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The world has recently undergone the most ambitious mitigation effort in a century1, con-
sisting of wide-spread quarantines aimed at preventing the spread of COVID-192. The use
of influential epidemiological models3–6 of COVID-19 helped to encourage decision makers
to take drastic non-pharmaceutical interventions. Yet, inherent in these models are often as-
sumptions that the active interventions are static, e.g., that social distancing is enforced until
infections are minimized, which can lead to inaccurate predictions that are ever evolving as
new data is assimilated. We present a methodology to dynamically guide the active inter-
vention by shifting the focus from viewing epidemiological models as systems that evolve in
autonomous fashion to control systems with an “input” that can be varied in time in order
to change the evolution of the system. We show that a safety-critical control approach7 to
COVID-19 mitigation gives active intervention policies that formally guarantee the safe evo-
lution of compartmental epidemiological models. This perspective is applied to current US
data on cases while taking into account reduction of mobility, and we find that it accurately
describes the current trends when time delays8 associated with incubation and testing are
incorporated. Optimal active intervention policies are synthesized to determine future miti-
gations necessary to bound infections, hospitalizations, and death, both at national and state
levels. We therefore provide means in which to model and modulate active interventions
with a view toward the phased reopenings that are currently beginning across the US and
the world in a decentralized fashion. This framework can be converted into public policies,
accounting for the fractured landscape of COVID-19 mitigation in a safety-critical fashion.

Figure 0. Illustration of the safety-
critical active intervention policies de-
veloped in this paper applied at the state
level (for states with sufficient data).
The states are colored according to
whether it is safe to open further (green),
slowly open (yellow) hold the current
mitigation efforts steady (orange), or in-
crease mitigation (red). This is deter-
mined based upon an active intervention
policy that formally guarantees bounded
hospitalizations and deaths.
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Introduction. As COVID-19 spreads throughout the world9–11, due to the novelty of the virus and
the resulting lack of pharmaceutical options necessary to suppress infection12, unprecedented miti-
gation steps to slow its progression were taken in the form of non-pharmaceutical interventions3, 13,
e.g., social distancing, mask-wearing, quarantining, and stay-at-home orders. It is largely agreed
upon that these slowed the spread of the virus2, 14, thereby saving lives. Yet studies have shown that
if these active interventions had been enforced even a week earlier15, the result would have been
a substantial reduction in deaths. As a means of mitigating the spread of COVID-19, the question
therefore becomes: when, where, and how does one decide to take non-pharmaceutical interven-
tions? This question is especially relevant16 as restrictions are being relaxed in a decentralized
fashion across the US and throughout the world.

Due to the pressing need to understand past and future mitigation efforts, and the corresponding
role of active interventions, there has been a surge of recent papers on the modeling of COVID-
195, 17–20. Epidemiological models for predicting the spread of COVID-19 often utilize dynamical
systems obtained from so-called “compartmental” models wherein the compartments are chosen
to reflect different populations of interest21–23, e.g., susceptible (S), infected (I), recovered (R),
etc. More compartments can be added allowing for higher fidelity models, although one must be
careful of overfitting the largely increased number of parameters in more complex models. The
most fundamental (and elementary) of these compartmental models is the SIR model, which has
recently been used in modeling of COVID-1924. Examples of more complex compartmental mod-
els applied for COVID-19 include the SEIR25, 26 and SIRT27 models, which involve exposed (E)
and threatened (T ) populations, and the SIDARTHE model5 which adds even more compartments.
While these models have been found to to be useful when modeling the spread of COVID-19 and
the corresponding mitigation procedures, e.g., stay-at-home orders, the approaches are fundamen-
tally based on autonomous dynamics28, 29 as they do not have a time-varying control input that
can dynamically change the evolution of the system. We propose a different approach: applying
safety-critical control methods to guide active non-pharmaceutical interventions wherein we can
actively predict the interventions needed to maintain safety by viewing compartmental models as
control systems.

Background Main Findings Policy Implications
Epidemiological models provide a
powerful tool to guide the miti-
gation of COVID-19. Yet these
models are dynamical systems that
must be constantly updated as new
data is assimilated. Policy de-
cisions, therefore, fail to account
for future active interventions, e.g.,
social distancing and stay-at-home
orders, that can change the evolu-
tion of these models.

Viewing epidemiological models
as control systems allows for the
design of active intervention poli-
cies that can mitigate COVID-19
while modulating these mitigation
efforts as function of time. With
this viewpoint, safety-critical poli-
cies are synthesized that guarantee
safety of the system by bounding
the infected, hospitalized, and de-
ceased populations.

The safety-critical active interven-
tions synthesized can be used to
formulate and inform public and
governmental policy on lifting or
increasing mitigation efforts in a
centralized and decentralized fash-
ion. These policies may, therefore,
guide mitigation efforts at local or
national levels to ensure hospitals
do not reach capacity, and overall
deaths are limited.

Table 1. Policy summary.
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SIR model as a Control System. At the core of our approach is a fundamental shift in per-
spective on epidemiological models: from viewing them as dynamical systems that evolve in an
autonomous fashion, to that of control systems for which the evolution can be dynamically modi-
fied. In many ways, this is the de facto manner in which these models are implemented, if only in
an implicit fashion, as they are constantly updated as new data is assimilated, e.g., as changes in
social distancing are observed, predictive models are updated30. We, therefore, will formalize this
perspective by making the control aspect of epidemiological models explicit. Note that viewing
compartmental epidemiological models as control systems is not unique31, 32, but has found only
limited application to COVID-1933 and has yet to enjoy formal guarantees on safety. Additionally,
there are examples of control-theoretic concepts being applied, namely in the the context of time-
varying27, 34 and state-varying6, 35 choices of the transmission rate; these can be viewed as time- and
state-varying inputs to a control system. Our approach differs in that we wish to synthesize active
intervention policies (i.e., feedback control laws) that will determine future actions to take based
upon past observations of the states of the systems.

To motivate the methodology utilized throughout this paper, we will begin by considering the fun-
damental epidemiological compartmental model: the SIR model 21, 23. Importantly, the approach
introduced herein can be applied to any compartmental model, and will subsequently be applied to
a more descriptive model. The SIR model consists of a susceptible population S, infected popula-
tion I , and recovered population R. We can view the evolution of these populations as a control
system where active interventions, expressed by the control input u(t), modulate the rate of change
of the infected population:

Ṡ(t) = −β0
N

(
1− u(t)︸︷︷︸

Control Input

)
S(t)I(t),

İ(t) =
β0
N

(
1− u(t)︸︷︷︸

Control Input

)
S(t)I(t)− γI(t), (1)

Ṙ(t) = γI(t).

Here the total populationN = S(t)+I(t)+R(t) is constant, β0 > 0 is the transmission rate (when
no intervention is present) and γ > 0 is the recovery rate, yielding the reproduction number: R0 =
β0/γ. This model relates to the traditional SIR model via the time-varying transmission rate β(t) =
β0(1 − u(t)). Time-varying β(t) has been considered20; for example, we can utilize the policy
u(t) = −A cos(ωt) in the SIR model36 to recover models of seasonal variations in infection37. In
the setting considered here, taking u(t) ≡ 0 corresponds to no intervention, yielding the traditional
SIR model with β(t) ≡ β0, whereas u(t) ≡ 1 can be viewed as maximum intervention, full and
complete quarantine of the population. In the latter case the infected population decays to zero
exponentially, I(t) = e−γtI(0), since the susceptible population is isolated. These effects can
be seen, for example, in the Chinese response to COVID-19 and the corresponding drop in R0

documented19.
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Figure 1. Paradigm shift wherein compartmental models are viewed as control systems rather than dynamical systems.
This is illustrated on the populations I(t) and R(t) of the SIR model (top panels) wherein the control input u(t) is
modulated based upon the intervention policies estimated from mobility data (bottom panel). The time delay τ = 10
days is highlighted to emphasize that the observed data corresponds to the delayed counterparts of the populations,
and this delay also appears in the active intervention policy: u(t) = A(S(t− τ), I(t− τ)), given in Eq. (2).

An illustration of the SIR model as a control system is shown in Fig. 1 where the interactions
between the compartments are denoted by arrows with appropriate rate constants indicated. The
blue arrow represents the time dependent modulation of the transmission rate β(t). The control
input u(t) is estimated from mobility data38 in the US between March 2 and May 20, 2020 by
assuming u = 0 at the beginning this period when no non-pharmaceutical interventions were
present. Furthermore, the parameters β0, γ and N of the SIR model were fitted to the recorded
number of confirmed cases: I(t− τ) +R(t− τ). Fitting for the time delay τ , in the corresponding
transmission rate β(t − τ), reveals that the COVID-19 data39 depicted publicly40 are delayed by
τ ≈ 10 days. This time delay originates from the incubation time of the virus (i.e., people are
being infectious before being symptomatic) and the time needed for testing33, 41, 42. That is, the
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data corresponds the number of confirmed cases τ days ago while the real current number could
be much higher. For example, in mid-March, when interventions were introduced in the US,
I(t − τ) + R(t − τ) was reported to be in the range of a few thousand, while the real number
I(t) +R(t) is estimated to be more than a hundred thousand. This delay also appears in the active
intervention policies which depend on the state of the system, i.e., u(t) = A(S(t − τ), I(t − τ)),
and it therefore must be compensated for in order to ensure the safety of these policies. Finally, we
remark that when fitting the model (1) to the aforementioned data one may obtain good fits while
setting N in the range from 7.5 million up to 330 million (see the Methods section for additional
details). Smaller values encode the fact that not everyone susceptible is necessarily exposed when
the total number of infected is small relative to the total population, as well as the fact that the total
number of infections is underreported43. In Fig. 1 we used the lowest value N = 7.5 million; the
consequences of this choice will be discussed in the context of active interventions.

Safety-Critical Control for Active Intervention. Utilizing the paradigm of epidemiological mod-
els as control systems, we can synthesize active intervention policies, i.e., inputs to Eq. (1) ex-
pressed as functions of the populations of the compartmental model. A special case of this is
referred to as shield immunity6, wherein the policy u(t) = αR(t)

N+αR(t)
with α ≥ 0 was chosen. Our

goal is to synthesize active intervention policies so as to achieve desired safety-critical behaviors,
that is, to guarantee that the system, with the policy applied, evolves in a safe fashion. Concretely,
we may quantify safety in the context of the SIR model as limiting the total number of infected per-
sons: I(t) ≤ Imax. To achieve such goal, we leverage the framework of control barrier functions7

which gives necessary and sufficient conditions on the safety, along with tools to generate active
intervention policies that ensure safety.

While there may exist multiple safe policies, it is beneficial to chose one which minimizes the
active intervention u(t), since more aggressive interventions potentially result in the lose of jobs
and other economic and physiological effects44, 45. The active intervention policy, i.e., feedback
control law, that gives the minimal possible (pointwise optimal) interventions so as to ensure the
safety of the system can be explicitly calculated (as described in Methods):

u(t) = A(S(t), I(t)) := max

{
0, 1− γ

β0

N

S(t)

Imax

I(t)

}
⇒ I(t) ≤ Imax. (2)

Notice the activation function or rectified linear unit46 ReLU(x) = max{0, x} can be used to
express the policy; notably, this also used in neural networks in the context of machine learning47.
This highlights that interventions only become “active” when safety is in danger of being violated.
However, if one simply uses the obtained feedback control law in the SIR model with time delay τ ,
i.e., substitutes u(t) = A(S(t−τ), I(t−τ)) into Eq. (1), safety cannot be ensured due to the delay.
In order to compensate for this delay we construct predictors48 (as described in Methods) and use
the predicted states Sp(t) and Ip(t) in the active intervention policy: u(t) = A(Sp(t), Ip(t)). If the
predictions are accurate, i.e., Sp(t) = S(t) and Ip(t) = I(t), then the delay-free control design
can ensure safety. Such predictors play an essential role in making the active intervention policies,
synthesized from control barrier functions, implementable in the presence of time delay8.
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Figure 2. Application of the safety-critical active intervention policy in Eq. (2) that keeps the number of infected
people under a given limit Imax, to the SIR model in Eq. (1) with the parameters that yielded Fig. 1. The safety-critical
policy is compared against a reference policy where the control input is reduced linearly. The epidemic ends relatively
early due to the reduced population N , used in the model.

Figure 2 depicts the results of applying the safety-critical active intervention policy in Eq. (2) to
the SIR model in Eq. (1) while compensating for the 10 days delay using predictors. The control
barrier function is able to keep the infected population under Imax = 200, 000 while gradually
driving the control input (active intervention) to zero, i.e., mitigation methods can eventually be
removed. Notice that this opening strategy decreases the control input very slowly at the beginning
followed by a faster opening toward the end. As a reference we also show the results of another
opening strategy where the control input is reduced to zero linearly in time. In this case the number
of infections peaks at a much higher value putting a large burden on the health system. While this
figure vividly illustrates the use of safety-critical active intervention, and the benefits thereof, it also
predicts that all restrictions can be lifted by mid-July. This is due to the use of the simplified SIR
model that was considered to illustrate the concepts presented and, more specifically, due to the fact
that the model heavily depends on the N (chosen to be 7.5 million when fitting the data). Selecting
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a larger N would yield a longer mitigation period: the time period where active intervention is
necessary, i.e., where Eq. (2) is non-zero, can be calculated as T ≈ N

β0Imax

(
β0
γ
S0

N
− 1
)
, where S0

is the size of the susceptible population when the controller in Eq. (2) is initiated. Increasing
N increases the period for which active intervention is necessary i.e., when the safety critical
intervention policy is applied to the overly simplistic SIR model. In order to make predictions more
reliable it is necessary to use a higher fidelity compartmental model. Moreover, doing so allows for
additional safety-critical constraints to be considered, including hospitalization and death.

Safety-Critical Active Interventions for the SIHRD Model. The safety-critical approach to
active intervention can be applied to more complex compartmental models, viewed as control
systems. To better capture other salient populations for which safety is critical, we consider the
SIHRD model (detailed in Methods) which includes the S, I and R populations of the SIR model
together with hospitalized and deceased populations, H and D, respectively20, 23. The equations
governing this model are, therefore, similar to those in Eq. (1) with the addition of dynamics gov-
erning the evolution of populations associated with hospitalization and deaths. Correspondingly,
the control input again appears via the time varying transmission rate β(t) = β0(1−u(t)), while γ
still denotes the recovery rate of the infected population. The additional parameters λ > 0, ν > 0
and µ > 0 represent the hospitalization rate, recovery rate in hospitals and death rate, respectively.
These rates are obtained by fitting the model to the data together with the effective population N
that becomes 13.2 million for this model (as discussed in Methods).

The evolution of the SIHRD model is shown in Fig. 3 relative to US data, including mobility data,
where the fits accurately capture the data for the infected, hospitalized and deceased populations to
present day (the predictive power of this model is illustrated in Methods). Also illustrated in Fig. 3
are policies that allow for future mitigation designed using the safety-critical paradigm. Safety-
critical active intervention policies can be synthesized for the SIHRD model, wherein the additional
compartments allow for the consideration of safety constraints aimed at limiting hospitalization
and death. In particular, we will consider two active interventions policies: one policy analogous
to Eq. (2) aimed at limiting the infected population, and another policy aimed at simultaneously
limiting both the number of hospitalized and dead. The results of applying these two policies
are shown in Fig. 3, with the specific controllers detailed in Methods. Note, additional policies
could be considered, i.e., ones bounding the populations in any compartment, or any combination
thereof.

The first safety critical policy considered aims to limit the number of infected, i.e., I(t) ≤ Imax,
with results qualitatively similar to those of the SIR model in Fig. 2. Again mitigation measures
are enforced over the same duration as a linear “opening up” policy while the optimality of the
safety-critical policy results in substantially fewer infections at the peak. The second safety critical
policy aims to limit hospitalizations (H(t) ≤ Hmax) based upon hospital capacity, while simul-
taneously limiting deaths (D(t) ≤ Dmax). Achieving these objectives, as indicated in Fig. 3,
requires maintaining a non-zero input for a longer duration, i.e., some form of mitigation must
be practiced for an extended period to limit overall death. This reflects the practices of countries
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Figure 3. Two safety-critical active intervention policies applied to the SIHRD model. The red policy keeps the
number of infected under Imax as in Fig. 2 while the dark orange policy keeps the number of hospitalized under Hmax

and also keeps the number of deaths under Dmax. The reference policy, that is linear in time, fails to maintain safety
and results in a spike in infections and hospitalizations.
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that successfully mitigated the first wave of the epidemic49. Importantly, both of the synthesized
safety-critical active intervention policies guarantee the safety constraints while simultaneously
minimizing mitigation—compared against the naive linear reference policy which would drive the
number of hospitalized above the limit Hmax, and result in large number of deceased persons.
This indicates the important role that active intervention policies can play in guaranteeing safety,
encoded by limiting hospitalizations and deaths.

The safety-critical policies synthesized above can also be applied to smaller geographical areas.
This is especially relevant from a practical perspective, as specific mitigation efforts are determined
at a state level in the US. In Fig. 4, the results are shown for four different states with safety-critical
active intervention policies simultaneously bounding hospitalization and death; the safety bounds
Hmax and Dmax were chosen as outlined in Methods, and different bounds can be used based upon
state-level public policy. Different states require different levels of mitigation as highlighted by
the color of each state. The gating criterion for state level mitigation was, as a proof of concept,
determined by the value of the safety-critical control input 30 days after the start of active inter-
vention; other criterion could be used based upon public policy. In this case, Michigan may open
up, i.e., relax its mitigation efforts relatively quickly, reducing the control input to less than 50% of
its current value in 30 days, yet mitigation efforts must be kept in place throughout the year. Qual-
itatively similar behavior can be seen in the case of New York, though active interventions cannot
be reduced as quickly—if relaxed too quickly the result is a second spike in infections equal to
the first already experienced. By comparison, California needs to very slowly relax its mitigation
efforts and settle into a steady state mitigation at 80% of its current value, or the result is an out-
break with very high number of hospitalized and substantially more death. Texas should increase
its current mitigation efforts to avoid a sudden and significant rise of infections, hospitalizations
and death. In the case of both California and Texas, the way in which they open has a profound
effect on the total hospitalizations and deaths, with deaths more than doubling if a naive opening
up policy is implemented. Therefore, the safety-critical approach can determine the optimal way
in which states should open—assuming good data at the state level—thereby informing policy that
has the potential to dramatically reduce hospitalizations and deaths.

Summary. The approach taken in this paper revolves around a new paradigm: viewing com-
partmental epidemiological models as control systems, viz. Eq. (1). Importantly, this perspective
allows one to view these models not as systems that evolve independent of human behavior, but
rather as systems where human behavior is an input that can actively modify their evolution (cf.
Fig. 1). In this setting, we are able to synthesize active intervention policies that can serve to guide
future mitigation efforts. We specifically synthesized safety-critical policies that formally guar-
antee that the evolution of compartmental models—the SIR and SIHRD—stay within “safe sets.”
These safe sets encode bounds on the number of infected, hospitalized, and deceased populations.
Closed form expressions for optimal active intervention policies were synthesized, as in Eq. (2),
that ensure safety. To demonstrate this approach, US COVID-19 data on cases, hospitalizations
and deaths were utilized to fit the static parameters of the SIR and SIHRD models. The active
component of the control system, i.e., the control input, was synthesized utilizing mobility data;
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Figure 4. Safety-critical active interventions at the state level for four states: California, Michigan, New York, and
Texas. The SIHRD model, viewed as a control system, was fit to the data for each state through May 30, 2020. From
this, safety-critical active intervention policies that simultaneously bound hospitalizations and deaths are synthesized.
The color of each state is determined by the control input 30 days after the start of the safety-critical active interven-
tions, as indicated by the vertical line in the control input plots. The safety-critical policy is compared against the
naive linear opening up reference policy which violates the safety bounds—resulting in over twice the deaths in the at
risks states: California and Texas. This illustrates that the way in which states open up has important ramifications.
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the result was models with predictive power. Projecting into the future while compensating for the
incubation and testing delays, the active intervention policies were applied and compared against
“naive opening up” policies. It was shown that the safety-critical policies that limit hospitaliza-
tions and deaths greatly outperformed these reference policies (Fig. 2), and this was demonstrated
at both the national (Fig. 3) and the state level (Fig. 4).

Policy Implications. The safety-critical approach to active intervention can directly inform public
policy. To wit, the results presented demonstrate that epidemiological models (viewed as control
systems) can capture the role of human action in mitigating COVID-19; both to describe observed
data, and to actively modulate future behavior. Active intervention policies (feedback control
laws) can, therefore, be used to guide non-pharmaceutical actions that should be taken to achieve
a desired outcome with regard to the COVID-19 pandemic—or unforeseen future pandemics. Of
particular concern are mitigation efforts devoted to ensuring safety; this encodes the desire to limit
the infected, hospitalized and deceased population. The safety-critical active intervention policy
presented herein results in concrete guidance on future mitigation efforts needed to achieve these
guarantees. These actions can be at a local, state, national or international level depending on the
ability to guide active interventions among these populations. The end result can be codified in tan-
gible and specific public policies on “opening up”, i.e., on lifting or increasing mitigation efforts.
As demonstrated throughout this paper on COVID-19 data and the corresponding epidemiological
models, safety-critical active interventions—if properly encoded as public policy—have the ability
to ensure available hospital capacity and save lives.
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Methods

Safety-Critical Control for Guaranteed Safety. Safety can be framed as set invariance50–52 in
the context of control systems and controller synthesis. Let Rn be the state space of the com-
partmental model of interest, consisting of n-dimensional Euclidean space, with n the number of
compartments, i.e., for the SIR model n = 3 and for the SIHRD model n = 5. A state x ∈ Rn

consists of values of the populations, e.g., x = [S, I, R]> for the SIR model. A safety constraint is
a function h : Rn → R that encodes the safe behavior of the system through:

Safe set: C := {x ∈ Rn : h(x) ≥ 0}, (3)

wherein the goal is for the system to evolve in this safe set. For example, for the SIR model
h(S, I, R) = Imax − I , with the set C containing the states for which I ≤ Imax. The goal is to give
(necessary and sufficient) conditions for control systems, and synthesize corresponding policies,
that render this set forward invariant, i.e., that keep the system safe.

A control system (in control affine form) is a first order nonlinear differential equation with a
control input:

ẋ(t) = f(x(t)) + g(x(t)) u(t)︸︷︷︸
Control Input

, (4)

where x ∈ Rn and u ∈ R is the scalar valued control input (note that all of the methods presented
also hold for vector valued control inputs). All compartmental models can be expressed in the
general form of Eq. (4); which becomes an autonomous dynamical system (as they are typically
modeled) for u(t) ≡ 0, i.e., the system evolves according to ẋ(t) = f(x(t)). The addition of the
control input u(t), as was done in Eq. (1), allows one to modify the evolution of the system to
achieve desired behaviors. This modification is done via control laws or policies: u(t) = K(x(t)).
The result is a closed loop dynamical system: ẋ(t) = f(x(t)) + g(x(t))K(x(t)), wherein x(t) is
a solution to this system with initial condition x(0) = x0.

We are interested in guarantees of safety framed as set invariance per Eq. (3). Thus, we say that the
control system in Eq. (4) is safe with the policy u(t) = K(x(t)) if x0 ∈ C implies that x(t) ∈ C
for all t ≥ 0, where x(t) is a solution to the closed loop system with the policy applied. By the
definition of the safe set in Eq. (3), safety is thus equivalent to satisfying the safety constraint for
all time: h(x(t)) ≥ 0. Safety-critical control addresses the fundamental question: how does one
synthesize control policies that render the set C safe, i.e., control policies such that safety constraint
h(x(t)) ≥ 0 is satisfied for the closed loop system? To achieve safe behavior for the control system
in Eq. (4) representing an abstract compartmental model, we leverage the framework of control
barrier functions7. This is a new methodology for controller synthesis that has its bases in a long
and rich history of set invariance for dynamical systems50–52. In particular, by considering the
function h(x) that defines the safe set C, we wish to find conditions on the rate of change of this
function that guarantee forward set invariance; conditions that can be checked over the entire set C
and thereby used to synthesize control policies.
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It was discovered7 that necessary1 and sufficient conditions for forward set invariance are given by
lower bounding the rate of change of h when differentiated along x(t) with respect to time:

d

dt
h(x(t)) ≥ −αh(x(t)) ⇐⇒ C is safe ⇐⇒ h(x(t)) ≥ 0, (5)

for α > 0 and all t ≥ 0. The importance of the derivative condition is that it can be checked at
every point of time with respect to the input u. Thus, h is a control barrier function7 (CBF) if there
exits a u(t) such that:

d

dt
h(x(t)) = ḣ(x(t), u(t)) =

∂h

∂x
f(x(t))︸ ︷︷ ︸

:=Lfh(x(t))

+
∂h

∂x
g(x(t))︸ ︷︷ ︸

:=Lgh(x(t))

u(t) ≥ −αh(x(t)). (6)

As a result, for a control barrier function, one can synthesize a policy that ensures safety by choos-
ing a controller u(t) that satisfies Eq. (6). For example, if Lgh(x) 6= 0 then h is a control barrier
function as u(t) satisfying Eq. (6) can be explicitly solved for through the pseudoinverse. We seek
to do this in an optimal way so as to minimize the amount of active intervention.

With the goal of achieving safety while minimizing the input—as is the case with compartmental
epidemiological models where we wish to minimize the active intervention—the control law syn-
thesis problem can be framed as an optimization problem; specifically, a quadratic program:

u(t) = K(x(t)) = argmin
u∈[0,1]

u2 (7)

s.t. Lfh(x(t)) + Lgh(x(t))u ≥ −αh(x(t)).

Note that here we limit u ∈ [0, 1] since this corresponds to the interval of active interventions with
u = 0 denoting no intervention and u = 1 denoting complete intervention, e.g., fully isolating the
infected population. Importantly, one can explicitly solve the optimization problem in Eq. (7) to
get a closed form expression:

u(t) = K(x(t)) =

{
−Lfh(x(t))+αh(x(t))

Lgh(x(t))
if Lfh(x(t)) < −αh(x(t))

0 if Lfh(x(t)) ≥ −αh(x(t)).
(8)

For this choice of control law, the closed loop system is safe and, additionally, the minimal input
is optimally chosen. This is represented by the conditional statement, wherein u = 0 if the natural
dynamics of the system satisfy the control barrier function condition in Eq. (6).

1Technically, for necessity, α must be chosen to be an extended class K function7 not a constant. We utilize a
constant for simplicity of exposition and without loss of generality.
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If Lgh(x(t)) > 0, Eq. (8) simplifies to:

u(t) = K(x(t)) = max

{
0, −Lfh(x(t)) + αh(x(t))

Lgh(x(t))

}
= ReLU

(
−Lfh(x(t)) + αh(x(t))

Lgh(x(t))

)
,

(9)
wherein the min becomes the max when Lgh(x(t)) < 0. It is this formulation that leads to the
active intervention policies that we will synthesize for both the SIR and SIHRD compartmental
models, viewed as control systems.

Application of Safety-Critical Methods to the SIR Model. Consider the SIR model, viewed as
a control system, as given in Eq. (1). This is clearly of the form of the general control system given
in Eq. (4) wherein x = [S, I, R]> ∈ R3 and:

f(x(t)) =

 −β0
N
S(t)I(t)

β0
N
S(t)I(t)− γI(t)

γI(t)

 , g(x(t)) =

 β0
N
S(t)I(t)

−β0
N
S(t)I(t)

0

 . (10)

As a result, ẋ(t) = f(x(t)) is just the standard SIR model—viewed as an autonomous dynamical
system. As indicated above, the safety constraint I(t) ≤ Imax leads to the function h(I) = Imax−I
defining the safe set C = {[S, I, R]> ∈ R3 : I ≤ Imax} as in Eq. (3). For the safety function
h(I) = Imax − I calculating Eq. (6) yields:

ḣ(S(t), I(t)) = −İ(t) = −β0
N
S(t)I(t) + γI(t)︸ ︷︷ ︸
Lfh(S(t),I(t))

+
β0
N
S(t)I(t)︸ ︷︷ ︸

Lgh(S(t),I(t))

u(t) ≥ −α(Imax − I(t)). (11)

It follows that h is a control barrier function since I 6= 0 and S 6= 0 corresponds to having nonzero
infected or susceptible populations, and therefore, Lgh(S(t), I(t)) 6= 0. The explicit solution in
Eq. (9) to the optimization-based controller in Eq. (7) becomes:

u(t) = A(S(t), I(t)) = ReLU

(
1− α(Imax − I(t)) + γI(t)

β0
N
S(t)I(t)

)
⇒ I(t) ≤ Imax, (12)

if I(0) ≤ Imax, since in the domain of interest S > 0, I > 0 ⇒ Lgh(S(t), I(t)) > 0. By picking
α = γ, the control law in Eq. (12) yields Eq. (2) which was used in Fig. 2.

Safety-Critical Control Applied to the SIHRD Model. The SIHRD model is a compartmental
epidemiological model that extends the SIR model to include two additional compartments related
to hospitalized and deceased populations. These additional compartments will be important in the
synthesis of safety-critical controllers that bound these populations. The SIHRD model—viewed
as a control system—is illustrated in Fig. 5, where S, I and R are the same populations as in the
SIR model, H denotes the population that is currently hospitalized due to the virus (and assumed
not to transmit to the susceptible population as a result), and D is the deceased population. The
rate constants are indicated along the arrows linking the compartments: β0 is the transmission rate
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while γ and ν are the recovery rates of the infected and hospitalized populations, respectively.
Additionally, λ represents the hospitalization rate and µ is the mortality rate. These parameters are
coupled via 1/(γ+λ+µ) which is the characteristic infectious period of the virus, accounting for
hospitalizations and deaths, after which there is assumed to be no transmission.

Figure 5. Illustration of the predictive power of the SIHRD model. The model parameters are estimated using the US
data up to May 5, 2020 (dark blue), shown as a vertical blue line, and then used to predict forward for 25 days until
May 30, 2020 (yellow). These are compared to a fit where the data was used until May 30 (light blue).
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When casting the model in the form of Eq. (4), we use x = [S, I,H,R,D]> ∈ R5 and obtain the
following control system:

Ṡ(t)

İ(t)

Ḣ(t)

Ṙ(t)

Ḋ(t)


︸ ︷︷ ︸

ẋ(t)

=


−β0

N
S(t)I(t)

β0
N
S(t)I(t)− (γ + λ+ µ)I(t)

λI(t)− νH(t)
γI(t) + νH(t)

µI


︸ ︷︷ ︸

f(x(t))

+


β0
N
S(t)I(t)

−β0
N
S(t)I(t)

0
0
0


︸ ︷︷ ︸

g(x(t))

u(t)︸︷︷︸
Control Input

. (13)

As indicated in Fig. 5, one may design active intervention policies2 for the control input u(t)
that modulates the transmission rate: β(t) = β0(1 − u(t)). In particular, we are interested in
synthesizing safety-critical active intervention policies that bound infections, hospitalization and
death for the SIHRD model. The corresponding safety functions are given by:

hI(I) := Imax − I,
hH(H) := Hmax −H, (14)
hD(D) := Dmax −D,

with corresponding safe sets CI , CH , and CD defined as in Eq. (3). In the case of hI , a similar
calculation to that in Eq. (11) yields the active intervention policy (analogous to Eq. (12)):

u(t) = AI(S(t), I(t)) = ReLU

(
1− αI(Imax − I(t)) + (γ + λ+ µ)I(t)

β0
N
S(t)I(t)

)
⇒ I(t) ≤ Imax, (15)

assuming I(0) ≤ Imax, wherein we selected αI = (γ + λ+ µ)/10 in Fig. 3.

For the safety functions, hi for i ∈ {H,D}, associated with hospitalization and death, additional
steps are needed to synthesize the active intervention policy. In particular, the input u(t) does not
appear when differentiating these functions as was the case in Eq. (6). Yet, we know by Eq. (5)
that sufficient conditions for the sets Ci to be safe are given by ḣi + αihi ≥ 0 for i ∈ {H,D},
where now ḣi does not depend on the input u(t) as Lghi(x) = 0. As a result, define the following
extended safety functions50, 53:

hei (x(t)) := ḣi(x(t)) + αihi(x(t)) =
∂hi
∂x

f(x(t))︸ ︷︷ ︸
ḣi(x(t))=Lfhi(x(t))

+ αihi(x(t)), (16)

with associated safe sets: Cei = {x ∈ R5 : hei (x) ≥ 0}. Importantly, hei are now themselves control

2Note that the delayed values of the different populations appear in the corresponding feedback laws which will be
compensated using predictors based on the fitted model. This will be described in detail later in Methods.
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barrier functions, wherein the condition in Eq. (6) becomes:

ḣei (x(t), u(t)) =
∂ḣi
∂x

f(x(t))︸ ︷︷ ︸
:=L2

fhi(x(t))

+
∂ḣi
∂x

g(x(t))︸ ︷︷ ︸
:=LgLfhi(x(t))

u(t) + αiḣi(x(t)) ≥ −αeihei (x(t)), (17)

with i ∈ {H,D}.

This allows us to synthesize optimal active intervention policies as in Eq. (7) via:

u(t) = Ai(x(t)) = argmin
u∈[0,1]

u2 (18)

s.t. L2
fhi(x(t)) + LgLfhi(x(t))u ≥ −αeihei (x(t))− αiḣi(x(t)),

which can be converted into a conditional statement in the form of Eq. (8). Applying these con-
structions to the SIHRD model result in the optimal active intervention policies:

u(t) = AH(S(t), I(t), H(t))

= ReLU

(
1− αHα

e
H(Hmax−H(t)) + (ν − αH−αe

H)(λI(t)−νH(t)) + (γ+λ+µ)λI(t)

λβ0
N
S(t)I(t)

)
⇒ H(t) ≤ Hmax (19)

assuming the initial condition satisfies3 H(0) ≤ Hmax and heH(x(0)) ≥ 0, and

u(t) = AD(S(t), I(t), D(t))

= ReLU

(
1− αDα

e
D(Dmax −D(t)) + (γ + λ+ µ− αD − αe

D)µI(t)

µβ0
N
S(t)I(t)

)
⇒ D(t) ≤ Dmax, (20)

assuming D(0) ≤ Dmax and heD(x(0)) ≥ 0. We selected αH = (γ + λ+ µ)/10, αeH = ν/10 and
αD = αeD = (γ + λ+ µ)/10 to generate Figs. 3 and 4 as described in the next section.

Enforcing Multiple Safety Constraints Encoded as Control Barrier Functions. In addition
to enforcing safety constraints via individual barrier functions, we can simultaneously enforce
multiple safety constraints. We will demonstrate this in the context of enforcing both the safety
constraints associated with hospitalization and death, hH ≥ 0 and hD ≥ 0 as given in Eq. (14),
for the SIHRD model. Note the same concepts apply if we wanted to simultaneously enforce
hI ≥ 0 or any combination of the constraints hI ≥ 0, hH ≥ 0 and hD ≥ 0. Similarly, these ideas
can be applied to multiple safety constraints for more complex compartmental models, e.g., the
SIDARTHE model5.

3For the extended control barrier functions50, 53, x(0) ∈ C ∩ Ce implies that x(t) ∈ C ∩ Ce for all t ≥ 0.
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In order to limit the number of hospitalized and deceased populations in the SIHRD model, en-
coded by hH(H) = Hmax − H ≥ 0 and hD(D) = Dmax − D ≥ 0, while minimizing the active
intervention u, we consider the quadratic program (QP):

u(t) = AHD(x(t)) = argmin
u∈[0,1]

u2 (21)

s.t. L2
fhH(x(t)) + LgLfhH(x(t))u ≥ −αeHheH(x(t))− αH ḣH(x(t))

L2
fhD(x(t)) + LgLfhD(x(t))u ≥ −αeDheD(x(t))− αDḣD(x(t)).

Here, we simultaneously enforce the (extended) barrier function condition in Eq. (17) for the func-
tions heH and heD that imply satisfaction of ḣH ≥ −αHhH and ḣD ≥ −αDhD as desired. In general,
it is not guaranteed that a QP with multiple constraints is feasible without a relaxation term7 but in
this case due to the special structure of the control barrier functions considered, a solution can be
guaranteed and stated in closed form.

To see this, we begin by noting that for hi, i ∈ {I,H,D}, defined as in Eq. (14):

1

λ
LgLfhH(x(t)) =

1

µ
LgLfhD(x(t)) = LghI(x(t)). (22)

Therefore, defining

Φi(x(t)) := L2
fhi(x(t)) + αeih

e
i (x(t)) + αiḣi(x(t)), (23)

the conditions in Eq. (21) can be restated as a single inequality constraint:

min

{
1

λ
ΦH(x(t)),

1

µ
ΦD(x(t))

}
+ LghI(x(t))u(t) ≥ 0. (24)

Thus, we can explicitly solve for the QP with this single constraint, yielding the same general form
as Eq. (8) which leads to Eq. (9). In particular, when LghI(x(t)) > 0, the result is the explicit form
for a controller that simultaneously enforces hH(x(t)) ≥ 0 and hD(x(t)) ≥ 0 for t > 0:

u(t) = AHD(x(t)) = ReLU

−min
{

1
λ
ΦH(x(t)), 1

µ
ΦD(x(t))

}
LghI(x(t))

 = max {AH(x(t)), AD(x(t))} ,

(25)
assuming hi(x(0)) ≥ 0 and hei (x(0)) ≥ 0 for i ∈ {H,D}. Therefore, the combined conditions on
bounding hospitalizations and death can be achieved via taking the maximum of the controllersAH
and AD, as given in (19) and (20), respectively. This controller is applied in Fig. 3 using US data
and in Fig. 4 using state-level data (as described later in Methods). Figure 6 further demonstrates
the range of safety-critical behaviors one can achieve with the active intervention policy in Eq. (25),
wherein a range of maximum hospitalizations and deaths are considered leading to a range of active
interventions.

18

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 19, 2020. .https://doi.org/10.1101/2020.06.17.20133264doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.17.20133264
http://creativecommons.org/licenses/by/4.0/


Figure 6. Application via the active intervention policy in Eq. (25) utilizing multiple barrier functions, where a range
of bounds are considered for hospitalization from Hmax to Hmax, and death from Dmax to Dmax. These bounds lead
to safety-critical policies AHD and AHD, respectively. These policies, and their corresponding range of interventions,
are compared against the nominal safety-critical policy AHD used in Fig. 3. Observe that the higher bounds on
hospitalization and death, Hmax and Dmax, lead to the control input going to zero, while lower (and hence more
stringent) bounds require sustained active intervention.
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Time Delays and Controller Synthesis with Predictors. While delays have been considered in
the past in epidemic models54–56, they were only used to modify the autonomous dynamics of
the forecasting models and thus were not considered in the context of control systems and active
interventions. Here we discuss how delays affect the active intervention policies designed for the
delay-free system and how to utilize predictors to compensate for the delay.

If there exists a measurement delay τ in a control system, cf. Eq. (4), then at time t only the delayed
state x(t− τ) is available via measurements, while the instantaneous state x(t) of the system is
unknown. Therefore, the controller must rely on the delayed state, which modifies the control law
from u(t) = K(x(t)) to u(t) = K(x(t− τ)), yielding the time-delayed closed loop system:

ẋ(t) = f(x(t)) + g(x(t))K(x(t −τ︸︷︷︸
Delay

)). (26)

Therefore, since measurement delay affects the dynamics of the closed loop system via time delays,
they are typically undesirable—especially since they are often source of instability or reduced
performance57. In the context of safety-critical control, as considered herein, time delays may lead
to violation of the safety condition if one designs a controller by assuming no delays. If the delay
is large, the measured delayed state may be significantly different from the instantaneous state due
to the evolution of the system over the delay interval. This prevents the delay-free control design
from guaranteeing safety.

A possible solution to overcome the poor performance caused by delays is the application of pre-
dictor feedback control 48, 58–61. Predictor feedback utilizes an internal model in order to predict the
current instantaneous state of the system from delayed measurements. Prediction is made over the
delay interval based on the delayed state x(t− τ) resulting in a predicted state xp(t) that is an esti-
mation of the instantaneous state x(t), i.e., xp(t) ≈ x(t). Then, one can utilize the predicted state
in the controller designed for the delay-free system. This leads to u(t) = K(xp(t)) yielding:

ẋ(t) = f(x(t)) + g(x(t))K(xp(t)). (27)

If the prediction is accurate, i.e., xp(t) = x(t), it eliminates the delays from the system.

To provide the predicted state xp(t) to the controller, one needs to anticipate how the closed loop
system evolves under the predictor feedback controller over the delay interval [t−τ, t]. This can be
achieved by introducing θ ∈ [t− τ, t] and substituting t = θ and x(θ) = xp(θ) into Eq. (27):

ẋp(θ) = f(xp(θ)) + g(xp(θ))K(xp(θ)). (28)

This equation is the internal model used for prediction. To obtain the predicted state xp(t) re-
quired at time t by the controller u(t) = K(xp(t)), Eq. (28) can be numerically integrated
over θ ∈ [t− τ, t] with initial condition xp(t− τ) = x(t− τ) consisting of the most recent avail-
able measurement. Assuming a reasonable model, x(θ) ≈ xp(θ) for all θ ∈ [t − τ, t] wherein
x(t) ≈ xp(t), and so the predictor eliminates the time delay from the closed loop system in Eq. (27).
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Figure 2 was generated by directly utilizing Eq. (28) as internal model. Prediction can be further
improved by noticing that during the initial time θ ∈ [t− τ, t0] (if t ∈ [t0, t0 + τ ]), the system is
not yet affected by an active intervention starting at t0. Thus, one can apply the nominal (fitted)
model with the corresponding fitted control input (see the yellow curve in Fig. 2) to calculate the
predicted state during this initial interval, and Eq. (28) can be used afterwards. In Figs. 3 and 4,
this more accurate prediction algorithm was utilized, although using Eq. (28) only could already
compensate the effects of the time delay and managed to maintain safety in Fig. 2.

Predictors for Compartmental Models. In the control of COVID-19, the measurement delay
originates from the incubation period and testing, and it can go up to about two weeks (τ ≈ 14).
Over these two weeks, the number of infected population may have increased significantly. As
a result, the infected, hospitalized and deceased populations may be much closer to the safety
limit than what the data shows. Thus, active intervention policies should be applied earlier than
suggested by the delay-free controller, otherwise the populations of interest may overshoot and
increase above the safe limit. The predictor feedback control technique accounts for the two-weeks
measurement delay by predicting what could be the true number of infected population currently.
Then, the delay-free control law can be applied utilizing the predictor, and it will therefore maintain
safety if the prediction is accurate enough.

Accurate prediction requires knowing the delay. As shown in Fig. 1, the delay can be identified
by model fitting to compartmental data and by utilizing mobility data. Furthermore, prediction re-
quires an accurate internal model. For the SIR model, one can utilize the closed loop system: Ṡp(θ)

İp(θ)

Ṙp(θ)


︸ ︷︷ ︸

ẋp(θ)

=

 −β0
N
Sp(θ)Ip(θ)

β0
N
Sp(θ)Ip(θ)− γIp(θ)

γIp(θ)


︸ ︷︷ ︸

f(xp(θ))

+

 β0
N
Sp(θ)Ip(θ)

−β0
N
Sp(θ)Ip(θ)

0


︸ ︷︷ ︸

g(xp(θ))

A(Sp(θ), Ip(θ)), (29)

which can be integrated over the interval θ ∈ [t− τ, t] with initial conditions Sp(t− τ) = S(t− τ),
Ip(t− τ) = I(t− τ) andRp(t− τ) = R(t− τ) to get the predicted states Sp(t) and Ip(t) required
by the controller at time t. Similarly, for the SIHRD model prediction can be made using:

Ṡp(θ)

İp(θ)

Ḣp(θ)

Ṙp(θ)

Ḋp(θ)


︸ ︷︷ ︸

ẋp(θ)

=


−β0

N
Sp(θ)Ip(θ)

β0
N
Sp(θ)Ip(θ)− (γ + λ+ µ)Ip(θ)

λIp(θ)− νHp(θ)
γIp(θ) + νHp(θ)

µIp(θ)


︸ ︷︷ ︸

f(xp(θ))

+


β0
N
Sp(θ)Ip(θ)

−β0
N
Sp(θ)Ip(θ)

0
0
0


︸ ︷︷ ︸

g(xp(θ))

Ai(xp(θ)), (30)

for i ∈ {I,H,D,HD} depending on which active intervention policy is being utilized, i.e.,
whether we wish to bound infections, hospitalizations, deaths, or a combination thereof. Ac-
cording to Fig. 5, a short term (i.e., two-week) prediction can be made accurately with such model.
Therefore, the result is safety of the system even in the presence of the time delay.
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Parameter Identification for Compartmental Models. As mentioned previously, a wide variety
of model parameters can be used to fit COVID-19 data, yielding drastically different predictions
for the evolution of the different populations. In order to provide a model with high predictive
ability, the parameters must be determined in a way that reflects their physical meaning while
the model reproduces the available data. Since the model is being treated as a control system,
the sequence of inputs that reflect the intervention applied thus far can be estimated. To ensure
that the estimated inputs are realistic, they are initialized using mobility data from SafeGraph38,
a data company that aggregates anonymized location data from numerous applications in order to
provide insights about physical places. Such data allow us to quantify the increased time people
stay at home to increase social distancing. To enhance privacy, SafeGraph excludes census block
group information if fewer than five devices visited an establishment in a month from a given
census block group.

The data fitting problem identifying the parameters of the SIR model in Eq. (1) can be formulated
as an unconstrained, nonlinear optimization problem:

min
β,i0,α0,α1,τ

||(I +R)− P ||
||P ||

+
||β −Q||
||Q||

. (31)

The first term in the objective function seeks to minimize the difference between the total cases
(I+R) given by the model and the number of positive test cases from the data P . The second term
seeks to minimize the difference between the transmission rate β and some function Q that models
the expected transmission rate based on mobility data. To obtain (I+R) at different time moments,
we integrate Eq. (1) and this integration results in the nonlinearity in the objective function.

The optimization problem in Eq. (31) is used to find the parameters of the SIR model in Eq. (1) as
follows. The first decision variable is the vector β ∈ Rk, k = floor(T/K), representing the time-
varying transmission rate βj = β0(1− u(tj)), j ∈ {1, 2, . . . , k}. This corresponds to a control
input u(tj) that is updated every K days over the time span T . The value K = 5 days was used
in order to prevent overfitting and account for the inability to define new policies on a daily basis.
The decision variable i0 = I(0)

I(0)+R(0)
∈ [0, 1] signifies the initial values of different populations,

while decision variables α0, α1, τ are used to scale and delay the mobility data according to:

Q(t) = α0 + α1(1− Ts(t− τ)), Ts(t) =
Th(t)−min(Th(t))

1−min(Th(t))
, (32)

where Th is the median percentage time spent at home. Recall that the delay τ exists due to the
testing delay and the incubation period of the virus42, and it is bounded to be between 5 to 16
days. Finally, the parameter β0 is extracted from β and Q as β0 = maxj∈{1,...,k}, t∈[0,T ]{βj, Q(t)}.
When fitting the SIR model to the US national data we obtain β0 = 0.51 1/day and τ = 10 days,
while we set the parameter γ = 0.2 1/day to correspond to the average characteristic recovery time
observed in the data. The fit for the SIR model is shown in Fig. 1 where the prediction along the
10 day period of the delay τ is highlighted. These predictions are used in Fig. 2 when applying the
safety-critical active intervention policy in Eq. (2).
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It is important to note that for the SIR model, and the corresponding optimization problem in
Eq. (31), N is fixed at a value below the total population. This is necessary due to the underreport-
ing of infections43, along with the fact that many people will never have any contact with infected
individuals. Additionally, setting N to be the entire population of the US in the SIR model would
require many years for the virus to die out even with strict social distancing. Since our goal with
the SIR model was to demonstrate the concepts of safety-critical active interventions, rather than to
predict the size of the populations accurately, we decided to fix N to be 7.5 million. Alternatively,
one can makeN a decision variable—this did not improve results for the SIR model, but will prove
useful for the higher-fidelity SIHRD model as explained below.

Analogous to the optimization problem for the SIR model, the optimization problem to estimate
the parameters of the SIHRD model in Eq. (13) can be framed as:

min
N,β,i0,γ,λ,ν,µ,α0,α1,τ

||(I +H +R +D)− P ||
||P ||

+
||β −Q||
||Q||

+h
||H −Hd||
||Hd||

+d
||D −Dd||
||Dd||

. (33)

This formula accounts for the number of hospitalizations Hd and the number of deaths Dd in
the data. The weights h > 1 and d > 1 are set to reflect that the data for hospitalizations and
deaths are inherently less uncertain than the data on total positive test cases. In order to obtain
the populations I +H +R +D, H , and D as function of time we integrate the model in Eq. (13)
which contains the new decision variables N, γ, λ, ν, µ. Due to the increased complexity of the
model, the parameter γ is no longer fixed, as it was in the SIR model, instead, the value of 1/(γ +
λ + µ) is implicitly constrained to be roughly within 2.5-7.5 days through individual bounds on
the decision variables. Lastly, the characteristic time at which someone recovers from the hospital
1/ν is bounded between 2.5 and 4 days. Finally, differing from the SIR model optimization, the
population N is now a decision variable with a lower bound of 4% and an upper bound of 10% of
the total population of the nation or state of interest. We note that the value of N does not change
the qualitative conclusions regarding safety-critical active interventions.

These optimization problems were solved using the pagmo62 C++ library, and the solutions were
verified using a variety of its solvers including CMA-ES, differential evolution, NSGA-II, and
several solvers in the NLOPT suite. Table 2 provides the obtained parameters as computed by
CMA-ES with a population size of 400 and a generation number of 400. The predictive power of
the SIHRD model is illustrated by the fit in Fig. 5 over a 25 day horizon which provides accurate
predictions for both the hospitalized H and the deceased D populations. This tight fit on H and
D comes at the cost of a worse fit on the infected populace I , as reflected in the graph on total
confirmed cases. However, as noted previously, the uncertainty in the total case number data is
much higher than that of the H and D compartments, so this mismatch is not surprising. In fact, it
could be argued that the actual number of infected persons is higher than reported and this model,
as a result of its utilization of hospitalizations and deaths, actually captures this higher number.
For example, in Fig. 5 the SIHRD model predicts a higher peak in the number of cases per day in
the first half of April—this better describes the hospitalization and death data, and could provide a
more accurate picture of cases per day due to the lack of testing at that time.
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Parameters
N(%) β0 γ λ µ ν α0 α1 τ

R
e g

io
n

USA 4.01 0.57 0.07 0.14 0.01 0.39 0.16 0.39 14
CA 4.00 0.57 0.07 0.25 0.01 0.26 0.31 0.26 15
MI 5.71 0.44 0.07 0.25 0.04 0.25 0.34 0.10 16
NY 4.28 0.60 0.07 0.08 0.01 0.27 0.12 0.46 14
TX 4.00 0.37 0.20 0.04 0.01 0.09 0.23 0.15 15
AR 9.18 0.44 0.20 0.15 0.01 0.40 0.34 0.10 16
CO 4.00 0.61 0.07 0.21 0.02 0.37 0.23 0.38 13
CT 4.00 0.63 0.07 0.25 0.03 0.40 0.38 0.25 15
DE 4.00 0.50 0.12 0.23 0.01 0.40 0.40 0.10 14
IA 4.00 0.54 0.20 0.17 0.01 0.40 0.39 0.14 16
IL 4.68 0.45 0.07 0.25 0.02 0.31 0.35 0.10 16
KY 10.00 0.50 0.14 0.25 0.02 0.26 0.40 0.10 8
LA 4.00 0.48 0.07 0.25 0.02 0.33 0.34 0.14 15
MA 8.32 0.60 0.07 0.25 0.02 0.38 0.33 0.27 13
MN 4.00 0.56 0.15 0.22 0.03 0.40 0.40 0.16 16
MO 4.00 0.42 0.07 0.25 0.02 0.20 0.32 0.10 12
MT 4.03 0.33 0.07 0.23 0.02 0.34 0.23 0.10 8
NC 4.00 0.63 0.17 0.18 0.01 0.40 0.32 0.31 16
ND 4.00 0.38 0.20 0.07 0.01 0.40 0.28 0.10 5
NJ 7.43 0.71 0.07 0.19 0.02 0.37 0.28 0.43 16
NM 4.00 0.58 0.20 0.19 0.02 0.40 0.39 0.19 16
PA 4.00 0.57 0.07 0.25 0.02 0.38 0.33 0.23 16
RI 8.79 0.60 0.20 0.14 0.01 0.40 0.36 0.24 16
VA 4.00 0.77 0.17 0.25 0.02 0.26 0.40 0.37 16
VT 10.00 0.54 0.20 0.23 0.03 0.26 0.40 0.14 14
WA 10.00 0.57 0.16 0.25 0.03 0.34 0.40 0.17 8
WI 10.00 0.50 0.14 0.25 0.02 0.31 0.40 0.10 5
WV 4.00 0.58 0.14 0.25 0.02 0.23 0.35 0.22 16

Table 2. Parameter estimates for the SIHRD model in different states, including the national level, obtained by solving
the optimization problem in Eq. (33). Rough agreement between the states can be seen, but parameters vary due to
differing exposure levels, social distancing protocols, population dynamics, and testing capacity. Note that the five
states with a significantly smaller τ have values shifted by roughly one week from the average, due to the cyclical
nature of the data.

State-Level Safety-Critical Active Interventions. To provide a case study in using the safety-
critical control framework to determine public policy, we apply the approach described in the main
body of the paper, and detailed in Methods, to all states of the US that have sufficient data. A state
is considered to have sufficient data if it has recorded values of positive cases, hospitalizations, and
deaths for 50 consecutive days. While the model parameters can be estimated over shorter time
periods, a sufficient window of data to verify the prediction accuracy was also required. To obtain
the SIHRD model parameters at the state level, the optimization problem in Eq. (33) was solved
using the CMA-ES algorithm with h = 2 and d = 4 to reflect the relative certainty of the data on
hospitalizations and deaths, and thus, the desire to fit the former two populations more accurately.
The parameters are identified per the methods described above, with the values shown in Table 2.
Utilizing the fitted models, we develop a proof-of-concept reopening policy.
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To develop a template policy on whether a state should reopen, and if so how aggressively, we apply
the safety-critical framework to the SIHRD model for each state. Specifically, we utilize the safety-
critical active intervention policy u(t) = AHD(x(t)) given in Eq. (25). In this policy, there are two
constants to be chosen: the maximum number of hospitalizations Hmax, and the maximum number
of deceased Dmax. The value of Hmax for each state was chosen to be the last fitted hospitalization
value (i.e., the last point of the blue curves in Figs. 4 and 9) to prevent hospitalizations from getting
worse than the most recent recorded data. To guarantee safety, per Eq. (19), the initial condition
must satisfy: heH(x(0)) = −Ḣ(0) + αH(Hmax −H(0)) ≥ 0. If Hmax did not satisfy this (which is
the case for states where the most recent value of hospitalizations is the largest), Hmax is increased
to the smallest feasible value: Hmax = Ḣ(0)/αH +H(0) to ensure the feasibility of safety-critical
active intervention. The value of Dmax was chosen to be three times the value at the start time of
the active intervention (i.e., the start point of dark orange curves in Figs. 4 and 10). Although this
choice is arbitrary, it satisfies the condition heD(x(0)) = −Ḋ(0) + αD(Dmax −D(0)) ≥ 0 for all
states and allows us to keep consistency throughout the states.

The proof-of-concept reopening framework is based upon the behavior of the control input u(t).
Since this safety-critical policy is (pointwise) optimal, i.e., solves the optimization problem in
Eq. (21) at each t, there is no better instantaneous mitigation approach. Therefore, if this policy
says to increase mitigations then a state should close down and if this policy rapidly reduces inter-
ventions the state can continue to open. To translate the control input into an applicable policy we
utilize a “gating criterion” that is based on the value of the control input 30 days after the begin-
ning of the active intervention period; see the colored vertical lines in Figs. 4 and 7 that determine
the colors of states on the map. If the value of the control input after 30 days is greater than its
initial value, the state should close down (states in red). If the input has reduced by less than 25%,
mitigation efforts should be kept steady (states in orange). If the control input has decreased by
more than 25% but less than 50%, the state can slowly reopen (states in yellow). Finally, a state
where the input has decreased more than 50% in this 30 day period can reopen at a more rapid rate
(states in green). While this is a very simplistic policy, created to provide uniformity across states,
it demonstrates one way to utilize safety-critical methods to inform public policy. Indeed, using
the entirety of the control input can result in more informed state level policy decisions.

The criterion outlined above was applied to state level SIHRD models, with the results shown in
Figs. 7-10. The safety-critical control inputs, that determine the state by state recommendations,
are shown in Fig. 7. Also shown in that figure is the reference naive reopening policy that decays
linearly in time, reaching zero on September 1 (the start of the school year). Fig. 8 shows the
cases per day for the safety-critical and reference intervention policies; a second spike in cases
can be seen for states that are yellow, orange and red for the reference policy. This spike is also
seen in Fig. 9 in the context of hospitalizations, where Hmax is exceeded for the reference policy
for all states while the safety-critical policy does not exceed Hmax as the theory implies. Finally,
Fig. 10 shows the total deaths, wherein large death rates are seen—especially in states in red—
for the reference policy while the safety-critical policy does not exceed Dmax. These figures,
therefore, show that safety-critical control of active intervention can be used to synthesize state
level reopening policies and, if followed, can limit hospitalizations and deaths.
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Figure 7. State level active intervention policies, along with the control input fit to US mobility data (grey) through
May 30, 2020. Based upon the optimal safety-critical control policy (dark orange), state level mitigation efforts are
recommended, i.e., a 30 day gating criterion is utilized where if at this time the safety-critical policy is increasing the
state should close (red), if it has decreased by less than 25% it should hold mitigation efforts steady (orange), by less
than 50% it should slowly reopen (yellow), and more than 50% it can open at a faster pace (green). This is compared
against the naive linear reopening policy serving as a reference (green tube); this reference will be used in subsequent
figures to demonstrate the consequences of a naive opening.
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Figure 8. State level prediction for the cases per day over a year time span. The vertical axis measured in 1000’s of
people, and state level data (grey) is shown through May 30, 2020 along with the fit from the SIHRD model (blue). The
effects of different active intervention policies are shown: the optimal safety-critical active intervention policy (dark
orange) and the linear naive reopening policy (green). Both of these policies, at the state level, are shown in Fig. 7. In
almost all states, the result is a second spike in cases—often larger than the original spike—if a naive reopening policy
is used.
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Figure 9. State level predictions for the number of persons hospitalized, with the vertical axis measured in 1000’s
of people. State level data (grey), along with the corresponding fit of the SIHRD model (blue) for hospitalizations;
note the accurate fit of this data. The optimal safety-critical active intervention (dark orange) is compared against the
naive reopening reference policy (green), with both policies shown in Fig. 7. Of particular note, for the safety-critical
policy the number of hospitalizations is guaranteed to be bounded above by Hmax (horizontal dashed dark orange
line), and it can be seen that this safety constraint is satisfied for all states. This can be compared against the reference
policy where Hmax is exceeded for all states colored yellow, orange and red and even some states colored green. This
indicates that without careful mitigation policies, hospital capacity constraints can be easily violated.
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Figure 10. State level predictions for the total number of deaths, with the vertical axis measured in 1000’s of persons.
The data for the number of deceased persons as recorded through May 30, 2020 (grey) is shown along with the fit
of the SIHRD model (blue); as with the hospitalization data in Fig. 9, the fit of the data is remarkable. The results
of applying the safety-critical active intervention policy (dark orange) and the naive reference policy (green), where
these policies are shown for each state in Fig. 7. The safety-critical policy guarantees that the total number of deaths
stays under the upper bound Dmax, indicated by a horizontal dashed dark orange line. Note that for states that should
close down as determined by the the algorithm illustrated in Fig. 7, i.e., the states indicated in red, there is a dramatic
difference in the total number of deaths between the safety-critical and reference policies indicating the essential role
of proper mitigation.
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