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Abstract— This paper presents, compares, and experimen-
tally implements two robust model-based controllers for trans-
femoral prosthetic walking: the robust passivity (RP) controller
and the robust sliding mode (RS) controller. These findings con-
stitute the first steps toward using model-based controllers for
prosthetic devices as an alternative to commonly-used variable
impedance and proportional-derivative (PD) control methods.
The model upon which the controllers are based is a 5-link
planar hybrid system (both continuous and discrete behaviors)
with point feet, to represent a transfemoral amputee’s body and
limbs. A desired walking trajectory is generated through the
framework of human-inspired control by solving an optimiza-
tion problem. Smooth humanlike gait is achieved by combining
model information with a desired trajectory. The stability of
both controllers is proven for continuous dynamics within
the framework of the Lyapunov stability theorem. Simulations
show the proposed controllers are capable of meeting specific
performance requirements regarding trajectory tracking of
the prosthetic knee and convergence to a stable periodic
orbit while walking on flat ground. Finally, both RP and RS
controllers are experimentally implemented on AMPRO3 (the
third iteration of Advanced Mechanical Prosthesis), a custom
self-contained powered transfemoral prosthesis. Results show
that both controllers provide humanlike walking and accurate
tracking performance for a healthy human subject utilizing a
transfemoral prosthesis.

I. INTRODUCTION

The number of transfemoral amputees in the United States
is estimated at around 222,000 [1]. Amputees can use
prosthetic legs in an attempt to restore a normal walking gait.
Actuated active prostheses can provide more stable and natural
walking compared with passive and semi-active prostheses,
while simultaneously requiring less force and energy from the
user [2]. The significant number of transfemoral amputees and
greater efficiency of active prostheses motivate researchers
to work on the design and control of powered lower-limb
prostheses [3], [4].

Variable impedance control is one of the most pop-
ular approaches to control prostheses due to its model
independence [5]–[7]. However, impedance control lacks
optimality and robustness due to several shortcomings: tedious
impedance parameter tuning (unique to each specific amputee
subject), difficulties in detecting the sub-phases during a
single step, lack of feedback, and passiveness [5], [8]–[10].
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There have been several attempts to address the limitations
of ordinary impedance control [11], [12].

However, the aforementioned controllers are model-
independent, and lack mathematical proof of stability and
robustness in the presence of system uncertainties, unmodeled
dynamics, and disturbances. This motivates the design of
robust model-based controllers for prosthetic devices, formally
guaranteeing the convergence of system error trajectories and
quantitatively establishing robustness to known perturbations.
Importantly, such control methods need not be concerned
with correct step cycle division (for switching between sub-
phases) and tedious parameter tuning. In the context of this
motivation, several works have been presented on bipedal
robots and rehabilitation robots [13]–[15].

The main contributions of this paper are twofold: (i)
Quantified tracking performance and convergence to a stable
limit periodic orbit for two model-based robust controllers
in simulated prosthetic walking, and (ii) Experimental ver-
ification of both controllers on the powered transfemoral
prosthesis AMPRO3 with a healthy human subject.

To begin, an active transfemoral prosthesis is modeled and
interfaced with a general amputee model to build a point
prosthetic foot 5-link planar model as a hybrid [16] human-
prosthesis system. Using able-bodied reference trajectories,
an optimal smooth humanlike gait is found by solving an op-
timization problem. For the hybrid system and corresponding
optimal gait, two different model-based robust controllers,
RS and RP, are designed. The proposed controllers are
designed with the aim of achieving robustness to parametric
uncertainties, unmodeled dynamics, and disturbances of the
human-prosthesis system while providing good tracking. The
stability of the proposed controllers is proven for continuous
prosthesis system dynamics.

The proposed controllers are first verified in simulation
for the human-prosthesis system and then implemented
experimentally on AMPRO3 with a human test subject. Sim-
ulation and experimental results illustrate that both proposed
controllers provide convincing tracking performance, stability,
and reasonable prosthesis knee torque values emulating
humanlike walking.

The paper is organized as follows. Section II describes the
combined human-prosthesis system and gives an overview
of human-inspired outputs and humanlike gait. Section III
presents the robust controllers’ structures and provides their
stability analysis. Section IV presents simulation results of the
proposed systems. Section V presents experimental results of
both proposed controllers on AMPRO3. Section VI presents
concluding remarks and future work.
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II. HUMAN-PROSTHESIS COMBINED SYSTEM
In this section, a five-link planar model with a point

prosthetic foot (one torso, two thighs, and two calves) is
presented as a combined system, which includes a combined
human model and transfemoral prosthetic model as shown in
Fig. 1a [11].

A. Prosthesis Model

The prosthetic device (the red portion in Fig. 1a) is modeled
as an active transfemoral prosthesis with prismatic-prismatic-
revolute-revolute (PPRR) joint structure as illustrated in
Fig. 1b. The prosthesis is attached to the amputee at Pa (the
socket adapter) shown in Fig. 1a. The world frame for the
prosthesis system is represented as Oo = {xo, yo, zo}. This
prosthetic leg model has four degrees of freedom: horizontal
and vertical displacements of the attach point Pa, thigh
angle, and knee angle. The prosthetic ankle is assumed to
be underactuated while the human side remains actuated at
the ankle; the combined model can be considered as a two-
domain hybrid asymmetric human-prosthesis system with one
domain for human stance and the other for prosthetic stance.

The equations of motion of the prosthetic leg shown in
Fig. 1b are derived using the Euler-Lagrange formula:

Mp(qp)q̈p + Cp(qp, q̇p)q̇p + gp(qp) = up (1)

where qp = (qp1, qp2, qp3, qp4)
T represents the vector of

generalized joint displacements of the prosthetic device (qp1
and qp2 are the horizontal and vertical displacement of the
attach point Pa respectively, and qp3 and qp4 are thigh and
knee angles respectively); Mp ∈ <4×4, Cp ∈ <4×4, and
gp ∈ <4×1 are the inertia matrix, Coriolis and centripetal
matrix, and gravity vector respectively; up is the prosthesis
control signal comprising horizontal and vertical forces at
the hip and active control torques at the thigh and knee.

B. Hybrid Model

Because the combined system has both continuous and dis-
crete behaviors (instantaneous velocity changes upon impact),
the human-prosthesis bipedal structure can be considered
a hybrid system [16] with configuration space QR in local
coordinates qc = (qsf , qsk, qsh, qnsh, qnsk)

T and world frame
Oco = {xco, yco, zco}, illustrated in Fig. 1a. Using the Euler-
Lagrange formula, the equations of motion of the bipedal
continuous dynamics [12] are given as

Mc(qc)q̈c + Cc(qc, q̇c)q̇c + gc(qc) = Buc (2)

where Mc ∈ <5×5 is the inertia matrix; Cc ∈ <5×5 is the
Coriolis and centripetal matrix; gc ∈ <5×1 is the gravity
vector; B ∈ <5×5 is the torque map with underactuated
prosthesis side and actuated human side; uc is the vector of
torque inputs.

To emulate humanlike walking, actual combined system
outputs ya must converge to desired (reference) human outputs
yd, where actual outputs ya are comprised of forward hip
velocity, knee angles, non-stance slope, and torso angle [12],
[17]. An optimal smooth humanlike gait (i.e., desired human
outputs yd) is attained by solving an optimization problem

composed of able-bodied reference trajectories along with
partial hybrid zero dynamics (PHZD) constraints and the
canonical walking function (CWF) [17]. Desired joint angles
and angular velocities of the combined system (qdc ) are
calculated using the PHZD reconstruction procedure [17].

C. Problem Statement

The scope of this paper includes control of the prosthetic
knee joint shown in Fig. 1a using the two proposed robust
controllers introduced in Section III. These controllers receive
input Sc = {qc, qdc} and hip information from the combined
system. Using a linear transformation, the set Sp = {qp, qdp}
is generated from Sc, where qdp is the desired trajectory for
qp. The controllers use Sp to generate prosthetic knee torque
during both swing and stance phases, allowing the combined
human-prosthesis system to emulate humanlike walking, i.e.,
qp → qdp ⇒ qc → qdc ⇒ ya → yd with bounded tracking
error trajectories.

Since body coordinates are defined based on stance and
non-stance phases, the fourth element of up is replaced by
the second element of uc when the prosthesis device is
the stance leg, and likewise, the fourth element of up is
replaced by the fifth element of uc when the prosthesis is
the non-stance leg (the first three elements of the up are
dummy and not used). In this manner, the prosthesis control
signal remains correctly defined during stance and non-stance
phases. Our controllers use only body coordinates and able-
bodied reference trajectories of the combined system, without
any dynamic information of the healthy body, to generate
prosthetic knee torque, which allows the combined human-
prosthesis system to emulate humanlike walking. This implies
that the proposed RS and RP controllers are robust not only
against parameter uncertainties and unmodeled dynamics of
the prosthesis, but also for different amputee subjects.

III. ROBUST PROSTHESIS CONTROLLERS
This section defines two different model-based robust

controllers to control the prosthesis device (i.e., prosthetic
knee joint, where prosthetic ankle is underactuated), simulta-
neously considering the shortcomings of traditional impedance
control and providing a robust and stable control structure
for prosthetic walking. As both controllers are model-based,
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Fig. 1: (a) Combined human-prosthesis system, (b) Transfemoral
prosthesis system
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the prosthesis model depicted in Fig. 1b is used to control
the prosthetic knee joint (red part) in Fig. 1a. To control
the other joints and obtain stable and humanlike walking, a
feedback linearization human-inspired controller is used to
exponentially drive the actual outputs of the system to the
desired ones [17].

A. Robust Sliding Mode Controller (RS)

An error vector s and signal vector v, which are n-element
vectors, are defined as [18]

s = ė+ λe v = q̇dp − λe (3)

e = qp − qdp λ = diag(λ1, λ2, ..., λn), λi > 0

Using the linearity of the parameters and definition of v
in Eq. (3), the left hand side of Eq. (1) can be written as

Mp(qp)q̈p + Cp(qp, q̇p)q̇p + gp(qp) = Y (qp, q̇p, v, v̇)p (4)

where Y (qp, q̇p, v, v̇) ∈ <n×r is an acceleration-free con-
troller regressor; n is the number of prosthetic degrees of
freedom; p ∈ <r×1 is a parameter vector.

The following control law is used to smooth control signal
chattering, providing robustness to parameter uncertainties
and unmodeled dynamics [19]:

up = M̂pv̇ + Ĉpv + ĝp −Kd sat (s/diag(φ)) (5)
= Y (qp, q̇p, v, v̇)p̂−Kd sat (s/diag(φ))

where M̂p, Ĉp, and ĝp are estimates of Mp, Cp, and
gp respectively; Kd = diag(Kd1,Kd2, ...,Kdn),Kdi > 0;
φ is the width of the saturation function such that
φ = diag(φ1, φ2, ..., φn), φi > 0. The addition of
sat (s/diag(φ)) in the above control law results in smoother
control behavior in the boundary layer |s| ≤ diag(φ). Note
that the division and saturation operations for s and diag(φ)
in the term sat (s/diag(φ)) are interpreted element-wise and
diag(φ) is an n-element vector. Substituting the control law
of Eq. (5) into Eq. (1) and using Eq. (3) yields the following
error dynamics:

ṡ = −M−1p (Cps+Kd sat(s/diag(φ))+M
−1
p Y (qp, q̇p, v, v̇)p̃

(6)
where p̃ = p̂− p is parameter estimation error.

Using the control law of Eq. (5), it can be shown that all
error trajectories starting outside the boundary layer will
be attracted by the layer while those which start inside
the boundary layer will remain inside for all t ≥ 0 (the
boundary layer is an invariant set). For this purpose, a
boundary layer trajectory is defined to measure the distance
between the current s to the boundary layer and also to trade
off between tracking accuracy and robustness to unmodeled
dynamics [18]:

sM =

{
0 if |s| ≤ diag(φ)

s− φ sat (s/diag(φ)) if |s| > diag(φ)
(7)

where sM is an n-element vector; φ is the boundary layer
thickness. The proposed control structure also satisfies the

following reaching condition:

d

dt
V (sM) ≤ −max(γi)‖sM‖1 (8)

where γ = (γ1, γ2, ..., γn), γi > 0. To prove stability of the
proposed controller, a scalar positive definite continuously-
differentiable Lyapunov function is considered, which is a
function of sM.

V (sM) =
1

2

(
sTMMpsM

)
(9)

Theorem 1: Assume that Y (qp, q̇p, v, v̇)p̃ ≤ F and define
Fm = max(Fi), γm = max(γi), and κ as a positive scalar.
Given the Lyapunov function V (sM) of Eq. (9) and the RS
controller of Eq. (5), if Kdi ≥ Fm + γm − κq̇pmax

φi, then
V̇ (sM) → 0 and sM → 0 as t → ∞ for all p ∈ <r and
s(0) ∈ <n, which implies |si| ≤ φi and e ≤ φi/λi.

Proof: Taking the derivative of Eq. (9), noting that ṡ4 = ṡ
if starting outside the boundary layer, and substituting the
error dynamics of Eq. (6) into Eq. (9) gives

V̇ (sM) = −sTMCps+
1

2

(
sTMṀpsM

)
(10)

− sTMKd sat (s/diag(φ)) + sTMY (qp, q̇p, v, v̇)p̃

Substituting s = sM + φ sat (s/diag(φ)) from Eq. (7)
into Eq. (10) if starting outside the boundary layer, and
using the skew symmetric property

(
sTM(Ṁp − 2Cp)sM = 0

)
yields [20], [21]:

V̇ (sM) = −sTM(Cpφ+Kd)sat (s/diag(φ))+s
T
MY (qp, q̇p, v, v̇)p̃

(11)
Tuning Kd and φ so Cpφ+Kd ≥ KmI (Km is a positive

scalar), and noting that sTMsat (s/diag(φ)) = ‖sM‖1 gives

V̇ (sM) ≤ −Km‖sM‖1 + sTMY (qp, q̇p, v, v̇)p̃ (12)

Defining Km = Fm + γm, where Km = max(Kdi) and
noting that sTMF is upper bounded by Fm‖sM‖1 yields

V̇ (sM) ≤ −γm‖sM‖1 (13)

Therefore, if error trajectories start outside the boundary
layer, V̇ (sM) → 0 ⇒ sM → 0 in a finite time less than
si(0)/γi. In turn, the distance between s and the boundary
layer approaches zero, showing that s is attracted by the
boundary layer. This result implies that |si| ≤ φi and
e ≤ φi/λi proving stability of the prosthesis / RS controller
combination and boundedness of the tracking error trajectories
by the boundary layer (regardless of starting point). It should
also be noted that since Cp is upper bounded by κ‖q̇p‖ and
‖q̇p‖ ≤ q̇pmax , such that Kdi ≥ Km−κq̇pmaxφi, V̇ (sM)→ 0
as t→∞. �

B. Robust Passivity Controller (RP)

With the definition of error and signal vectors from Eq. (3)
and acceleration-free controller regressor from Eq. (4), the
robust passivity-based control law is presented as [22]:

up = Y (qp, q̇p, v, v̇)p̂−Kds (14)
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Substituting Eqs. (3) and (14) into Eq. (1), and defining
p̂ = p0 + ub and p̃ = p0 − p yields the error dynamics

ṡ = −M−1p (Cps+Kds) +M−1p Y (qp, q̇p, v, v̇)(p̃+ ub)
(15)

where p0 is the nominal parameter vector, ‖p̃‖ ≤ ρ, ρ ≥ 0,
and auxiliary control term ub can be defined as [22]

ub =

{
−ρr/‖r‖ , if ‖r‖ > ε

−ρr/ε , if ‖r‖ ≤ ε
(16)

where r = Y T (qp, q̇p, v, v̇)s. Consider the following scalar
positive definite Lyapunov function as a function of s:

V (s, e) =
1

2

(
sTMps+ eTλKde

)
(17)

Theorem 2: Let Q = diag(λTKdλ,Kd). Given the
Lyapunov function V (s, e) of Eq. (17), the RP controller
of Eq. (14), and the auxiliary control term ub of Eq. (16),
if ‖r‖ > ε, or ‖r‖ ≤ ε and the error term has the property
that ‖e‖ ≥

√
ρε/2λmin(Q), then V̇ (s, e) → 0 as t → ∞ for

all p̃ ∈ <r, which implies boundedness of all tracking error
trajectories.

Proof: Taking the derivative of Eq. (17), substituting the
error dynamics of Eq. (15), and using the skew symmetric
property

(
sT (Ṁp − 2Cp)s = 0

)
gives

V̇ (s, e) = sTY (qp, q̇p, v, v̇)(p̃+ ub)− eTλTKdλe− ėTKdė
(18)

Using the definition of r yields

V̇ (s, e) = rT (p̃+ ub)− eTQe (19)

If ‖r‖ > ε, ub = −ρr/‖r‖

V̇ (s, e) ≤ ‖r‖p̃− ρ‖r‖ − eTQe (20)

and it can be concluded that V̇ (s, e) < 0 using the Cauchy-
Schwartz inequality (‖r‖(p̃− p) ≤ 0). On the other hand, if
‖r‖ ≤ ε, then ub = −ρr/ε and

V̇ (s, e) ≤ ‖r‖p̃− ρ‖r‖2/ε− eTQe (21)

Noting that ‖r‖p̃ − ρ‖r‖2/ε is upper bounded by ρε/2,
V̇ (s, e) < 0 if

eTQe > ρε/2 (22)

As eTQe is upper bounded by λmax(Q)‖e‖2 and lower
bounded by λmin(Q)‖e‖2, the condition of Eq. (22) can be
rewritten as

‖e‖ ≥
√

ρε

2λmin(Q)
(23)

Therefore, using the control law of Eq. (14), the term
rT (p̃+ub) in Eq. (19) is forced to be non-negative, regardless
of the lack of information about p̃, which results in V̇ (s, e) <
0. That is, the prosthesis / RP controller emulates humanlike
walking with the bounded tracking error trajectories. �

IV. PROSTHESIS CONTROL SIMULATIONS

In this section, the effectiveness of the proposed RS and RP
controllers is demonstrated by performing simulation studies

on the combined human-prosthesis model, while supplying the
controllers with only the prosthesis model information from
Section II. The proposed controllers of Section III are used
to control the transfemoral prosthesis shown in Fig. 1 (i.e.,
prosthetic knee joint), and the rest of the joints are controlled
by the feedback linearization human-inspired controller [17].
The RS and RP controllers are then compared to each other
with regard to tracking performance in stance and non-stance
phases for 40 steps.

The reference gait is obtained from the optimization
problem in Section II, yielding desired trajectories yd, qdc ,
and qdp for the controllers. It is assumed that both human
and prosthetic parameters are unknown to the controller, the
prosthetic ankle is underactuated, and the healthy ankle can
be actuated by the amputee.

Fig. 2 shows tracking performances of the prosthetic
knee during swing and stance phases for the RS and RP
controllers. It can be seen that both controllers track the
desired trajectories in both stance and non-stance phase. While
the healthy human walking gait demonstrates roughly equal
stance and swing phase durations, differences can arise from
inherent asymmetries in the hybrid system. As mentioned in
Section II, the human ankle remains actuated and able to inject
energy into the system during human stance, while the passive
prosthetic ankle is unable to do so. This discrepancy results in
a shorter swing phase than in able-bodied walking (as shown
in Fig. 2). Tracking for 40 steps yields RMSERS = 0.0124
rad and RMSERP = 0.0064 rad showing that in general, the
RP controller outperforms the RS controller with regard to
prosthetic knee angle tracking.

Fig. 3 show phase portraits of the stance and non-stance
knee joints for the RS and RP controllers over 40 steps.
The resulting portraits demonstrate convergence to a stable
periodic orbit while applying a feedback linearization human-
inspired controller to the able-bodied side.

V. EXPERIMENTAL IMPLEMENTATION AND
RESULTS

A. AMPRO3 Implementation

In this section, the RS and RP controllers are implemented
experimentally on the powered custom-built self-contained
transfemoral prosthesis AMPRO3, as shown in Fig. 4a [23].
This device can be actuated at both knee and ankle joints
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Fig. 2: Tracking performance of the knee joint for the RS and RP
controllers. qsk is the knee angle during stance, and qnks is the
knee angle during swing (non-stance)

520



0.2 0.4 0.6 0.8 1

-5

0

5

(rad)

 (
ra

d
/s

)

(a) RS controller

0.2 0.4 0.6 0.8 1

-5

0

5

(rad)

(r
ad
/s
)

(b) RP controller

Fig. 3: Phase portrait of the knee joint over 40 steps for both
controllers

in the sagittal plane with a pair of torsion springs between
the gearbox and joints, resulting in series elastic actuators
(SEA). AMPRO3 also uses two relative incremental encoders
at the knee and ankle joints. A 6-axis load cell is located
right below the ankle joint to measure the ground reaction
force (GRF), using the information to determine current gait
state. An attached knee adaptor, or bypass, allows able-bodied
human subjects to use the device for walking; see Fig. 4b.
The scope of this study only aims to control the prosthesis
knee joint, and as such, the prosthetic ankle is treated as a
passive joint.

High-level controllers and trajectories are implemented in
C++, organized as Robot Operating System (ROS) packages.
A single BeagleBone Black (BBB) calculates trajectory and
controller outputs at 200 Hz.

B. Experimental Results

In Section IV, the RS and RP controllers were validated in
tracking and convergence of the limit cycle, and a comparison
was performed. Now, the proposed controllers are tested
on AMPRO3 with an able-bodied test subject. During the
experiments, the prosthesis knee joint is controlled with the
proposed RS and RP controllers, while the ankle behaves
passively to emulate the point foot conditions used during
simulation. A simple PD controller with small coefficients
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Motion 
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Fig. 4: (a) AMPRO3 device, (b) Human test subject wearing
AMPRO3

TABLE I: Experimental results of AMPRO3 using RS and RP
controllers. Better values for each metric are underlined.

RS RP
τmax (N.m) 54 74

RMSE (rad) 0.0305 0.0221
Emax (rad) 0.1180 0.0785

for the ankle is employed with the goal of modeling the
prosthetic ankle as a passive spring-damper mechanism (i.e.,
small rotation of the ankle).

For each controller, the healthy human test subject is
instructed to walk for 2.5 min with the prosthesis at a
treadmill speed of 2 mph. Fig. 5a and 5b show tracking
performance of the RS and RP controllers respectively in
a randomly selected time window t ∈ [100, 104] sec. From
Fig. 5, it is observed that both controllers achieve tracking
of the prosthesis knee joint, providing a humanlike gait.
However, the RP controller yields better knee angle tracking
compared to the RS controller (RMSERS = 0.0221 rad
versus RMSERP = 0.0305 rad) for 2.5 min of walking.

Fig. 6 demonstrates phase portraits of the prosthetic knee
joint using RS and RP controllers for 2.5 min of walking.
This figure shows a stable limit cycle of the prosthesis for
both proposed controllers, indicating stable walking gaits.

Fig. 7 compares prosthetic knee torques for RS and RP
controllers for t ∈ [100, 104] sec. It can be seen that the
RS controller generates fewer velocity sign changes during
walking and lower peak torque values at the end of swing.
These observations correlate with the test subject’s perception
of walking to be smoother and better while using the RS
controller.

Table I lists maximum torque values τmax, maximum
tracking error Emax, and RMSE for AMPRO3 using the
proposed RS and RP controllers over 2.5 min of walking.
Better values for each metric are underlined in the table,
demonstrating that the RS controller decreases maximum
prosthetic knee torque by 27% compared to RP controller,
whereas the RP controller reduces maximum knee tracking
error by 33% and improves RMSE by 27% compared to the
RS controller.

To show humanlike walking for both proposed controllers,
AMPRO3 walking results using the proposed RS and RP
controllers in this paper can be seen in a video available
at [24].
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Fig. 5: Experimental tracking performance of the prosthetic knee
joint using different controllers
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Fig. 6: Experimental phase portrait of the prosthetic knee joint for
2.5 min of walking with different controllers
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Fig. 7: Experimental prosthetic knee torque comparison between RS
and RP controller. The two control signals are not in phase because
they were recorded during two separate experiments.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented, compared, and experimentally tested
two robust model-based controllers, RS and RP, for the
newly designed powered transfemoral prosthesis AMPRO3.
Compared to traditional impedance controllers, there were
no concerns regarding correct step cycle division and tedious
parameter tuning. Stability and robustness of the proposed
controllers were evaluated mathematically and via simulation.

Simulations on the human-prosthesis model (with the
assumption of underactuated prosthetic ankle) for the pro-
posed controllers showed that both controllers provided good
prosthetic knee tracking performance, limit cycle convergence,
and humanlike walking. Both proposed controllers were
experimentally verified on AMPRO3 (with passive ankle)
using an able-bodied human test subject, again yielding good
tracking and reasonable prosthetic knee torque. From both
simulation and experimental results, it was found that the
RS controller rendered smoother walking and lower absolute
peak torque compared to the RP controller. Conversely, the
RP controller provided better tracking for the prosthetic knee
joint.

In terms of future work, other adaptive and robust adaptive
control paradigms in addition to the RS and RP controllers
will be applied to the powered prosthesis AMPRO3 and
compared with two commonly-used controllers: variable
impedance and PD. There are also open questions related to
the energy cost, subjective perception of walking quality, and
robustness of fully actuated prosthetic walking with both RS
and RP controllers.
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