-invariant set. As
a consequence, the control law is discontinuous, such as in
sliding mode control, and as in sliding mode control, chattering
may occur. We, however, establish a control framework that
yields checkable conditions for Lipschitz continuous control
laws and well-defined solutions of the closed-loop system.
This is important from a theoretical point of view as well as
the practical benefit of avoiding chattering. The consideration
of the existence of solutions to the closed-loop system is one
of the important differences between barrier certificates for
dynamical systems and control barrier functions for control
systems.

The CBF-CLF-based QPs are illustrated on two automotive
safety/convenience problems; namely, Adaptive Cruise Control
(ACC) and Lane Keeping (LK) [31], [32], [33], [34]. ACC
is being developed and deployed on passenger vehicles due
to its promise to enhance driver convenience, safety, traffic
flow, and fuel economy [35], [36], [37]. It is a multifaceted
control problem because it involves asymptotic performance
objectives (drive at a desired speed), subject to safety con-
straints (maintain a safe distance from the car in front of you),
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and constraints based on the physical characteristics of the car
and road surface (bounded acceleration and deceleration). A
key challenge is that the various objectives can often be in
conflict, such as when the desired cruising speed is faster than
the speed of the leading car, while provably satisfying the
safety-oriented constraints is of paramount importance. Lane
keeping, maintaining a vehicle between the lane markers [38],
is another safety-related problem that we use to illustrate the
methods developed in this paper.

A preliminary version of this work was presented in the
conference publications [2] and [39]. The present paper adds to
those two papers in the following important ways: the relations
between the two forms of barrier functions are characterized;
barriers with a higher relative degree are considered; the
adaptive cruise control problem is extended from the lead
vehicle’s speed being constant to the more realistic case of
varying speed with bounded input force; and the lane keeping
problem is considered under the proposed QP framework.

C. Organization and Notation

The remainder of the paper is organized as follows. Two
barrier functions, specifically, reciprocal barrier functions and
zeroing barrier functions, are formulated in Sect. II, and are
extended to control barrier functions in Sect. III. Quadratic
programs that unify control Lyapunov functions and control
barrier functions are introduced in section IV. The theory
developed in the paper is illustrated on the adaptive cruise
control and lane keeping problems in Sect. V, with simulations
reported in Sect. VI. Conclusions are provided in Sect. VII.

Notation: R,R+
0 denote the set of real, non-negative real

numbers, respectively. Int(C) and ∂C denote the interior and
boundary of the set C, respectively. The open ball in Rn with
radius ε ∈ R+ and center at 0 is denoted by Bε = {x ∈
Rn | ‖x‖ < ε}. The Minkowsky sum of two sets R ⊆ Rn and
S ⊆ Rn is denoted by R ⊕ S . The distance from x to a set
S is denoted by ‖x‖S = infs∈S ‖x− s‖. For any essentially
bounded function g : R → Rn, the infinity norm of g is
denoted by ‖g‖∞ = ess supt∈R ‖g(t)‖. A continuous function
β1 : [0, a)→ [0,∞) for some a > 0 is said to belong to class
K if it is strictly increasing and β1(0) = 0. A continuous
function β2 : [0, b)× [0,∞)→ [0,∞) for some b > 0 is said
to belong to class KL, if for each fixed s, the mapping
β2(r, s) belongs to class K with respect to r and for each
fixed r, the mapping β2(r, s) is decreasing with respect to s
and β2(r, s)→ 0 as s→∞.

II. RECIPROCAL AND ZEROING BARRIER FUNCTIONS

This section studies two notions of barrier functions and
investigates their relationships with forward invariance of a
set. Consider a nonlinear system of the form

ẋ = f(x) (1)

where x ∈ Rn and f is assumed to be locally Lipschitz. Then
for any initial condition x0 := x(t0) ∈ Rn, there exists a
maximum time interval I(x0) = [t0, τmax) such that x(t) is
the unique solution to (1) on I(x0); in the case when f is

forward complete, τmax = ∞. A set S is called (forward)
invariant with respect to (1) if for every x0 ∈ S, x(t) ∈ S for
all t ∈ I(x0).

A. Reciprocal Barrier Functions

1) Motivation: Given a closed set C ⊂ Rn, we determine
conditions on functions B : Int(C) → R such that Int(C) is
forward invariant. These conditions will motivate the formu-
lation of the barrier functions considered in this paper.

Assume that the set C is defined as

C = {x ∈ Rn : h(x) ≥ 0}, (2)
∂C = {x ∈ Rn : h(x) = 0}, (3)

Int(C) = {x ∈ Rn : h(x) > 0}, (4)

where h : Rn → R is a continuously differentiable function.
Later, it will also be assumed that C is nonempty and has no
isolated point, that is,

Int(C) 6= ∅ and Int(C) = C. (5)

Motivated by the barrier method in optimization [40], con-
sider the logarithmic barrier function candidate

B(x) = − log

(
h(x)

1 + h(x)

)
. (6)

Note that this function satisfies the important properties

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) =∞. (7)

The question then becomes: what conditions should be
imposed on Ḃ so that Int(C) is forward invariant? The
conventional answer in [5], [11] has been to enforce the
condition Ḃ ≤ 0, but this may not be desirable since it requires
all sublevel sets of C to be invariant; in particular, it will not
allow a solution to leave a sublevel set even if by doing so
it will remain in Int(C). A condition analogous to this was
relaxed by [18] and [17] where the key idea was to only require
a single sublevel set to be invariant. Motivated by this, we relax
the condition Ḃ ≤ 0 to

Ḃ ≤ γ

B
, (8)

where γ is positive. This inequality allows for Ḃ to grow
when solutions are far from the boundary of C. As solutions
approach the boundary, the rate of growth decreases to zero.

For (8) to be an acceptable condition, we need to verify that
its satisfaction guarantees that solutions to (1) stay in Int(C).
To see this, we note that differentiating (6) along solutions of
(1) gives

Ḃ = − ḣ

h+ h2
.

Therefore, (8) implies that the rate of change in h with respect
to t is bounded by

ḣ ≥ γ(h+ h2)

log
(

h
1+h

) .
Assuming for the moment that solutions x(t, x0) of (1) are
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forward complete, the Comparison Lemma [41] implies that

h(x(t, x0)) ≥ 1

−1 + exp

(√
2γt+ log2

(
h(x0)+1
h(x0)

)) .
Therefore, if h(x0) > 0, i.e., x0 ∈ Int(C), then condi-
tion (8) guarantees that h(x(t, x0)) > 0 for all t ≥ 0, i.e.,
x(t, x0) ∈ Int(C) for all t ≥ 0.

Apart from (6), another barrier function that is commonly
considered in optimization is the inverse-type barrier candidate

B(x) =
1

h(x)
. (9)

Note that B(x) in (9) also satisfies the properties in (7). If
condition (8) holds, then by the Comparison Lemma, we have

h(x(t, x0)) ≥ 1√
2γt+ 1

h2(x0)

,

and once again, x(t, x0) ∈ Int(C) for all t ≥ 0, provided that
x0 ∈ Int(C).

2) Reciprocal Barrier Functions and Set Invariance: Based
on the presented motivation, we formulate a notion of barrier
function that provides the same guarantees in a more general
context.

Definition 1. For the dynamical system (1), a continuously
differentiable function B : Int(C)→ R is a reciprocal barrier
function (RBF) for the set C defined by (2)-(4) for a continu-
ously differentiable function h : Rn → R, if there exist class
K functions α1, α2, α3 such that, for all x ∈ Int(C),

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
, (10)

LfB(x) ≤ α3(h(x)). (11)

Remark 1. The Lyapunov-like bounds (10) on B imply that
along solutions of (1), B essentially behaves like 1

α(h) for
some class K function α with

inf
x∈Int(C)

1

α(h(x))
≥ 0, lim

x→∂C

1

α(h(x))
=∞.

The condition (11) on Ḃ = LfB, which generalizes condition
(8), allows for B to grow quickly when solutions are far away
from ∂C, with the growth rate approaching zero as solutions
approach ∂C.

Remark 2. In the conference version [2], a function satisfying
Def. 1 was simply called a barrier function and not a reciprocal
barrier function. The new terminology is necessary to make the
distinction with a second type of barrier function used in the
next subsection.

Theorem 1. Given a set C ⊂ Rn defined by (2)-(4) for a
continuously differentiable function h, if there exists a RBF
B : Int(C)→ R, then Int(C) is forward invariant.

The following lemma is established to prove Theorem 1.

Lemma 1. Consider the dynamical system

ẏ = α

(
1

y

)
, y(t0) = y0, (12)

with α a class K function. For every y0 ∈ (0,∞), the system
has a unique solution defined for all t ≥ t0 and given by

y(t) =
1

σ
(

1
y0
, t− t0

) , (13)

where σ is a class KL function.

Proof. Under the change of variables z = 1
y , the dynamical

system (12) becomes

ż = − ẏ

y2
= −

α
(

1
y

)
y2

= −α(z)z2 := −ᾱ(z). (14)

Since α(z) is a class K function, it follows that ᾱ(z) = α(z)z2

is a class K function. The fact that ᾱ(z) is a continuous, non-
increasing function for all z ≥ 0 implies that (14) has a unique
solution for every initial state z0 > 0; see Peano’s Uniqueness
Theorem (Thm. 1.3.1 in [42], Thm. 6.2 in [43]). Furthermore,
by the proof of Lemma 4.4 of [41], it follows that the solution
is defined on [t0,∞) and is given by

z(t) = σ(z0, t− t0),

with σ a class KL function. Converting from z back to y
through y = 1

z yields the solution y(t) given in (13).

We now have the necessary framework in which to prove
Theorem 1.

Proof. (of Theorem 1) Utilizing (10) and (11), we have that

Ḃ ≤ α3 ◦ α−1
2

(
1

B

)
:= α

(
1

B

)
. (15)

Since the inverse of a class K function is a class K function,
and the composition of class K functions is a class K function,
α = α3 ◦ α−1

2 is a class K function.
Let x(t) be a solution of (1) with x0 ∈ Int(C), and let

B(t) = B(x(t)). The next step is to apply the Comparison
Lemma to (15) so that B(t) is upper bounded by the solution
of (12). To do so, it must be noted that the hypothesis “f(t, u)
is locally Lipschitz in u” used in the proof of Lemma 3.4
in [41], can be replaced by with the hypothesis “f(t, u)
is continuous, non-increasing in u”. This is valid because
the proof only uses the local Lipschitz assumption to obtain
uniqueness of solutions to (12), and this was taken care of
with Peano’s Uniqueness Theorem in the proof of Lemma 1.

Hence, the Comparison Lemma in combination with Lemma
1 yields

B(x(t)) ≤ 1

σ
(

1
B(x0) , t− t0

) , (16)

for all t ∈ I(x0), where x0 = x(t0). This, coupled with the
left inequality in (10), implies that

α−1
1

(
σ

(
1

B(x0)
, t− t0

))
≤ h(x(t)), (17)

for all t ∈ I(x0). By the properties of class K and KL
functions, if x0 ∈ Int(C) and hence B(x0) > 0, it follows
from (17) that h(x(t)) > 0 for all t ∈ I(x0). Therefore,
x(t) ∈ Int(C) for all t ∈ I(x0), which implies that Int(C)
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is forward invariant.

Remark 3. Inequality (16) is the essential condition to make
B a reciprocal barrier function, because it ensures that
B(x(T )) 6= ∞ for any finite T ∈ I(x0), which implies that
h(x(T )) > 0 for any T ∈ I(x0) if h(x0) > 0.

Remark 4. Note that the function considered in (6), subject
to the condition (8) for some γ > 0, is a RBF by Def. 1. This
follows from the fact that

α(r) =

{
1

− log( r
1+r )

if r > 0

0 if r = 0.

is a class K function. Therefore, in Def. 1, we choose α1(r) =
α2(r) = α(r) and α3(r) = γα(r). Note also that the function
(9) satisfying (8) is also a RBF with class K functions α1(r) =
α2(r) = r and α3(r) = γr.

B. Zeroing Barrier Functions

Intrinsic to the notion of RBF is the fact, formalized
in (10), that such a function tends to plus infinity as its
argument approaches the boundary of C. Unbounded function
values, however, may be undesirable when real-time/embedded
implementations are considered. Motivated by this and the
barrier certificates in [18], we study a barrier function that
vanishes on the boundary of the set C. This is facilitated by
fist defining the notion of an extended class K function.

Definition 2. A continuous function α : (−b, a)→ (−∞,∞)
is said to belong to extended class K for some a, b > 0 if it
is strictly increasing and α(0) = 0.

Definition 3. For the dynamical system (1), a continuously
differentiable function h : Rn → R is a zeroing barrier
function (ZBF) for the set C defined by (2)-(4), if there exist
an extended class K function α and a set D with C ⊆ D ⊂ Rn
such that, for all x ∈ D,

Lfh(x) ≥ −α(h(x)). (18)

Remark 5. Defining h on a set D larger than C allows one
to consider the effects of model perturbations. This idea is
developed in the conference submission [39], where it is also
illustrated on a realistic problem.

Remark 6. A special case of (18) is

Lfh(x) ≥ −γh(x), (19)

for γ > 0. This leads to a convex problem when seeking
barrier functions with numerical means, such as sum of
squares (SOS) [10].

Similar to Theorem 1, existence of a ZBF implies the
forward invariance of C, as shown by the following theorem.

Proposition 1. Given a dynamical system (1) and a set C
defined by (2)-(4) for some continuously differentiable function
h : Rn → R, if h is a ZBF defined on the set D with C ⊆
D ⊂ Rn, then C is forward invariant.

Proof. Note that for any x ∈ ∂C, ḣ(x) ≥ −α(h(x)) = 0.
According to Nagumo’s theorem [44], [45], the set C is
forward invariant.

Remark 7. As stated in Remark 3, what makes function B
of Def. 1 a barrier is that B(x(T )) < ∞ for any finite T ∈
I(x(t0)). Here, what makes function h of Def. 3 a barrier is
that h(x(T )) > 0 for any finite T ∈ I(x(t0)).

For a ZBF h defined on a set D, if D is open, then h induces
a Lyapunov function VC : D → R+

0 defined by

VC(x) =

{
0, if x ∈ C,

−h(x), if x ∈ D\C. (20)

It is easy to see that: 1) VC(x) = 0 for x ∈ C; 2) VC(x) > 0 for
x ∈ D\C; and 3) LfVC(x) satisfies the following inequality
for x ∈ D\C:

LfVC(x) = −Lfh(x) ≤ α ◦ h(x) = α(−VC(x)) < 0,

where α is the extended class K function introduced in Def. 3.
It thus follows from these three properties, from the fact that
VC is continuous on its domain and continuously differentiable
at every point x ∈ D\C, and from2 Theorem 2.8 in [46] that
the set C is asymptotically stable whenever (1) is forward
complete or the set C is compact. This is summarized in the
following result.

Proposition 2. Let h : D → R be a continuously differentiable
function defined on an open set D ⊆ Rn. If h is a ZBF
for the dynamical system (1), then the set C defined by h is
asymptotically stable. Moreover, the function VC defined in
(20) is a Lyapunov function.

Note that asymptotic stability of C implies forward invari-
ance of C as described in [39]. Therefore, existing robustness
results in the literature (such as [47], [48]) can be used to
characterize the extent to which forward invariance of the
set C is robust with respect to different perturbations on
the dynamics (1). The reader is referred to [39] for further
discussion and an application.

C. Relationships of RBFs, ZBFs and Set Invariance

Theorem 1 and Prop. 1 in the two previous subsections
show that the existence of a RBF (resp., a ZBF) is a sufficient
condition for the forward invariance of Int(C) (resp., C). This
section investigates cases where the converse holds and other
relations among these two types of barrier functions.

Proposition 3. Consider the dynamical system (1) and a
nonempty, compact set C defined by (2)-(4) for a continuously
differentiable function h. If C is forward invariant, then h|C is
a ZBF defined on C.

Proof. We take D = C in Def. 3. For any r ≥ 0, the set
{x|0 ≤ h(x) ≤ r} is a compact subset of C. Define a function
α : [0,∞)→ R by

α(r) = − inf
{x|0≤h(x)≤r}

Lfh(x).

2While Theorem 2.8 requires the function V to be smooth, V can always
be smoothed as shown in Proposition 4.2 in [46].
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Using the compactness property stated above and the conti-
nuity of Lfh, α is a well defined, non-decreasing function on
R+

0 satisfying

Lfh(x) ≥ −α ◦ h(x), ∀x ∈ C.
By Nagumo’s theorem [44], [45], the invariance of C is

equivalent to

h(x) = 0 ⇒ Lfh(x) ≥ 0,

which implies that α(0) ≤ 0. There always exists a class K
function α̂ defined on [0,∞) that upper-bounds α, yielding
ḣ(x) ≥ −α̂(h(x)) for all x ∈ C. This completes the proof.

Propositions 1 and 3 together show that a set C is forward
invariant if, and only if, it admits a ZBF. Before addressing
necessity for RBFs, a lemma is given. The shorthand notation
ḣ(x) is used for Lfh(x), analogous to common usage for
Lyapunov functions.

Lemma 2. Consider the dynamical system (1) and a
nonempty, compact set C defined by (2)-(4) for a continuously
differentiable function h. If ḣ(x) > 0 for all x ∈ ∂C, then for
each integer k ≥ 1, there exists a constant γ > 0 such that

ḣ(x) ≥ −γhk(x), ∀x ∈ Int(C).
Proof. Because C = Int(C) and C is nonempty, we have
Int(C) 6= ∅. Furthermore, because ḣ(x) > 0 for all x ∈ ∂C, by
the continuity of ḣ, there exists ε0 > 0 such that ḣ(x) > 0 for
all x ∈ Q $ C where Q := (Bε0(0)⊕∂C)∩ Int(C) is an open
set contained in Int(C). It follows that ḣ(x) ≥ −γ′hk(x) holds
for any x ∈ Q and any constant γ′ > 0, because the left hand
side is non-negative and the right hand side is non-positive.

Note that C\Q is a compact subset because C is compact;
moreover, − ḣ

hk
is well-defined and continuous in C\Q. Hence,

we can choose some constant γ′′ ≥ max{x|x∈C\Q}−
ḣ(x)
hk(x)

,
such that ḣ(x) ≥ −γ′′hk(x) holds for any x ∈ C\Q.

Taking γ = γ′′, we have ḣ(x) ≥ −γhk(x) for any x ∈
Int(C), which completes the proof.

Based on the lemma, we have the following theorem.

Theorem 2. Under the assumptions of Lemma 2, B = 1
h :

Int(C)→ R is a RBF and h : C → R is a ZBF for C.

Proof. Let k = 3 in Lemma 2. Then there exists γ1 > 0
such that for all x ∈ Int(C), ḣ ≥ −γ1h

3 holds, which implies
that − ḣ

h2 ≤ γ1h holds, or equivalently, Ḃ ≤ γ1
B holds. By

Definition 4, B = 1
h is a RBF for C.

Let k = 1 in Lemma 2. Then there exists γ2 > 0 such that
for all x ∈ Int(C), ḣ ≥ −γ2h holds. By Definition 3, h is a
ZBF defined on C.

Remark 8. The assumption ḣ(x) > 0 for all x ∈ ∂C is
called contractivity in [45], because the flow on the boundary
of C points inward. Without the compactness assumption on
C, counterexamples to Thm. 2 can be given. Consider a
dynamical system on R2 given by ẋ1 = − 1

2x2, ẋ2 = −x3
1 +1.

Define C = {x|h(x) ≥ 0}, where h(x) = x2−x2
1. Note that C

is forward invariant because for any x ∈ ∂C, ḣ(x) = 1 > 0.

Clearly, C is not compact and ḣ = ẋ2 − 2x1ẋ1 = x1(x2 −
x2

1) + 1. For any r > 0,

inf
{x|h(x)=r}

ḣ(x) = inf
{x|h(x)=r}

x1r + 1 = −∞.

Consequently, there cannot exist an extended K function α
such that ḣ ≥ −α(h), which implies that h cannot be a ZBF
for C. Similarly, it is also impossible to find a class K function
α3 such that − ḣ

h2 ≤ α3(h) (resp. − ḣ
h(h+1) ≤ α3(h)), which

implies that (6) (resp. (9)) cannot be a RBF for C.

The relationships of RBFs, ZBFs and the set invariance are
summarized in Fig.1. Note that while a ZBF leads to C being
invariant, when C is contractive, Int(C) is also invariant.

III. CONTROL BARRIER FUNCTIONS

While barrier functions are important tools to verify invari-
ance of a set, they cannot be directly used to design a controller
enforcing invariance. By drawing inspiration on how Lyapunov
functions were extended to control Lyapunov functions (by
Sontag), we propose in this section a similar extension of
barrier functions to control barrier functions (CBFs). It is
important to note that CBFs have been considered in the
context of existing notions of barrier certificates [1], [6], [11].
The construction presented here differs due to the novel RBF
condition (11) and the ZBF condition (18), which increases
the available control inputs that satisfy the CBF condition.
Ultimately, the true usefulness of this will be seen when CBFs
are unified with control Lyapunov functions through quadratic
programs in Section IV.

A. Reciprocal Control Barrier Functions

Consider an affine control system

ẋ = f(x) + g(x)u, (21)

with f and g locally Lipschitz, x ∈ Rn and u ∈ U ⊂ Rm.
Later, we will be particularly interested in the case that U can
be expressed as a convex polytope,

U = {u ∈ Rm|A0u ≤ b0}, (22)

where A0 is a p×m matrix and b0 is a p× 1 column vector
of constants with p some positive integer.

When the set Int(C) is not forward invariant under the nat-
ural dynamics of the system, ẋ = f(x), how can a controller
be specified that will ensure the invariance of Int(C)? This
motivates the following definition.

Definition 4. Consider the control system (21) and the set C ⊂
Rn defined by (2)-(4) for a continuously differentiable function
h. A continuously differentiable function B : Int(C) → R is
called a reciprocal control barrier function (RCBF) if there
exist class K functions α1, α2, α3 such that, for all x ∈ Int(C),

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
(23)

inf
u∈U

[LfB(x) + LgB(x)u− α3(h(x))] ≤ 0. (24)

The RCBF B is said to be locally Lipschitz continuous if α3

and ∂B
∂x are both locally Lipschitz continuous.
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Given a RCBF B, for all x ∈ Int(C), define the set

Krcbf(x) = {u ∈ U : LfB(x) + LgB(x)u− α3(h(x)) ≤ 0}.
Considering control values in this set allows us to guarantee
the forward invariance of C via the following straightforward
application of Theorem 1.

Corollary 1. Consider a set C ⊂ Rn be defined by (2)-(4)
and let B be an associated RCBF for the system (21). Then
any locally Lipschitz continuous controller u : Int(C) → U
such that u(x) ∈ Krcbf(x) will render the set Int(C) forward
invariant.

B. Zeroing Control Barrier Functions

Def. 2 for ZBFs leads to the second type of control barrier
function.

Definition 5. Given a set C ⊂ Rn defined by (2)-(4) for a
continuously differentiable function h : Rn → R, the function
h is called a zeroing control barrier function (ZCBF) defined
on set D with C ⊆ D ⊂ Rn, if there exists an extended class
K function α such that

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ D. (25)

The ZCBF h is said to be locally Lipschitz continuous if α
and the derivative of h are both locally Lipschitz continuous.

Given a ZCBF h, for all x ∈ D define the set

Kzcbf(x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0}.

Similar to Corollary 1, the following result guarantees the
forward invariance of C.

Corollary 2. Given a set C ⊂ Rn defined by (2)-(4) for a
continuously differentiable function h, if h is a ZCBF on D,
then any Lipschitz continuous controller u : D → U such that
u(x) ∈ Kzcbf(x) will render the set C forward invariant.

Remark 9. Note that control u(x) ∈ Krcbf(x) (or
u(x) ∈ Kzcbf(x)) will not necessarily render the closed-loop
system of (21) forward complete, but only ensures that if
x0 ∈ Int(C), then x(t) ∈ Int(C) for all t ∈ Iu(x0). Here,
Iu(x0) is the maximal time interval for the closed-loop system
of (21) with control u(x) ∈ Krcbf(x) (resp. u(x) ∈ Kzcbf(x)).

C. Higher Relative Degree

In the preceding two subsections, if the function h has a
relative degree greater than 1, then Lgh = 0 and the set
Krcbf(x) or Kzcbf(x) trivially equals to U or the empty set.
When h has a relative degree r ≥ 2, the following proposition
shows how to design a RCBF for C.

Proposition 4. Consider the control system (21) with
U = Rm. Consider also a set C ⊂ Rn defined by (2)-(4) for
a function h with relative degree r ≥ 2, namely, h is r-times
continuously differentiable and ∀ x ∈ Int(C), LgLkfh(x) = 0,
for 0 ≤ k ≤ r − 2, and LgL

(r−1)
f h(x) 6= 0. Then for any

constant Hmax > 0 and continuously differentiable function
H : R→ R+

0 satisfying

(i) 0 ≤ H(λ) ≤ Hmax, ∀ λ ∈ R, (26)

(ii)
dH(λ)

dλ
6= 0, ∀ λ ∈ R, (27)

the function Br : Int(C)→ R+
0 defined by

Br :=
1

h
+H ◦ L(r−1)

f h

is a RCBF.

Proof. For all x ∈ Int(C),

1

h(x)
≤ Br(x) ≤ 1

h(x)
+Hmax

and thus
1

α1(h(x))
≤ Br(x) ≤ 1

α2(h(x))
,

where α1(ξ) := ξ and

α2(ξ) :=

{
0 If ξ = 0

1
1
ξ+Hmax

If ξ > 0

are both class K functions. Thus, condition (23) is satisfied.
By the chain rule,

LgBr =

(
dH

dλ
◦ L(r−1)

f h

)(
LgL

(r−1)
f h

)
. (28)

Because h has relative degree r and (27) holds, it follows that
Br has relative degree one. Therefore, for any class K function
α3, and for any x ∈ Int(C), there exists u ∈ Rm such that
LfBr(x) + LgBr(x)u ≤ α3(1/Br(x)), and thus condition
(24) holds. Therefore, Br is a RCBF.

An example for H is H(λ) = atan(λ) + π
2 ∈ (0, π2 ), where

dH
dλ = 1

1+λ2 6= 0 for any λ. Another means to construct RCBFs
for h with relative degree r ≥ 2 is given in [49], where a
backstepping-inspired method for its construction is provided.

Remark 10. For ZCBF h with relative degree r ≥ 2, replace
(26) by there exists Hmin > 0, Hmax > 0 and

Hmin ≤ H(λ) ≤ Hmax, ∀ λ ∈ R. (29)

Then for any H(λ) satisfying (29) and (27), the function
(H ◦ L(r−1)

f ) · h is a ZCBF defined on C. See also [50] for
an alternative approach.

Remark 11. Note that if U 6= Rm, i.e., there are constraints
on the input u, then the construction shown above for higher
relative degree h may no longer be valid. Designing CBFs in
this case remains an open question.

IV. QPS FOR MEDIATING SAFETY AND PERFORMANCE

In this section, we address the following question: how
to select, among the control inputs that enforce the safety
requirement, an input that also enforces liveness/stability? We
begin with a brief overview of exponentially stabilizing control
Lyapunov functions in the context of nonlinear systems. This
formulation naturally leads to a quadratic program (QP) that
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allows for the unification of control Lyapunov functions for
performance and control barrier functions for safety.

In the following, the dynamics of the system are given by
a nonlinear affine control system of the form(

ẋ1

ẋ2

)
=

(
f1(x1, x2)
f2(x1, x2)

)
︸ ︷︷ ︸

f(x)

+

(
g1(x1, x2)

0

)
︸ ︷︷ ︸

g(x)

u

where x1 ∈ X ⊂ Rn1 are controlled (or output) states,
x2 ∈ Z ⊂ Rn2 are the uncontrolled states, with n1 + n2 = n,
and U ⊂ Rm is the set of admissible control values for
u. In addition, we assume that f1(0, x2) = 0, i.e., that the
zero dynamics surface Z defined by x1 = 0 with dynamics
given by ẋ2 = f2(0, x2) is invariant, and we assume adequate
smoothness assumptions on the dynamics so that solutions are
well defined.

A. Control Lyapunov Functions
Definition 6. [20] A continuously differentiable function
V : X × Z → R is an exponentially stabilizing control Lya-
punov function (ES-CLF) if there exist positive constants
c1, c2, c3 > 0 such that for all x = (x1, x2) ∈ X × Z, the
following inequalities hold,

c1‖x1‖2 ≤ V (x) ≤ c2‖x1‖2, (30)
infu∈U [LfV (x) + LgV (x)u+ c3V (x)] ≤ 0. (31)

The existence of an ES-CLF yields a family of controllers
that exponentially stabilize the system to the zero dynamics
[16]. In particular, consider the set

Kclf(x) = {u ∈ U : LfV (x) + LgV (x)u+ c3V (x) ≤ 0}.
It follows that a locally Lipschitz controller u : X × Z → U
satisfies

u(x) ∈ Kclf(x)⇒ ‖x1(t)‖ ≤
√
c2
c1
e−

c3
2 t‖x1(0)‖.

When U = Rm, Freeman and Kokotovic introduced the
min-norm controller, u∗(x), defined pointwise as the ele-
ment of Kclf(x) having minimum Euclidean norm [51]. The
min-norm controller can be interpreted as the solution of
a quadratic program (QP). Importantly, by using the QP
formulation, it is straightforward to include bounds on the
control values [52], [22], such as those given in (22), namely

u∗(x) =argmin
u∈Rm

1

2
u>u (32)

s.t. LfV (x) + LgV (x)u ≤ −c3V (x)

A0u ≤ b0.
The QP-form of the controllers have been executed in real-
time to achieve bipedal walking [22], [21] on a human-sized
robot and on scale cars [53], with sample rates of 200 Hz to
1 kHz.

B. Combining CLFs and CBFs via QPs
A distinct advantage of the QP perspective is that it allows

for the unification of control performance objectives (repre-
sented by CLFs) subject to the trajectories belonging to desired

”safe” sets (as dictated by CBFs). By relaxing the constraint
represented by the CLF condition (31), and adjusting the
weight on the relaxation parameter, the QP can mediate the
tradeoff between performance and safety, with the safety being
guaranteed.

Specifically, given a RCBF B associated with a set C defined
by (2)-(4) and an ES-CLF V , they can be combined into a
single controller through the use of a QP of the following
form3

u∗(x) = argmin
u=(u,δ)∈Rm×R

1

2
u>H(x)u + F (x)>u

(CLF-CBF QP)
s.t. LfV (x) + LgV (x)u+ c3V (x)− δ ≤ 0, (33)

LfB(x) + LgB(x)u− α(h(x)) ≤ 0, (34)

where c3 > 0 is a constant, α belongs to class K, H(x) ∈
R(m+1)×(m+1) is positive definite, and F (x) ∈ Rm+1.

The following theorem4 provides a sufficient condition for
u∗(x) to be locally Lipschitz continuous in Int(C), thereby
guaranteeing local existence and uniqueness of solutions to
the closed-loop system, and the applicability of Corollaries 1
and 2.

Theorem 3. Suppose that the following functions are all
locally Lipschitz: the vector fields f and g in the control system
(21), the gradients of the RCBF B and CLF V , as well as
the cost function terms H(x) and F (x) in (CLF-CBF QP).
Suppose furthermore that the relative degree one condition,
LgB(x) 6= 0 for all x ∈ Int(C), holds. Then the solution,
u∗(x), of (CLF-CBF QP) is locally Lipschitz continuous for
x ∈ Int(C). Moreover, a closed-form expression can be given
for u∗(x).

Proof. The proof is based on [54][Ch. 3], which as a special
case includes minimization of a quadratic cost function subject
to affine inequality constraints.

Define

y1(x) = [LgV (x),−1]>, p1(x) = −LfV (x)− c3V (x),

y2(x) = [LgB(x), 0]>, p2(x) = −LfB(x) + α(h(x)),

and note that for all x ∈ Int(C), y1(x) and y2(x) are linearly
independent in Rm+1. Because H(x) is locally Lipschitz
continuous and positive definite, its inverse exists and is locally
Lipschitz continuous. Define[

ȳ1(x), ȳ2(x)
]

= H(x)−1
[
y1(x), y2(x)

]
,[

p̄1(x)
p̄2(x)

]
=

[
p1(x)
p2(x)

]
−
[
y1(x)>

y2(x)>

]
ū(x),

and

ū(x) := −H(x)−1F (x)

v := u− ū(x).

Finally, let〈·, ·〉 define an inner product on Rm+1 with weight

3In the following sections, only RCBFs are used to formulate the QPs;
however, QPs incorporating ZCBFs can be formulated in a similar way [39].

4Note that while this theorem is established for ES-CLFs in this paper, the
same results hold for classically defined CLFs as in [16].
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matrix H(x) so that 〈v,v〉 := v>H(x)v.

The optimization problem (CLF-CBF QP) is then equivalent
to

v∗(x) =argmin
v∈Rm+1

〈v,v〉 (35)

s.t. 〈ȳ1(x),v〉 ≤ p̄1(x),

〈ȳ2(x),v〉 ≤ p̄2(x),

with

u∗(x) = v∗(x) + ū(x). (36)

From [54][Ch. 3], the solution to (35) is computed as
follows. Let G(x) = [Gij(x)] = [〈ȳi(x), ȳj(x)〉], i, j = 1, 2
be the Gram matrix. Due to the linear independence of
{ȳ1(x), ȳ2(x)}, G(x) is positive definite. The unique solution
to (35) is

v∗(x) = λ1(x)ȳ1(x) + λ2(x)ȳ2(x), (37)

where λ(x) = [λ1(x), λ2(x)]> is the unique solution to

G(x)λ(x) ≤ p̄(x),

λ(x) ≤ 0, (38)
[G(x)λ(x)]i < p̄i(x) ⇒ λi(x) = 0,

where [·]i denotes the i-th row of the quantity in brackets,
and the inequalities hold componentwise. Because G(x) is
2×2, a closed form solution can be given. Define the Lipschitz
continuous function

ω(r) =

{
0, if r > 0,
r, if r ≤ 0.

r ∈ R.

For x ∈ Int(C), λ1, λ2 can be expressed in closed form as
If: G21(x)ω(p̄2(x))−G22(x)p̄1(x) < 0,[

λ1(x)
λ2(x)

]
=

[
0

ω(p̄2(x))
G22(x)

]
, (39)

Else if: G12(x)ω(p̄1(x))−G11(x)p̄2(x) < 0,[
λ1(x)
λ2(x)

]
=

[
ω(p̄1(x))
G11(x)

0

]
, (40)

Otherwise:[
λ1(x)

λ2(x)

]
=

 ω(G22(x)p̄1)(x)−G21(x)p̄2(x))
G11(x)G22(x)−G12(x)G21(x)

ω(G11(x)p̄2(x)−G12(x)p̄1(x))
G11(x)G22(x)−G12(x)G21(x)

 . (41)

Because the Gram matrix is positive definite, for all x ∈
Int(C), G11(x)G22(x) − G12(x)G21(x) > 0. Using standard
properties for the composition and product of locally Lipschitz
continuous functions, each of the expressions in (39) -(41) is
locally Lipschitz continuous on Int(C). Hence, the functions
λ1(x) and λ2(x) are locally Lipschitz on each domain of
definition and have well defined limits on the boundaries
of their domains of definition relative to Int(C). If these
limits agree at any point x that is common to more than
one boundary, then λ1(x) and λ2(x) are locally Lipshitz
continuous on Int(C). However, the limits are solutions to
(38), and solutions to (38) are unique [54]. Hence the limits

agree at common points of their boundary5 (relative to Int(C))
and the proof is complete.

If the control objective and the barrier function do not
conflict, such as when the zero dynamics surface of the CLF
has a non-empty intersection with the safe set, an appropri-
ate choice of weights results in a solution of the QP with
δ ≈ 0 [39]. The mediation of safety and performance will
be illustrated in the context of the adaptive cruise control
and lane keeping problems in the following sections. The
examples will also provide explicit control barrier functions
that respect constraints on the inputs, such as those given in
(22). In particular, the examples will add a constraint of the
form

A0u− b0 ≤ 0 (42)

to the QP, in addition to (33) and (34). By construction, at
each point of the safe set, there will exist a solution of the QP
satisfying all three constraints. The Lipschitz continuity of the
QP with the additional constraint (42) on the inputs, however,
is not currently assured.

V. TWO AUTOMOTIVE SAFETY PROBLEMS VIA QPS

In this section, we use Adaptive Cruise Control (ACC) and
Lane Keeping (LK) to illustrate the power of a CLF-CBF-
based QP to meet a performance objective, subject to a safety
requirement.

A. Adaptive Cruise Control Via QPs

A vehicle equipped with ACC seeks to converge to and
maintain a fixed cruising speed, as with a common cruise
control system. Converging to and maintaining fixed speed
is naturally expressed as asymptotic stabilization of a set.
With ACC, the vehicle must in addition guarantee a safety
condition, namely, when a slower moving vehicle is encoun-
tered, the controller must automatically reduce vehicle speed
to maintain a guaranteed lower bound on time headway or
following distance, where the distance to the leading vehicle
is determined with an onboard radar. When the leading car
speeds up or leaves the lane, and there is no longer a conflict
between safety and desired cruising speed, the adaptive cruise
controller automatically increases vehicle speed. The time-
headway safety condition is naturally expressible as a control
barrier function. Because relaxation is used to make the
stability objective a soft constraint in the QP, while safety
is maintained as a hard constraint, safety and stability do not
need to be simultaneously satisfiable. In contrast, the approach
of [1] for combining CBFs and CLFs is only applicable when
the two objectives can be simultaneously met. Simulations
in Sect. VI will illustrate how the QP-based solution to
ACC automatically adjusts vehicle speed under various traffic
conditions.

5As an example, the only non-zero solutions of (38) occur when p2(x) < 0,
in which case, G21(x)p2(x)−G22(x)p1(x) = 0, and therefore (41) reduces
to (39). The other cases are similar.
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1) ACC problem setup: We begin by setting up the dynam-
ics of the problem based upon [34] and [36], which assume
that the lead and following vehicles are modeled as point-
masses moving in a straight line. The following vehicle is
the one equipped with ACC while the lead vehicle acts as a
disturbance to the following vehicle’s objective of cruising at
a given constant speed.

The dynamics of the system can be compactly expressed as

ẋ =

 −Fr/MaL
x2 − x1


︸ ︷︷ ︸

f(x)

+

 1/M
0
0


︸ ︷︷ ︸

g(x)

u. (43)

Here, x = (x1, x2, x3) := (vf , vl, D) where vf and vl are
the velocity of the following and leading vehicle (in m/s),
respectively, D is the distance between the two vehicles (in
m); M is the mass of the following vehicle (in kg); Fr(x) =
f0+f1vf+f2v

2
f is the aerodynamic drag (in N) with constants

f0, f1 and f2 determined empirically; aL ∈ [−alg, a′lg] is
the overall acceleration/deceleration of the lead vehicle (in
m/s2) with al, a

′
l fractions of the gravitational constant g

for deceleration and acceleration, respectively; u ∈ U ⊂ R,
the control input of the following car, is wheel force (in N).
Initially, we will suppose that the control input is unbounded,
that is, U = R, and later, we address realistic bounds on wheel
force.

Given the model (43), we next present two constraints that
are necessary in the context of ACC.

Soft Constraints. In the context of ACC, when adequate
headway is assured, the goal is to achieve a desired speed,
vd. In other words,

Performance : lim
t→∞

vf (t) = vd. (SC)

This translates into a soft constraint since this speed should
only be achieved in the case when safety can be assured. In
terms of a candidate CLF, the soft constraint (SC) can be
written

Performance : V (x) := (vf − vd)2.

Straightforward calculations given in [2] show that for any
c > 0, the following inequality holds,

inf
u∈R

[LfV (x) + LgV (x)u+ cV (x)] ≤ 0,

verifying that V is a valid CLF.

Hard Constraints. These represent constraints that must not
be violated under any condition. For ACC, this is simply the
constraint: “keep a safe distance from the car in front of you”.
There are numerous formulations of this concept including
Time Headway and Time to Collision [55]. In the context of
this paper, to start with a simple formulation, we express this
constraint as

Safety : D/vf ≥ τd, (HC)

where τd is the desired time headway.6

The constraint (HC) can be rewritten as

D − τdvf ≥ 0, (44)

for the dynamics (43). Correspondingly, we consider the
function h(x) = D− τdvf , which yields the admissible set C
as defined in (2)-(4).

A candidate RCBF can be constructed from h as follows

B = − log

(
h

1 + h

)
. (45)

Because D − τdvf > 0 for any x ∈ Int(C), it follows that

LgB(x) =
τd

M(1 +D − τdvf )(D − τdvf )
> 0,

which implies that B has relative degree 1 in Int(C). If the
class K function α3 in (24) is chosen as γ/B for some constant
γ > 0, then

u(x) = − 1

LgB(x)

(
LfB(x)− γ

B(x)

)
provides a specific example of a u ∈ R satisfying

inf
u∈R

[
LfB(x) + LgB(x)u− γ

B(x)

]
≤ 0. (46)

As a result, B is a valid RCBF for U = R.
2) The CLF-CBF based QP: As in [23], a CLF-CBF QP

is constructed by combining the above constraints in the form

u∗(x) = argmin
u=[u,δ]>∈R2

1

2
u>Haccu + F>accu (ACC QP)

s.t. Aclfu ≤ bclf ,

Acbfu ≤ bcbf ,

where

Aclf = [LgV (x),−1] , bclf = −LfV (x)− cV (x), (47)

and

Acbf = [LgB(x), 0] , bcbf = −LfB(x) +
γ

B(x)
. (48)

Remark 12. Setting δ = 0 would make the CLF constraint
“hard” in that it would force exact exponential convergence
at a rate of c, and in such a case, if there were no inputs
satisfying both the CLF constraint and the RCBF constraint,
the QP would be infeasible.

The cost function in the QP is selected in view of achieving
the control objective encoded in the CLF, i.e., achieving the
desired speed, subject to balancing the relaxation factors that
ensure solvability and continuity of (ACC QP). As explained
in [2], the CLF was constructed by first partially linearizing
the system through the feedback u = Fr + Mµ. As a result,
the cost relative to this control will be chosen as µ>µ, which
yields the following function in u:

µ>µ =
1

M2

(
u>u− 2u>Fr + F 2

r

)
.

6A general rule stated in [55] is that the minimum distance between two
cars is “half the speedometer”. This translates into the hard constraint as
D ≥ 1.8vf with τd = 1.8.
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Fig. 2. Simulation results of the ACC problem based on (ACC QP) (left) speed of the lead car and the controlled car with the desired speed vd indicated
(middle) vehicle acceleration as fractions of g, with typical desired upper and lower bounds indicated (right) hard constraint (HC), where positive values
indicate satisfaction.

This can then be converted into the form

Hacc = 2

[
1
M2 0
0 psc

]
, Facc = −2

[
Fr
M2

0

]
. (49)

Here psc is the weight for the relaxation δ.

Simulation Preview. Simulation results obtained by applying
the (ACC QP) controller are developed in Section VI. A sneak
preview is shown in Fig. 2 to highlight a few properties of the
designed controller and to motivate an important refinement.
The desired cruising speed vd is set to 79.2 (km/h), which is 22
(m/s). The system (43) is initialized at (vf (0), vl(0), D(0)) =
(18, 10, 150). The left plot in Fig 2 shows the desired cruising
speed as a thick dashed line and the speeds of the lead
and controlled vehicles as thin lines. The controlled vehicle
achieves the desired cruising speed when it does not conflict
with the time-headway constraint, and it settles to the speed
of the lead car when required to maintain a safe following
distance. The forward invariance of the safe set, defined by
the hard constraint (HC) encoding the desired time headway
τd, is shown in the right plot of Fig. 2. The middle plot
shows typical “comfort” limits on acceleration that should be
respected by the controlled vehicle, which are violated because
no constraint has been imposed on the wheel force that can
be requested by the QP when the car accelerates and brakes.
This motivates the development of a refined barrier function
that is compatible with bounds on the two vehicles’ inputs.

3) Force Constraints and CBFs: The QP formulated in
subsection V-A2 generates a control input u ∈ R for the ACC-
controlled vehicle. In practice, however, the wheel force that
can be generated by the car is constrained by physical limits
(e.g., the maximal engine torque for acceleration, maximal
braking capability, and road conditions). This requires the
admissible set U to be bounded. Furthermore, to guarantee
driver comfort, the wheel forces the controller is allowed to
apply are typically much less than the maximal forces that can
be generated by the vehicle.

Force Constraints. We now constrain the allowable wheel
forces. Supposing that we do not want to accelerate or decel-
erate more than some fraction of g, the gravitational constant,
we can write the constraints on acceleration and deceleration
as inequalities

u ≤ a′fMg, −u ≤ afMg. (FC)

where af and a′f are the fractions of g for deceleration and

acceleration, respectively. That is, the input set is now:

Uacc := [−afMg, a′fMg].

Since it may be the case that these constraints will conflict
with the torque values needed to satisfy the hard constraint
(HC), we require a force-based barrier function allowing the
hard constraints and force constraints to be simultaneously
satisfied. In particular, we seek a function hF (x) such that
for all x ∈ CF , where CF = {x |hF (x) ≥ 0}, there exists a
trajectory of (43) satisfying (HC) and the maximum braking
limit (FC). That is to say, within the set CF , the ACC-equipped
car can always brake to maintain a desired headway using an
allowed amount of deceleration.

Reference [56], an extended version of this paper, develops
two CBFs7, hcF and hoF , that can be used to define the safe
set CF . The function hcF has a much simpler form8 than hoF ,
but makes a more conservative approximation of the safe set
than hoF . When rolling resistance is ignored in the model (43),
hoF provides the maximal safe set compatible with (48) and
the force bounds (FC), and will therefore be referred to as
“optimal”. The functions hoF and hcF in turn define the optimal
RCBF BoF and the conservative RCBF BcF , respectively, using
(6) or (9). The force-based hard constraints are ultimately
expressed via (FC) together with the condition

LfBF (x) + LgBF (x)u− γ

BF (x)
≤ 0. (FCBF)

4) Modified CLF-CBF Based QP: Incorporating (FCBF)
and (47), we have the modified force-based CLF-CBF QP:

u∗(x) = argmin
u=[u,δ]>∈Uacc×R

1

2
u>Haccu + F>accu (ACC-QP2)

s.t. Aclfu ≤ bclf ,

Afcbfu ≤ bfcbf ,

Afcu ≤ bfc.

The soft constraints yield the same Aclf , bclf as (47). The
comfort constraints in (FC) yields Afc, bfc as

Afc =

[
1 0
−1 0

]
, bfc =

[
a′fMg

afMg

]
. (51)

7The functions are piecewise defined by a set of continuously differentiable
functions; more details are given in [57].

8When the speed of the lead car is constant (i.e., aL = 0), and v > vl,
then hcF reduces to the formula given in [2].
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By condition (FCBF), the force constraints yield

Afcbf = [LgBF (x), 0] , bfcbf = −LfBF (x) +
γ

BF (x)
.

The cost function is the same as in (49). Simulation results
obtained by applying the (ACC-QP2) controller and its com-
parison with the (ACC QP) controller are provided in Section
VI.

B. Lane Keeping Via QPs

In this subsection, we consider the Lane Keeping (LK)
problem using a CBF-based QP, which aims to keep the
vehicle “centered” in a possibly curved lane. We focus on the
lateral movement of the vehicle by assuming that the vehicle
has a constant longitudinal speed [38].

1) Lane Keeping Problem Setup: Under the assumptions
of constant longitudinal speed and a linear tire-force model, a
two-state handling model can be augmented to the four-state
lateral-yaw model given in (50) [38]. In the model, the state is
x := (y, ν, ψ, r), where y and ψ are the lateral displacement
and the error yaw angle in road fixed coordinates, respectively,
ν is the lateral velocity, and r is the yaw rate (rotation rate
about the vertical axis). The input u is the steering angle of
the front tires, and the disturbance is the desired yaw rate rd,
which can be calculated from the curvature of the road by
rd = v0

R , where v0 is a constant value for the longitudinal
velocity and R is the road radius of curvature. Additionally,
M is the total mass of the car, Iz is the moment of inertia
about the center of mass, a and b are the distance from the
center of mass to the front and rear tires, respectively, and Cr
and Cf are tire (stiffness) parameters.

The objective of the LK problem is to provide a steering
input that keeps the car “centered” in the lane. Particularly,
the car should satisfy the following hard control objective and
the acceleration constraint.

Hard Constraint. This constraint requires the displacement
of the vehicle from the center of the lane to be less than a
given constant ymax:

|y| ≤ ymax. (LK-HC)

Since the width of US lanes is 12 feet and typical width of
a car is 6 feet, we can take ymax to be 3 feet, which is
approximately 0.9 meters. Therefore, the hard constraint is
|y| ≤ 0.9.

Acceleration Constraint. Due to the force limit of the car and
for the comfort of the driver, the lateral acceleration needs to
be bounded. We express this constraint as

|ÿ| ≤ amax. (LK-FC)

2) Encoding LK Constraints: The hard and acceleration
constraints can be encoded formally as follows.

Encoding Acceleration Constraint. Since

Mÿ : = Cf (u− ν + ar

v0
)− Cr

ν − br
v0

−Mv0rd, (52)

the acceleration constraint (LK-FC) is equivalent to

u ∈ Ulk : =

[
1

Cf
(−Mamax + F0),

1

Cf
(Mamax + F0)

]
where F0 = Cf

ν+ar
v0

+ Cr
ν−br
v0

+Mv0rd.

Encoding Hard Constraint. Suppose that at time 0, the lateral
displacement is y(0) and the lateral velocity is ẏ(0). Under the
maximal allowable acceleration, it takes time T for the lateral
speed to be reduced to zero, where T = |ẏ(0)|

amax
. Then,

y(T ) = y(0) + T ẏ(0)− sgn(ẏ(0))

2
T 2amax

= y(0) +
1

2

|ẏ(0)|
amax

ẏ(0).

Motivated by the above formula, define

hF (x) = (ymax − sgn(ẏ) y)− 1

2

ẏ2

amax
(53)

and CF := {x|hF (x) ≥ 0}. Then, for every x ∈ CF , the con-
trolled vehicle can remain in CF while keeping the acceleration
within the allowable set (LK-FC). Indeed, differentiating (53)
for ẏ 6= 0 yields

ḣF (x, u) = −
(

sgn(ẏ) +
ÿ

amax

)
ẏ. (54)

It follows that if ẏ > 0, then ḣF (x, u) ≥ 0 when u =
1
Cf

(−Mamax + F0), and if ẏ < 0, then ḣF (x, u) ≥ 0 when
u = 1

Cf
(Mamax +F0). Finally, from (53), the limit of ḣF as

ẏ tends to zero is well defined and equals zero. Taking BF as
(6) and γ > 0 a constant, the above calculations imply that
RCBF condition (24) holds, namely, for any x ∈ Int(CF ),
there exists u such that

LfBF (x) + LgBF (x)u− γ

BF (x)
≤ 0, (LK-FCBF)

and therefore Int(CF ) is controlled invariant.
Define CLK := Int(CF ) ∩ {x : |y| ≤ ymax}. It is easy

to prove that any feedback controller for (50) that renders
Int(CF ) forward invariant also renders CLK forward invariant;
the proof is given in [56].

Remark 13. Another important fact is that a feedback con-
troller rendering CLK forward invariant with bounded lateral
acceleration ÿ results in ultimate boundedness of the yaw
angle and yaw rate. Indeed, solving (52) for u as a function


ẏ
ν̇

ψ̇
ṙ

 =


0 1 v0 0

0 −Cf+Cr
Mv0

0
bCr−aCf
Mv0

− v0

0 0 0 1

0
bCr−aCf
Izv0

0 −a
2Cf+b2Cr
Izv0



y
ν
ψ
r

+


0
Cf
M
0

a
Cf
Iz

u+


0
0
−1

0

 rd (50)
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of ÿ and using ẏ = ν +ψv0, the four-state lateral-yaw model
(50) results in[

ψ̇
ṙ

]
=

[
0 1

− (a+b)Cr
Iz − b(a+b)Cr

Izv0

] [
ψ
r

]
+

[
0

(a+b)Cr
Izv0

]
ẏ +

[
0
aMIz

]
ÿ +

[
−1

0

]
rd. (55)

This is a linear system in companion form, driven by ẏ, ÿ and
rd. The model parameters a, b, Cr, Iz and v0 are all positive,
and hence the system is exponentially stable, and therefore
input-to-state stable [41]. The term ẏ is bounded by virtue
of belonging to CLK and the term ÿ is bounded by (LK-FC).
Because the desired yaw rate rd is bounded for bounded road
curvature, it therefore follows that ψ and r are bounded.

Feedback Control Law For Performance. To illustrate that a
number of feedback controllers can be combined with a CBF
via a QP, a linear controller u = −K(x − xff ) is assumed
here, where xff is a feedforward term, with details given in
the simulation section. Alternatively, a quadratic Lypaunov
function for the resulting closed-loop system could be used
as a CLF for the open-loop system, and the feedback design
completed as in Sect. V-A.

3) CBF-based QP for LK: Incorporating (LK-FCBF) and
(LK-FC), we have the QP for lane keeping:

u∗(x) = argmin
u=[u,δ]>∈Ulk×R

1

2
u>Hlku + F>lku (LK QP)

s.t. Alkfcbfu ≤ blkfcbf ,

Alkfcu ≤ blkfc ,
u = −K(x− xff ) + δ,

where δ is a relaxation parameter, indicating the “soft” nature
of this constraint, and Alkfcbf , b

lk
fcbf , A

lk
fc , blkfc are derived in a

similar manner to the corresponding terms in Sect. V-A2.

VI. SIMULATION RESULTS

Simulation results obtained by applying the QP-mediated
controllers for ACC and LK are shown in this section. The
parameters used for the simulation are given in Table I.

A. Simulation results for ACC

Various problem formulations are compared here. In all
cases, the system (43) is started from the initial condition
x(0) = (18, 10, 150).

B. Comparison of two QPs

Recall that Figure 2 showed simulation results obtained by
applying the QP controller in (ACC QP), where the force
constraints were not taken into account. Figures 3 and 4 show
simulation results for (ACC-QP2), where the force constraints
are included.

Specifically, Figure 3 compares (ACC QP) with (ACC-QP2)
using the optimal RCBF BoF and the conservative RCBF
BcF . Note that, due to limits on the wheel forces, the speed
converges to vd more slowly, and begins braking earlier, as

evidenced by the top plot in Fig. 3. Since RCBF BoF is less
conservative than BcF , the car maintains a smaller following
distance, but the specified time-headway constraint is always
satisfied, as indicated by the bottom plot in Fig. 3. Moreover,
when using a force-based RCBF (45), the force constraints are
satisfied for all time, as shown in Fig. 4. Ultimately, the QP
based controller (ACC-QP2) is able to satisfy all of the control
objectives and constraints for the ACC problem outlined in
Sect. V-A4 through a unified control methodology.

Remark 14. The conference paper [53] implements the above
QP-based controllers in a real-time embedded processor on
scaled cars. A video of the results is available on YouTube
[58].

C. Comparison of RCBFs and ZCBFs

We also consider the ZCBFs for our ACC problem, which
are associated with functions hoF and hcF given in [56]. As
expected, when using the controller from the QP (ACC-QP2)
with ZCBFs, all constraints are satisfied just as with the
RCBFs. Figure 4 shows a comparison of the generated vehicle
acceleration using both types of CBFs, for both optimal
and conservative cases. Our limited experience is that the
ZCBFs generate a smoother input trajectory (see Fig. 4), while
satisfying the force constraints. We suspect that this is due to
the local Lipschitz constant of a RCBF potentially becoming
arbitrarily large near the boundary of the safe set.
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Fig. 3. Comparison of QP (ACC QP) with QP (ACC-QP2). (top) speed of
the lead car and the controlled car based on QP (ACC QP) and (ACC-QP2)
(bottom) hard constraint (HC) based on QP (ACC QP) and (ACC-QP2) where
positive values indicate satisfaction.

D. LK simulation

The feedback gain K was determined by solving an LQR
problem with control weight R = 600 and state weight
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TABLE I
PARAMETER VALUES USED IN SIMULATION

M 1650 kg f1 5 Ns/m psc 102

f0 0.1 N f2 0.25 Ns2/m2 a′f 0.25
a 1.11 m Cf 133000 N/rad af 0.25
b 1.59 m Cr 98800 N/rad c 10
v0 27.7 m/s Iz 2315.3 m2 · kg γ 1
vd 22 m/s g 9.81 m/s2

ymax 0.9 m amax 0.3×9.81 m/s2

given by Q = KpC
>C + KdC

>A>AC, where C =
[1, 0, 20, 0], Kp = 5, and Kd = 0.4. The “output” y = Cx
corresponds to a lateral preview of approximately 0.7 seconds.
The feedforward term xff = [0, 0, 0, rd]

> reduces tracking
error.

Simulation results for lane keeping are shown in Fig.5. The
road is assumed to be curved and the longitudinal speed of the
vehicle is a constant. We can see that the absolute value of
the lateral displacement is always bounded by 0.9m, and the
lateral acceleration is always bounded by 0.3g. Therefore, the
displacement and acceleration constraints are both satisfied.

VII. CONCLUSIONS

This paper presented a novel framework for the control
of safety-critical systems through the unification of safety
conditions (expressed as control barrier functions) with control
objectives (expressed as control Lyapunov functions). At the
core of this methodology was the introduction of two new
classes of barrier functions: reciprocal and zeroing. The in-
terplay between these classes of functions was characterized,
and it was shown that they provide necessary and sufficient
conditions on the forward invariance of a set C under reason-
able assumptions. Therefore, in the context of (affine) control

systems, this naturally yields control barrier functions (CBFs)
with a large set of available control inputs that yield forward
invariance of a set C. Importantly, CBFs are expressed as affine
inequality constraints in the control input that–when satisfied
pointwise in the candidate safe set–imply forward invariance
of the set, and hence safety. Utilizing control Lyapunov
function (CLFs) to represent control objectives–which again
result in affine inequality constraints in the control input–
safety constraints and performance objectives were naturally
unified in the framework of quadratic program (QP) based
controllers. Furthermore, continuity of the resulting controllers
was formally established by strictly enforcing the safety con-
straint and relaxing the control objective. The mediation of
safety and performance was illustrated through the application
to automotive systems in the context of adaptive cruise control
(ACC) and lane keeping (LK).

Future work will be devoted to building upon the founda-
tions presented in this paper in the context of safety-critical
control of cyber-physical systems, with a special focus on
robotic and automotive systems. At a formal level, this paper
developed “force-based” barrier functions for the specific
problems considered (ACC and LK), leaving as an open
problem how to do characterize and compute such functions
for general classes of control systems. In addition, formulating
how to unify safety constraints, e.g., combining ACC and
LK constraints into a single framework, has the potential to
suggest methods for composing safety specifications. Going
beyond automotive systems, the presented methodologies are
naturally applicable to robotic systems, e.g., in the context
of self-collision avoidance, obstacle avoidance, end-effector
(and foot) placement, and a myriad of other safety constraints.
Exploring these applications promises to provide a formal
framework for safety-critical operation of robotic systems.
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Birkhäuser Basel, 2008.

[45] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

http://dx.doi.org/10.1016/j.jsc.2016.07.010
http://dx.doi.org/10.1016/j.jsc.2016.07.010
http://youtu.be/onOd7xWbGAk


16

[46] Y. Lin, E. Sontag, and Y. Wang, “A smooth converse Lyapunov theorem
for robust stability,” SIAM Journal on Control and Optimization, vol. 34,
no. 1, pp. 124–160, 1996.

[47] A. Bacciotti and L. Rosier, Liapunov functions and stability in control
theory. Springer, 2005.

[48] A. Isidori, Nonlinear control systems II. Springer, 1999.
[49] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier functions based

quadratic programs with application to bipedal robotic walking,” in
American Control Conference, 2015, pp. 4542–4548.

[50] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in American
Control Conference, 2016, pp. 322–328.

[51] R. A. Freeman and P. V. Kokotovic, “Inverse optimality in robust
stabilization,” SIAM Journal on Control and Optimization, vol. 34, no. 4,
pp. 1365–1391, 1996.

[52] M. W. Spong, J. S. Thorp, and J. M. Kleinwaks, “The control of
robot manipulators with bounded input,” IEEE Trans. Automatic Control,
vol. 31, no. 6, pp. 483–490, 1986.

[53] A. Mehra, W.-L. Ma, F. Berg, P. Tabuada, J. W. Grizzle, and A. D.
Ames, “Adaptive cruise control: Experimental validation of advanced
controllers on scale-model cars,” in American Control Conference, 2015,
pp. 1411–1418.

[54] D. G. Luenberger, Optimization by vector space methods. John Wiley
& Sons, 1969.

[55] K. Vogel, “A comparison of headway and time to collision as safety
indicators,” Accident Analysis & Prevention, vol. 35, no. 3, pp. 427 –
433, 2003.

[56] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs with application to automotive safety
systems,” 2016. [Online]. Available: http://arxiv.org/abs/1609.06408

[57] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness
guarantees for the composition of lane keeping and adaptive cruise
contro,” 2016. [Online]. Available: http://arxiv.org/abs/1609.06807

[58] “Adaptive cruise control: Experimental validation of advanced con-
trollers on scale-model cars.” http://youtu.be/9Du7F76s4jQ.

Aaron D. Ames is the Bren Professor of Mechanical
and Civil Engineering and Control and Dynamical
Systems at Caltech. Prior to joining Caltech in 2017,
he was an Associate Professor at Georgia Tech in
the Woodruff School of Mechanical Engineering and
the School of Electrical & Computer Engineering.
He received a B.S. in Mechanical Engineering and
a B.A. in Mathematics from the University of St.
Thomas in 2001, and he received a M.A. in Math-
ematics and a Ph.D. in Electrical Engineering and
Computer Sciences from UC Berkeley in 2006. He

served as a Postdoctoral Scholar in Control and Dynamical Systems at Caltech
from 2006 to 2008, and began is faculty career at Texas A&M University
in 2008. At UC Berkeley, he was the recipient of the 2005 Leon O. Chua
Award for achievement in nonlinear science and the 2006 Bernard Friedman
Memorial Prize in Applied Mathematics, and he received the NSF CAREER
award in 2010 and the 2015 Donald P. Eckman Award. His research interests
span the areas of robotics, nonlinear control and hybrid systems, with a
special focus on applications to bipedal robotic walkingboth formally and
through experimental validation. His lab designs, builds and tests novel
bipedal robots, humanoids and prostheses with the goal of achieving human-
like bipedal robotic locomotion and translating these capabilities to robotic
assistive devices.

Xiangru Xu received his B.S. degree in applied
mathematics from Beijing Normal University in
2009, and his PhD degree in control theory from
Chinese Academy of Sciences in 2014. He is cur-
rently a postdoc research fellow in the Deparment of
Electrical Engineering and Computer Science in the
University of Michigan at Ann Arbor. His research
interests are in cyber-physical systems and formal
methods.

Jessy W. Grizzle received the Ph.D. in electrical
engineering from The University of Texas at Austin
in 1983. He is currently a Professor of Electrical
Engineering and Computer Science at the University
of Michigan, where he holds the titles of the Elmer
Gilbert Distinguished University Professor and the
Jerry and Carol Levin Professor of Engineering. He
jointly holds sixteen patents dealing with emissions
reduction in passenger vehicles through improved
control system design. Professor Grizzle is a Fellow
of the IEEE and IFAC. He received the Paper of the

Year Award from the IEEE Vehicular Technology Society in 1993, the George
S. Axelby Award in 2002, the Control Systems Technology Award in 2003, the
Bode Prize in 2012 and the IEEE Transactions on Control Systems Technology
Outstanding Paper Award in 2014. His work on bipedal locomotion has been
the object of numerous plenary lectures and has been featured on CNN, ESPN,
Discovery Channel, The Economist, Wired Magazine, Discover Magazine,
Scientific American and Popular Mechanics.

Paulo Tabuada was born in Lisbon, Portugal, one
year after the Carnation Revolution. He received
his ”Licenciatura” degree in Aerospace Engineering
from Instituto Superior Tecnico, Lisbon, Portugal
in 1998 and his Ph.D. degree in Electrical and
Computer Engineering in 2002 from the Institute for
Systems and Robotics, a private research institute
associated with Instituto Superior Tecnico. Between
January 2002 and July 2003 he was a postdoctoral
researcher at the University of Pennsylvania. After
spending three years at the University of Notre

Dame, as an Assistant Professor, he joined the Electrical Engineering De-
partment at the University of California, Los Angeles, where he established
and directs the Cyber-Physical Systems Laboratory.

Paulo Tabuada’s contributions to cyber-physical systems have been recog-
nized by multiple awards including the NSF CAREER award in 2005, the
Donald P. Eckman award in 2009, the George S. Axelby award in 2011, and
the Antonio Ruberti Prize in 2015. In 2009 he co-chaired the International
Conference Hybrid Systems: Computation and Control (HSCC’09) and joined
its steering committee in 2015, in 2012 he was program co-chair for the 3rd
IFAC Workshop on Distributed Estimation and Control in Networked Systems
(NecSys’12), and in 2015 he was program co-chair for the IFAC Conference
on Analysis and Design of Hybrid Systems. He also served on the editorial
board of the IEEE Embedded Systems Letters and the IEEE Transactions on
Automatic Control.

http://arxiv.org/abs/1609.06408
http://arxiv.org/abs/1609.06807
http://youtu.be/9Du7F76s4jQ

	Introduction
	blackBackground
	 Contributions 
	 Organization and Notation 

	Reciprocal and Zeroing Barrier Functions
	Reciprocal Barrier Functions
	Motivation
	Reciprocal Barrier Functions and Set Invariance

	Zeroing Barrier Functions
	Relationships of RBFs, ZBFs and Set Invariance

	Control Barrier Functions
	Reciprocal Control Barrier Functions
	Zeroing Control Barrier Functions
	Higher Relative Degree

	QPs for Mediating Safety and Performance
	Control Lyapunov Functions
	Combining CLFs and CBFs via QPs

	Two Automotive Safety Problems via QPs
	Adaptive Cruise Control Via QPs
	ACC problem setup
	The CLF-CBF based QP
	Force Constraints and CBFs
	Modified CLF-CBF Based QP

	Lane Keeping Via QPs
	Lane Keeping Problem Setup
	Encoding LK Constraints
	CBF-based QP for LK


	Simulation Results
	Simulation results for ACC
	Comparison of two QPs
	Comparison of RCBFs and ZCBFs
	LK simulation

	Conclusions
	References
	Biographies
	Aaron D. Ames
	Xiangru Xu
	Jessy W. Grizzle
	Paulo Tabuada


