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Integral Control Barrier Functions
for Dynamically Defined Control Laws

Aaron D. Ames!, Gennaro Notomista2, Yorai Wardi®, and Magnus Egerstedt3

Abstract—This paper introduces integral control barrier func-
tions (I-CBFs) as a means to enable the safety-critical integral
control of nonlinear systems. Importantly, I-CBFs allow for the
holistic encoding of both state constraints and input bounds in
a single framework. We demonstrate this by applying them to a
dynamically defined tracking controller, thereby enforcing safety
in state and input through a minimally invasive I-CBF controller
framed as a quadratic program.

Index Terms—Constrained control, Output regulation, Control
system architecture

I. INTRODUCTION

Control Barrier Functions (CBFs) have proven to be effec-
tive at enforcing safety in nonlinear systems. The goal of this
paper is to introduce a new form of CBFs that are suitable
for feedback systems where the controller is defined by a
differential equation [1]], i.e., integral control [2f, [3], [4].
The motivation comes from a dynamically defined tracking
controller that has displayed effective tracking convergence
[S]], but also can exhibit large overshoots in the input controls
at early transient phases. We investigate a CBF-based approach
to limit these overshoots, i.e., satisfy input bounds, while
also satisfying safety constraints on the state. The results are
presented in a more-general setting of pointwise constraints
on input and state encoded by a novel form of CBF.

The general CBF framework (see [6] and references therein)
requires solving an optimization problem at each time to
enforce the CBF condition. If the dynamics of the state
are control affine, this optimization problem is a convex
quadratic program (QP), solvable in real time. Yet this real-
time solvability hinges on the control affine nature of the
dynamics. Moreover, when input constraints are also present,
adding them to the QP can result in its infeasibility. This paper
will address both of these existing limitations in the context
of integral control.

This paper introduces a new class of CBFs: integral control
barrier functions (I-CBFs). These barrier functions are devel-
oped in the context of systems with dynamically defined con-
trollers, i.e., systems where the evolution of the state and input
are described by an ordinary differential equation. As a result,
I-CBFs are defined on both the state and input, allowing for
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the inclusion of the input in the safety conditions encoded by
this function. A related formulation is presented in [7], where
control-dependent CBFs are defined: these, unlike I-CBFs,
are considered for inputs with bounded time-derivative and,
importantly, the integration with nominal tracking controllers
was not considered. In this paper, given CBFs and I-CBFs,
we present a resulting controller that guarantees safety in state
and input, while minimally modifying a nominal dynamically
defined controller. Additionally, we explicitly explore systems
with both state and input constraints, and demonstrate how
these can be unified through the I-CBF framework.

II. BACKGROUND MATERIAL

This section summarizes established results regarding
safety-critical control via control barrier functions (CBFs), and
the tracking-control technique that will inspire the main result
of this paper. Herein, we consider a nonlinear control system
defined by the differential equation:

@(t) = f(x(t), u(t)), (1)

where ¢ > 0, the state is x(t) € R™, the input is u(t) € R™,
and an initial state zo := x(0) € R™ is given. Assume that the
function f : R™xR™ — R is continuously differentiable, and
it satisfies sufficient conditions for the existence of a unique
solution to (I)) over all ¢ > 0 for every bounded, piecewise-
continuous control u(t) and xg € R™.

A. Control Barrier Functions

Control Barrier Functions (CBFs) ensure the forward invari-
ance of a set S C R”, in which case the system is considered
safe. The CBF framework was introduced in [8]], [9] where
it was applied to adaptive cruise control, and has since
been applied to a variety of application domains, including:
automotive safety [10]], [[L1], robotics [12l], [[13] and multi-
robot systems [[14], [[15]]. See [6] for a recent survey. Note that
alternative approaches to CBFs include reference governors
[L6], [17] and integral barrier Lyapunov functions [18]; yet,
the former is computationally more expensive, whereas the
latter only applies to systems in strict-feedback form and does
not explicitly consider input bounds.

Let h : R® — R be a continuously-differentiable function
such that 0 is a regular value. We will consider the set, S C
R™, given as the O-superlevel set of h, i.e., S is defined by:

S = {zeR" : h(z) >0},
oS = {xzeR" : h(z)=0},
mt(S) = {zeR" : h(z)> o0}
Consider a feedback control law applied to (I)) of the form:
u(t) = k(z(t)), 2)



with k£ : R” — R™ continuous. Under this controller, we say
that x(t) is safe if and only if zo € S implies that z(t) € S
for all t > 0, i.e., S is forward invariant, i.e., S is safe.

The function h is a control barrier function (CBF) if there
exists a continuous extended class-/C function v : R — R
(monotone increasing, v(0) = 0) together with a feedback
controller (2) such that along every trajectory of the closed-
loop system, the following CBF condition holds [9]:

L ha(0) +A(h(a(0) > 0. ®

Additionally, if Eq. is satisfied for all ¢ > 0, then the set
§ is forward invariant and asymptotically stable [9]. Now by
@, it follows that h has the following form:

(e (0) u(0) = SEh(0) = S @) 0, u(D). @

Therefore, the closed-loop system is safe if for every ¢ > 0,

O (o) (1) u(t) + A (B 0. ®)

If this inequality is not satisfied for a particular ¢{ > 0, then
the control law can be modified as follows to guarantee the
safety of S. Given x € R"”, define the set K, C R™ by:

Oh

K, {uERm : %(x)f(z,u)Jr’y(h(x)) ZO}. (6)

Therefore, u(t) given by:

u(t) € argmin{||u — k(x(t))|* :

uwe Kyyy (D)
ueRm

ensures the safety of the closed-loop system while modifying
the control law defined in (2) in a minimally invasive fashion.

Finally, note that if the dynamics of the plant are control-
affine, namely f(z,u) = fo(z) + fi(z)u for functions fy :
R™ — R™ and f; : R® — R™*™, then u(t), defined by (7),
can be computed by a quadratic program (QP). In particular,
we obtain an example of the feedback controller u = ks(z)
that “filters” the controller in (2) and renders the system safe:

ks(z) = argmin ||ju — k(z)||? (8)
u€R™

) = 1 (h(z),

where we suppressed the dependence on ¢. This QP admits a
real-time implementation (see [8]]). Importantly, this paper will
allow for quadratic program representations of safety-critical
CBF-based controllers even when the plant is not control
affine.

st O ) o) +

B. Tracking Control by a Newton-Raphson Flow

In this paper, we consider a tracking-control technique based
on a flow version of the Newton-Raphson method for solving
algebraic equations [5]. This provides us with a convenient
expression of a feedback control law defined by an ordinary
differential equation, as it is recalled in this section (a more-
detailed discussions and analyses can be found in [3]). It is
worth noting, however, that the main results presented in this
paper do not depend on this specific method employed. We

consider a specific method to define an integral control law
that achieves tracking for definiteness.

To explain the main idea behind the tracking controller
utilized, consider first the simple case where the plant is
a memoryless nonlinearity, input-output system of the form
y(t) = g(u(t)), where u(t) € R™ is the input, y(t) € R™ is
the output, and g : R™ — R™ is a continuously-differentiable
function. Given a continuously-differentiable reference signal
r(t) € R™, suppose that the objective is to design a control
law such that y(¢) converges to 7(¢) in a suitable sense as
described below. Consider the dynamically defined controller:

(1) = () (rlt) — yir). ©

This controller essentially implements a Newton-Raphson
(NR) flow whose vector field at time ¢, u(t), is the direction
defined by the classical NR method for solving the time-
dependent algebraic equation: 7(t) — g(u) = 0.

Next, suppose that the plant is dynamic, i.e., defined by the
state equation (I)), and consider the output equation y(t) =
¢(z(t)), where the function ¢ : R™ — R™ is continuously
differentiable. Now x(t), and hence y(t), are functions of the
initial condition x( and past control actions: u(7), 7 € [0,¢).
Yet, instantaneously, y(¢) is not a function of w(t). Therefore
the controller u(t) cannot be defined by an equation like (9).
However, givent > 0 and T' > 0, z(¢t+1') and hence y(t+7T)
depend on u(7), 7 € [t,t + T]. This observation forms the
basis for our tracking controller.

Given a time ¢ > 0 and 7" > 0, fixing u; := u(t) as a
constant over [t, t+7'] and (approximately) forward integrating
[, ie., (1) = f(Z(7),us), over this interval with initial
condition Z(t) = z(t) results in prediction of the state Z(¢t+7T)
and hence a prediction of the output:

gt +T) =@ +T)) = g(z(t), u(t))

that, therefore, depends on z(¢) and w(t). In this case, a
suitable extension of (9) has the following form:

i(t) = a( (), 00) " ()~ g+ T A

where a > 0 is a controller gain. In [3], the following
convergence result was established:

(10)

limsup||r(t) —y(®)|| < m + n2/a, (12)
t—o00

where 71 := limsup||y(t) — (¢)||, and 7y := limsup||r(¢)|,
where limsup means as ¢ — co. Thus, increasing the controller
gain, «, can reduce the error due variations in 7(t), but cannot
attenuate the effects of prediction errors.

III. INTEGRAL CONTROL BARRIER FUNCTIONS

This section presents the main construction and results of
the paper. Specifically, we introduce integral control barrier
functions, and demonstrate that they can enforce safety for
dynamically defined control laws. This, in essence, creates a
new paradigm for safety-critical integral control.

Consider a dynamical system defined by Eq. with an
initial condition xg := x(0) € R™. In a departure from the type
of controller considered in Section II.A, which is algebraic,



we define a general feedback law by the ordinary differential
equation:

w(t) = o(x(t), u(t),t),

with an initial condition v := u(0) € R™. We assume that the
function ¢ : R" xR™ xR — R"™ is continuously differentiable.
The closed-loop system is defined by the state equation (1)) and
the control equation (T3). We write these two equations jointly
in the following way:

] = [ )

Define z(t) := (x(t)",u(t)")T € R® x R™ with z(t) the
augmented state, which can be viewed as the state of the
closed-loop system. Note that the state equation (I4) has no
external input.

Let S C R™ x R™ be a set, the safety set, defined as the
0-superlevel set of a continuously differentiable function h :
R™ xR™ — R with 0 a regular value. In addition, suppose the
existence of a continuous extended class-K function v : R —
R such that the following is satisfied along every trajectory
z(t) of the closed-loop system:

%h(z(t)) +y(h(2(t))) > 0.

Then, the set S is forward invariant and asymptotically stable.
Throughout the remainder of this paper, for the sake of
simplicity of exposition, we will suppress the dependence on
time—this can easily be inferred from context.

For notational simplicity, define the following vector valued
p(x,u) € R™ and scalar valued d(x,u) € R functions: For
given t > 0, define the scalar d and vector p € R™ by:

oh

13)

(14)

5)

.
p(z,u) ::(%(m,u)) (16)

d(z,u,t) :=— (%(w,u)f(x,u) + Z—Z(m, w)o(x,u,t)
+ 3 (hz,u))), an

Note that Eq. (I3) can thus be recast as d(z,u,t) < 0.

Main Result. Traditional CBF methods cannot be directly
applied to systems of the form given in (T4) due to the
dynamically defined control law, i.e., the control law w is a
result of integrating the augmented state equation in (I4). Our
approach is to add an auxiliary input to the state equation so
that, if the inequality in (I3) is not satisfied for a particular
t > 0, we are able to determine the minimal modification of
the dynamically defined control law that will guarantee safety.
To this end, we modify the augmented-state equation to
include the input v € R™ as follows:

2] - (£

d(x,u,t) + v (18)

For every z := (:v—'—,u—'—)—r € R™ x R™ and ¢ > 0, define:

K, ::{U e R™ : %(w,u)f(x,u) (19)
20w ) (0l 1) +) + (A w) > 0)
={veR™ : p(x,u) v > d(z,u,t)}. (20)

Therefore, if v(z,t) € K, it follows that Eq. (T9) is satisfied.
Additionally, if the dynamic control law o = ¢(z,u,t) is
inherently safe, then d(x,u,t) < 0 and v = 0 imply that
the system is safe. This leads to the formulation of I-CBFs,
mirroring the classic definition of control Lyapunov functions
[19]) and similar in spirit to control-dependent CBFs [7].

Definition 1. For the system (I8]), with corresponding safe set
S C R™ x R™ defined as the O-superlevel set of a function
h : R™ x R™ — R with 0 a regular value: S = {(z,u) €
R™ x R™ h(x,u) > 0}. Then h is an integral control
barrier function (I-CBF) if for any (x,u) € R™ x R™ and
t>0:

p(z,u) =0 = d(z,u,t) <0. 1)

We now have the necessary constructions to state the main
result of this paper.

Theorem 1. Consider the control system © = f(x,u), with
x € R™ and uw € R™, and suppose that there is a correspond-
ing dynamically defined controller: 4 = ¢(x,u,t). If the safe
set S C R™ x R™ is defined by an integral control barrier
Sfunction, h : R™ x R™ — R, then modifying the dynamically
defined controller to be of the form:

U= ¢z, u,t) + 0" (z,u,1) (22)
with v* the solution to the QP:
v*(z,u,t) = argmin ||v||? (23)

veR™
s.t. p(z,u)Tv > d(z,u,t)

results in safety, i.e., the control system & = f(x,u) with the
dynamically defined controller 22) results in S being forward
invariant: if (z(0),u(0)) € S then (x(t),u(t)) € S for all
t>0.

Proof. We only need to verify that Eq. (I9) is satisfied for
z(t) = (x(t),u(t)) the solution to (I8) with v = v*(z,u, ).
Per and (20), this is equivalent to:

pz,u) To* (2,u,t) > d(z,u,t). (24)

This, in turn, will imply that (z(¢),u(t)) € S for all ¢t > 0 if
(2(0),u(0)) € S per the main result of [6].

Thus, to establish the result, we must show the solution
to 23) satisfies (24). This follows from the fact that we
can obtain an explicit solution to (23). In particular, the
condition that A is an integral control barrier function and,
in particular, that it satisfies @, implies that the linear
independent constraint qualification condition is satisfied [20].
Therefore, using the KKT optimality conditions (see [[L1]), the
solution to is given by the min-norm controller:

[ p(a, u)

v*(x,u,t) = { 0

This controller is well-defined because, as h is a control barrier
function and thus satisfies 1)), it follows that: d(x,u,t) >
0 implies that p(x,u) # 0. Additionally, from this explicit
form, one can verify the Lipschitz continuity of this controller
(assuming Lipschitz continuity of p and d).

if d(z,u,t) >0

25
if d(z,u,t) <0 (23)



Finally, the explicit form of (23) makes it clear that it
satisfies (24). If d(z,u,t) < 0 than it is naturally satisfied
with v*(z,u,t) = 0. If d(x,u,t) > 0, then:

T - d(z,u,t)

p(z,u) v*(z,u,t) p(z,u) p(z,u) p(z, w2

llp(z,u)||?
= d(z,u,t). O

Remark 1. A natural consequence of this form of control
barrier functions is, as its name suggests, its application to
integral control. In the case of “pure” integral control, we can
consider a control system together with ¢(x,u,t) = 0,

, the dynamic extension via the addition of an integra-
tor In this case the controller from Theorem [I] is just

fo ), u(r), 7)dr.

Remark 2. The controller given in Theorem [I] can be viewed
in the following fashion. We began with a control system & =
f(x,u) for which we synthesized a dynamic controller:

d(x,u,t)

eoEP(@u) if  d(@,u,t) >0
0

u=¢<x,u,t)+{ it d(z,u,t) <0

with ¢(z,u,t) the “feedforward” integral controller that is
modulated by the additional term to ensure safety through a
minimal modification. The controller, ¢, for example, can be
given by (TI). The advantages of the integral instantiation of
control barrier functions are: they allow CBFs to be applied
to systems not in control affine form; the dynamic equation
describing w is integrated thus smoothing out the non-smooth
nature of solutions to QPs; they can encode input bounds.

Remark 3. We can also consider the case when we have a
nominal controller u = k(x) as in ). In this case, if we pick
the following “feedforward” integral controller:

B urt) = o % (k1) ),

o (@) () +

for @ > 0, we provably get that |[u—k(z)|| — 0 exponentially.
This can, therefore, be coupled with Theorem |[l| to achieve
provable tracking of the desired controller subject to safety.
Proving this is not within the scope of this paper, but will be
the subject of future work—as it indicates the ability to safely
track desired controllers even for non-affine control systems.

IV. APPLICATIONS AND EXTENSIONS OF I-CBFs

In this section, we explore some extensions and appli-
cations of integral control barrier functions. In particular,
we demonstrate that I-CBFs can encode both input bounds
and state constraints. Importantly, we show that I-CBFs can
simultaneously enforce both, thereby enabling input bounded
provably safe integral control subject to feasibility.

A. Application to Input Constrained Systems

Consider the case when we have a system & = f(x,u)
subject to input constraints: for umpax > 0,
2 T
lull” < Umax = hy (W) := Umax —u ' u > 0.

Naturally, this is a conservative method for enforcing input
constraints due to its scalar instantiation. Yet, it allows us to

= {(z,u) €

view input bounds as safety relative to the set S,,

R™ x R™ : hy(u) > 0}. In this case, (T6) and become:
pu(z,u) = —2u
du(z,u,t) = 2u' Pz, u,t) — vu(hy(u)).

Thus, following from Theorem

Lemma 1. For the system (I8), h, is an integral control bar-
rier function, i.e., S, can be rendered safe (forward invariant),
with the integral control law [22)) where:

v*(2,u,t) = argmin ||v||? (26)
vER™
st 2u'v > —2u’ ¢(x, u,t) — Yo (hy(u))
Proof. We only need to verify @2I)). If pu(:z:,u) 2u = O
then v = 0, and therefore d,(x,u,t) = —7y,(hy(u)). B
u = 0 implies that (z,u) € S,, and therefore h,(u) > 0 or
Yu(hy(w)) > 0, and so dy(x,u,t) <0 as desired. O

B. Application to State Constrained Control Affine Systems

Returning to the systems that are often considered in the
context of control barrier functions—affine control systems—
we wish to understand the relationship between classical and
integral control barrier functions for systems of this form.
Consider the variation of (I8) in control affine form:

fo(z) + fi(z)(p + )
= ¢(x7 u? t)
where here we added an auxiliary control law in the x
dynamics—the reason for this will become apparent soon.

For this system suppose we have a safe set defined in terms
of state (and not input), i.e., by h; : R” — R with:

S = {(z,u) e R" xR™ : h,(x) >0}.

27)

Additionally, suppose that h, is a valid control barrier func-

tions for the affine dynamics without the corresponding inte-

grator: h,(z,u) > —~,(he(z)). This can be quantified by a
conditions analogous to (Z1I), specifically:

P (1)) = 0= D2 (@) fofa) + 7 (hal@) 20 @8)
=ps(z)T i=—dy(z)

The following lemma gives a controller that will guarantee
the forward invariance of S, under the assumption that &, is
a valid CBF. It will do so through a combined “traditional”
CBF controller together with an integral controller.

Lemma 2. Given the system (27) with h, : R™ — R a control
barrier function for & = fo(x) + f1(x)u. Then the controller:

ks(z,u,t) = p*(z / o(x ,T)dT
where, for any nominal controller u = k(x):
w* (z,u) = argmin ||p +u — k(x)||? (29)
HER™
s.t. px(»’C)TM > d?c(x) _px(z)Tu

renders the set S, forward invariant, i.e., safe.



Proof. By (28)), the QP (29) is well-defined and has a solution.
This follows from the fact that « not being a decision variable
anymore does not affect (28)), i.e., p,(z) = 0 still implies that
d,(z) < 0 since the term —p, (x)u vanishes. Thus safety, i.e.,

forward invariance of S,, is guarenteed by the classic CBF
result [9]]. O

C. Extension to Multiple Control Barrier Functions

With the goal of now simultaneously enforcing state and
input constraints in a holistic fashion, we will begin by taking
inspiration from Section [[V-B| wherein we must achieve sim-
ilar results for systems with only integral control. Returning
to original state equations (I8)), but in affine form:

fo(@) + fi(z)u
o(z,u,t) + v,

(30)

Lo

u =

consider state constraints encoded by S,, i.e., by h,(z) > 0.
The input v no longer appears in h,, but, the forward invari-
ance of the set S, is quantified by the condition iy, (z,u) +
~z(hz(2)) > 0. Thus, in order to ensure the latter inequality
is satisfied, we follow the approach in [12]] and let:

he(z,u) := hx(x,u) + vz (he(2)) = pm(x)Tu —dg(z). 31)
The result is a function: A, : R™ x R™ — R with corre-
sponding set: S¢ = {(z,u) € R" x R™ : he(z,u) > 0}. Let

Pe(z,u) and d(z, u, t) be the corresponding functions defined
from h,, for some 7., as in and (T7).

Lemma 3. Given the system with hy : R™ — R a control
barrier function with p,(x) # 0, i.e., hy has relative degree
1, then he(z,u) = hy(x,u) +~2(h(z)) is an integral control
barrier function. Additionally, for the I-CBF control law 23],
using p. and d. in place of p and d, if:

z(t) € Sy
(z(t),u(t) € Se

That is, S, is safe subject to appropriate initial conditions.

Vi>0
Vit>0

o € Sx
(.1707’11,0) € Se

Proof. Tt is easy to verify that p.(x,u) = p,(x), thus the
relative degree condition transfers from & to h.. As a result, the
controller in is well-defined, i.e., is trivially satisfied.
As a result, S, is forward invariant, i.e., assuming an initial
condition (zq, ug) € Se then he(z(t), u(t)) = ha(x(t), u(t))+
~(hz(x(t))) > 0. Coupling this with the assumption that z¢ €
S;, i.e, that hy(zg) > 0, it follows that S, is also forward
invariant. O

Combining State Constraints with Input Bounds. With the
I-CBF h., obtained from h, via Lemma |3| we can synthesize
controllers that enforce state constraints with input bounds.

Theorem 2. Consider the system in (30), together with cor-
responding CBF h, : R™ — R and I-CBF h, : R™ — R, and
safe sets S, and S, respectively, and let h, : R™ x R™ be
given as in (B1). If the following QP is feasible:

v*(x,u,t) =argmin ||v||? (32)

vER

ot ] 2 )

then the dynamically defined (integral) controller
¢(x’ u? t) J’» U*(I, u? t)

renders the set S = S, NS, forward invariant, i.e., safe, for
appropriate initial conditions:

=

To € S.L (a:(t),u(t)) € SJ, N Su
(0, u0) € Se NS, Vt>0.

Proof. The constraints in (32)) are simply reformulations of:

pe(z)Tv > do(,u,t)
pu(z,u) v > dy(z,u,t)

=

he(l’, u, ’U) Z 776(}7’8(1’7 u))

hu(x7u,u) = —Yu(hu(u))
Therefore, assuming a feasible QP implies that Sc N S, is
forward invariant by Theorem [T and Lemma [I} The result
follows by Lemma O

Remark 4. The requirement on the feasibility of the QP in
Theorem [2| encodes the fact that we are not assuming that
S, is a control invariant set. Without this assumption, we
do not know if there are feasible control inputs rendering
S, invariant—this is encoded by the feasibility of the QP.
Moreover, if the QP is feasible, conditions for the Lipschitz
continuity of its solution can be found (see, e.g., [9]]). This and
the relaxation of the feasibility assumption will be the subject
of future work.

V. SIMULATION RESULTS

To demonstrate the results of the paper, we will return to an
early motivating example considered for CBFs [8]]: adaptive
cruise control (ACC). The dynamics are given by:

i) 0
i=|-LF.@)|+|i]u (33)
Vg — T2 0

where (z1,x2) are the position and velocity (z2 = 1) of the
vehicle, m its mass, x3 is the distance between the vehicle
and the lead vehicle traveling at a velocity of vg, and F.(z) =
co + 1T + 02133 is the empirical form of rolling resistance.
The control objective for the system is to drive the car to
a desired speed (x3 — vg). This can be represented as an
output: y = ((z) = x2 — v4. To obtain the predictor as in
(10), we can forward integrate (33) with co = 0, i.e., the
linear approximation, resulting in:

g(t —+ T) = 751_1 (cofu(t)ervdfcle*% (zg (t)er)),

€1

yielding the dynamically defined control law per (I1):
. —1
u(t) = acy (BTIT - 1) Jt+T) =: p(x,u,t).

The state safety constraints encode the “half the speedometer
rule” which yields the CBF (since p,(x) = —1.8/m # 0):
he(x) =23 — 1.822 > 0 — Sy = {h(x) > 0}.

The input constraint is given by the constraint that the wheel
force is bounded by |u| < mc,/qg yielding an I-CBF:

hu(z) = (Mcqjag)® —u®> >0 = S, = {hy(u) > 0}.

where ¢, /q is the factor of g for acceleration/deceleration. In
both cases, we pick v;(r) = v, (1) = yr for v > 0. From h,
we get h, as in (31), and we pick v.(r) = 3.
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Fig. 1. Methods developed in the paper applied to adaptive cruise control: the goal is for a vehicle to reach a desired velocity (vqg = 24m/s)
while not colliding with the lead vehicle traveling slower (at 14m/s) and not exceeding a maximum wheel force (input bounds).

Utilizing the constructions leading to Theorem [2] results
in the forward invariance of S, N S,. This is illustrated
in Fig. [I] where the parameters and initial condition where
chosen to match [8] with « = 10 and v = 1 above. Three
different controllers are plotted in Fig. [T} including: only input
constraints and thus an I-CBF, h,, with the controller from
Lemma |I| (red), only state constraints and thus a CBF, h,,
with the controller from Lemma [2] (green), and both input
and state constraints, thus enforcing both h,, and h., via the
controller from Theorem [2] (blue). Therefore, via the presented
unified controller, we are able to simultaneously satisfy the
input and state constraints, and thus render the system safe
for both constraints, i.e., render S, N S,, forward invariant.
Importantly, when compared against past uses of this example
in [6]], [8] we can do so holistically.

VI. CONCLUSIONS

This paper introduced integral control barrier functions (I-
CBFs). By considering dynamically defined controllers, we
were able to guarantee safety using I-CBFs defined in terms
of both state and input. This was applied in the context of
dynamically defined tracking controllers for general nonlinear
control systems (not necessarily control affine), wherein I-
CBFs lead to minimal modification of these controllers via I-
CBF based QPs (Theorem [T)). We then considered the specific
cases of input bounds (Lemmal|T) and state constraints (Lemma
B), wherein both can be independently enforced via I-CBFs.
Additionally, we proved the state constraints and input bounds
can be simultaneously satisfied via the framework of I-CBFs
assuming a feasible QP (Theorem [2). This gives a holistic
method for provably enforcing both through the use of safety-
critical integral controllers.

Future work will be devoted to expanding this theoretic
basis and demonstrating this theory experimentally. From a
theoretic perspective, understanding when the QP in Theorem
[]is feasible is a rich problem that has important implications.
Additionally, we wish to improve the means in which nominal
controllers can be enforced in conjunction with integral control
barrier functions. From an experimentally perspective, the
ability of I-CBFs to bound inputs while achieving safety in
state has important ramifications that we wish to explore
on everything from walking robots to multi-robot systems to
safey-critical autonomy.
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