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Abstract— This paper addresses the control design problem
of stabilizing both joint-angle and spring-torque control objec-
tives in robots with series elastic actuators (SEAs). The pro-
posed method is a hierarchical control scheme which employs
rapidly exponentially stabilizing control Lyapunov functions
(RES-CLFs) to obtain controllers for each tier in the scheme. In
the main result of the paper, it is shown that for proper choice of
controller parameters, applying the proposed controller to the
SEA control system results in simultaneous exponential stability
of the joint-angle and the spring-torque control objectives.
Furthermore, it is shown that for a locally exponentially stable
periodic orbit in the zero dynamics of the control system
considered, the proposed controller renders a corresponding
orbit in the full SEA dynamics locally exponentially stable.

I. INTRODUCTION

Series elastic actuators are a frequent choice of mechanical
drive in contemporary force-controlled robot manipulator
applications, such as robots that work closely with other
robots [5] and robots that work in close proximity to humans
[18], [6]. By construction, SEAs are more amenable to
accurate force control than alternative actuators as the elastic
element in a SEA provides a direct force estimate [16]. In
addition, some researchers leverage the passive dynamics of
series elastic actuators to improve energy efficiency [10]. Per
the force-control application of series elastic actuators, the
corresponding control approaches of some researchers focus
on high performance “inner loops” to stabilize actuator force
[19], [18], sometimes through disturbance compensation
[8], [14], while others prioritize obtaining desired actuator
impedances through “passivity” methods [19], [13]. How-
ever, accurate force control comes with a trade-off: series
elastic actuators suffer from lower zero force bandwidth
[15] and increased holistic control design complexity due
to the higher dimensional system and the increased degree
of under-actuation [11].

This paper targets series-elastic actuator control design
challenges in which achieving desired dynamics in the “post-
spring” or “joint-angle” configuration coordinates is equally
as important as stabilizing the actuator forces. An example
of one such system is the control of stable periodic walking
in a biped robot driven by series elastic actuators, in which
the stability of joint-angle dynamics plays a much larger
role in the stability of the entire robot than is the case in
conventional manipulators. A large body of work leveraging
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the hybrid zero dynamics control design [20] and the human-
inspired control [1] paradigms yields formal methods for
achieving provably stable bipedal robotic walking for direct-
drive robots through the establishment of hybrid invariant
surfaces defined on joint-angle coordinates. In both methods,
the formal results follow from the realization of controllers
which exponentially stabilize functions of the joint-angle
coordinates. However, achieving exponential stability in the
joint-angle coordinates of robots with series elastic actuators
is a nontrivial task due to the increased dimensionality of
the system and the increased degree of under-actuation.
In one solution to this problem [11], Morris and Grizzle
used the feedback linearization control technique [17] to
exponentially stabilize the joint-angle control objectives.

The present paper proposes an alternative solution to the
design of controllers which exponentially stabilize functions
of the joint-angles in robots with series elastic actuators.
Similar in structure to the “inner-outer loop” SEA control
design methods [19], [18], the proposed method is a hi-
erarchical control scheme; in the top tier of the control
scheme, an idealized model of the robot is used to obtain
“ideal joint torques” which exponentially stabilize control
objectives computed on the joint-angle coordinates. A second
tier controller is used to produce motor-rotor torques to
achieve exponential convergence of the spring torques within
the full SEA model to the corresponding ideal joint torques
(communicated from the top tier).

The proposed method is distinguished from other similar
control schemes through the establishment of conditions
under which the motor-rotor torques produced by the hi-
erarchical control scheme result in exponential stability of
both the joint-angle outputs and the spring-deflection torques.
Rapidly exponentially stabilizing control Lyapunov functions
(RES-CLFs) [2], [3] are used to both construct the control
laws in this paper and to establish stability of the hierarchical
control scheme. Furthermore, it is shown that for a locally
exponentially stable periodic orbit in the zero dynamics
of the control system considered, the proposed hierarchical
controller method renders a corresponding orbit in the full
order SEA dynamics locally exponentially stable.

The paper is organized as follows. Section II gives the defi-
nition and an example construction of a rapidly exponentially
stabilizing control Lyapunov function. Section III presents
the proposed hierarchical SEA control strategy. Section IV
establishes preliminary results on zero dynamics and orbits.
Section V states the main result of the paper: exponential
stability of the proposed control system. And Section VI
gives results from simulation of the proposed controller.



II. LYAPUNOV-BASED CONTROL

The problem of controlling a walking robot with series
elastic actuators can be generalized to the following system
in which the control objective is to drive x→ 0 (rapidly):

ẋ = f(x, z) + g(x, z)u, (1)
ż = q(x, z)

where x ∈ X are controlled states, z ∈ Z are uncontrolled
states and u ∈ U are control inputs. Of prime interest are
the zero dynamics ż = q(0, z). Here it is assumed that the
surface defined by the constraint x ≡ 0 is invariant. A general
method for producing a u to achieve the control objective is
through the construction of rapidly exponentially stabilizing
control Lyapunov functions (RES-CLFs); the following def-
inition of a RES-CLF can be found in [2], [3].

Definition 1: For the system (1), a continuously differen-
tiable function Vε : X → R is a rapidly exponentially
stabilizing control Lyapunov function (RES-CLF) if there
exist positive constants c1, c2, c3 > 0 such that for all
0 < ε < 1,

c1‖x‖2 ≤ Vε(x) ≤ c2
ε2
‖x‖2, (2)

inf
u∈U

[
LfVε(x, z) + LgVε(x, z)u+

c3
ε
V (x)

]
≤ 0, (3)

for all (x, z) ∈ X × Z.

The main result of this paper uses RES-CLFs to establish
stability of control objectives for a class of robots with series
elastic actuators.

A. Constructing Rapidly Exponentially Stabilizing Control
Lyapunov Functions

In this paper, feedback linearization [17] control laws will
be used on the full, nonlinear dynamics of the robot model
to create linear input/output dynamical systems – once in
this form, a RES-CLF for the outputs can be constructed by
following the process described in [2], [3]. For an example
RES-CLF derivation, consider the case when control system
(1) takes the “normal form”:

ẋ =

[
0 I
0 0

]
︸ ︷︷ ︸

F

x+

[
0
I

]
︸ ︷︷ ︸
G

u, (4)

A RES-CLF for the outputs x can be constructed via:

Vε(x) := xT IεPIε︸ ︷︷ ︸
Pε

x, Iε := diag

(
1

ε
I, I

)
, (5)

where I is the identity matrix and P = PT > 0 solves
the the continuous time algebraic Riccati equations (CARE)
FTP + PF − PGGTP + Q = 0 for Q = QT > 0. The
time-derivative of (5) is given by

V̇ε(x) = LFVε(x) + LGVε(x)u, (6)

where

LFVε(x) = xT (FTPε + PεF )x, (7)

LGVε(x) = 2xTPεG, (8)

are the Lie derivatives of Vε(x) along the vector fields F
and G.

Lemma 1: (From [4]) For the dynamics (4) and for Pε
defined in (5), Vε(x) := xTPεx is a RES-CLF with

c1 = λmin(P ), c2 = λmax(P ), c3 =
λmin(Q)

λmax(P )
.

y
Proof: A proof of Lemma 1 is given in [4].

B. Properties of Rapidly Exponentially Stabilizing Control
Lyapunov Functions

Recall that the control objective is to stabilize the outputs
to the origin, i.e. drive x → 0 (rapidly). It has been shown
[2], [3], that by using a RES-CLF, the outputs can be stabi-
lized to the origin at a rate proportional to 1

ε . In particular,
consider the set of inputs u such that V̇ε(x, u) ≤ − c3ε Vε(x);
this set is called Kε(x) and is given by:

Kε(x) := {u : LFVε(x) + LGVε(x)u+
c3
ε
Vε(x) ≤ 0}.

Applying control inputs u ∈ Kε(x) to the output dynamics
(4), with initial condition x(0), results in:

‖x(t)‖ ≤ 1

ε

√
c2
c1
e−

c3
2ε t‖x(0)‖. (9)

That is, the norm of the control objectives converges to zero
exponentially at a rate of c3

2ε . Thus, rapidly exponentially
stabilizing control Lyapunov functions can be used to deter-
mine inputs u to exponentially stabilize Vε(x) which implies
exponential stability of the control objectives x.

C. Solutions and Periodic Orbits

The notation and definitions in [3] will be used to describe
solutions and periodic orbits in the control system consid-
ered. In particular, let φt(x, z) be the solution of (1) with
initial condition (x, z) ∈ X × Z. The solution φt is called
periodic with period T > 0 if φ(t+nT )(x, z) = φt(x, z)
for all n ∈ N>0. A periodic orbit is denoted by the set
O = {φt(x, z) ∈ X×Z : 0 ≤ t ≤ T} for a periodic solution
φt. Define the distance from a point p = (x, z) ∈ X × Z
to a periodic orbit O to be dist(p,O) := infy∈O ‖p − y‖.
Furthermore, denote a ball of radius δ > 0 around a periodic
orbit by the set Bδ(O) = {p = (x, z) ∈ X × Z :
dist(p,O) < δ}. A periodic orbit O is locally exponentially
stable if there exist δ,M, β > 0 such that if (x, z) ∈ Bδ(O)
it follows that dist(φt(x, z),O) ≤Me−βtdist((x, z),O).

Similarly, we denote the flow of the zero dynamics
ż = q(0, z) by φzt and for a periodic flow we denote the
corresponding periodic orbit OZ ⊂ Z. Due to the assumption
that the zero dynamics surface Z is invariant, a periodic orbit
for the zero dynamics, OZ , corresponds to a periodic orbit for
the full-order dynamics, O = ι0(OZ), through the canonical
embedding ι0 : Z → X × Z given by ι0(z) = (0, z).



III. SERIES ELASTIC ACTUATOR CONTROL

Consider the model of a robot with N rigid links arranged
in a tree structure and connected by N − 1 actuated revolute
joints. Let θa ∈ Qa ⊂ RN−1 be a vector of “actuated
joint angles” which describe the relative angles between
consecutive rigid links in the robot. Assume that the free
end of one of the links in robot is connected to a fixed
world frame, e.g. the ground, through a passive revolute joint,
forming an angle θb ∈ R. Combine the passive and actuated
joint angles to form a vector of body, or shape, coordinates1

θ = (θb, θa) ∈ Q ⊂ RN which are sometimes referred to as
“joint angles”.

In the case when the robot is driven by series-elastic
actuators, let θm ∈ Qm ⊂ RN−1 be a vector of “motor
angles” describing the orientation of each motor rotor. Given
this choice of coordinates, the dynamics model of a robot
with series-elastic actuators can be expressed as:

D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = BK(θm − θa), (10)

Jθ̈m +K(θm − θa) = τ, (11)

where the left side of (10) are the standard robot manipulator
dynamics (see [12]), with inertia matrix D(θ), Coriolis
matrix C(θ, θ̇) and gravity vector G(θ). The bottom equation
(11) describes the motor dynamics with diagonal matrices of
motor rotor inertia J and spring stiffnesses, K, and motor
torques τ ∈ RN−1. Note that the manipulator and the motor
dynamics are coupled through the spring-deflection torques,
K(θm−θa), which act on the manipulator dynamics through
B, a matrix consisting of a row of 1×N − 1 zeros stacked
on an N − 1×N − 1 identity matrix.

This section presents a solution to the control problem
of stabilizing functions (called outputs) of the joint angles,
y(θ) → 0, through the specification of motor-rotor torques.
The control strategy is hierarchical: an idealized model of the
robot is used to construct a RES-CLF to achieve convergence
of the joint-angle outputs using ideal joint torques. To
overcome the discrepancy between this ideal model and the
full SEA dynamics – namely, a mismatch between ideal and
spring deflection torques – a second RES-CLF will be created
on the SEA model to obtain motor-rotor inputs which drive
the spring torques to their corresponding ideal joint torque
values. A linear combination of these two RES-CLFs will
be used to establish stability for both the joint-angle outputs
and the spring-torque outputs simultaneously.

A. Joint-Angle Control (via Ideal Actuators)

In the first tier of the hierarchical control approach, an
ideal-actuator model is obtained by replacing the spring
torques K(θm − θa) in (10) with a vector of ideal torque
sources ur ∈ RN−1:

D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Bur. (12)

1Note that in general it may be necessary to consider a reduced subset
Q̃ of Q to ensure that the employed functions of θ are well defined.

These dynamics can also be expressed as an affine control
system of the form[

θ̇

θ̈

]
= fr(θ, θ̇) + gr(θ)ur, (13)

with

fr(θ, θ̇) =

[
θ̇

D−1(θ)(−C(θ, θ̇)θ̇ −G(θ))

]
(14)

gr(θ) =

[
0

D−1(θ)B

]
. (15)

Let y : Q → RN−1 be a vector of joint angle outputs
which encode the control objective y(θ) → 0. In the case
of ideal actuation (12), the joint-angle outputs have vector
relative degree two [17] and the relationship between input
ur and output y(θ) can be written

ÿ = LfrLfry(θ, θ̇)︸ ︷︷ ︸
L2

fr
(θ,θ̇)

+LgrLfry(θ)︸ ︷︷ ︸
A(θ)

ur. (16)

Here Lfr and Lgr are Lie derivatives [17] and the decoupling
matrix, A(θ), is assumed to be invertible through proper
choice of y(θ). Applying the feedback linearization [17]
control law:

ur = A−1(θ)(−L2
fr (θ, θ̇) + µr), (17)

to (16) yields ÿ = µr. Defining xr := (y(θ), ẏ(θ, θ̇)) ∈ Xr,
it follows that

ẋr =

[
0 I
0 0

]
︸ ︷︷ ︸

Fr

xr +

[
0
I

]
︸ ︷︷ ︸
Gr

µr. (18)

Noting that (18) is similar in form to (4), a RES-CLF for
the joint-angle outputs can be constructed using the method
described in Section II-A. In particular,

Vεr (xr) := xTr Pεrxr, (19)

where Pεr is obtained through the CARE on the control
system (Fr, Gr) and with Q = I .

For µ∗r ∈ K2
εr , which is defined to be the set of twice

differentiable controllers such that µ∗r(xr) ∈ Kεr (xr), de-
note the corresponding ideal-actuator torques u∗r and time-
derivative of (19), V̇ ∗εr (xr, µ

∗
r),

u∗r := A−1(θ)(−L2
fr (θ, θ̇) + µ∗r), (20)

V̇ ∗εr (xr, µ
∗
r) := LFVεr (xr) + LGVεr (xr)µ

∗
r . (21)

These ideal-actuator torques u∗r will be used as the control
target of the isolated motor control system. As the particular
choice of motor control law uses both u̇∗r and ü∗r , we require
that u∗r be twice differentiable and hence, µ∗r must also be
twice differentiable. One choice of µ∗r ∈ K2

εr for the systems
in this paper is µ∗r = −2εrẏ−ε2

ry, which is commonly used
in feedback linearization methods [17] to place the poles of
the closed loop system, obtained after applying µ∗r to (18),
at −εr.



B. Joint-Angle Dynamics with Series Elastic Actuators

Now consider the joint-angle output dynamics under the
series elastic actuator dynamics model (10). When the spring
torques K(θm − θa) do not equal the ideal actuator torques
u∗r , the joint-angle outputs will not evolve in the same
manner as they did under ideal actuation. In particular, (16)
becomes

ÿ = L2
fr (θ, θ̇) +A(θ)K(θm − θa), (22)

and thus the dynamics on xr (using mixed notation at this
point in the paper) become:

ẋr = Frxr +Grµ
∗
r +GrA(θ)(K(θm − θa)− u∗r). (23)

Furthermore, Vεr (xr) under series elastic actuation can no
longer be made to be a RES-CLF, as its time derivative is
now:

V̇εr = V̇ ∗εr (xr, µ
∗
r) + LGVεr (xr)A(θ)(K(θm − θa)− u∗r)

(24)

These alterations to the joint-angle output dynamics associ-
ated with series elastic actuation motivate the construction
of an additional control law to drive K(θm − θa)→ u∗r .

C. Spring-Deflection (SEA-Motor) Control

The goal of this section is to create a motor-rotor torque
control law which drives the spring deflection torques to
corresponding ideal actuator torque values. To this end,
define ym : Qm ×Qa × RN−1 → RN−1, a vector of motor
control objectives, as follows:

ym(θm, θa, u
∗
r) = K(θm − θa)− u∗r . (25)

For the series-elastic actuator motor dynamics, given in (11),
picking the motor control law

τ = J(K−1(µm + ü∗r) + θ̈a) +K(θm − θa), (26)

results in ÿm = µm. As with the robot output states, define
the following motor output states xm := (ym, ẏm) ∈ Xm.
Applying (26) to (11) results in the following dynamics of
the motor outputs:

ẋm =

[
0 I
0 0

]
︸ ︷︷ ︸

Fm

xm +

[
0
I

]
︸ ︷︷ ︸
Gm

µm. (27)

Using the method described in Section II-A, a RES-CLF for
the motor outputs xm can be constructed via:

Vm(xm) := xTmPεmxm, (28)

where Pεm is obtained through the CARE on the control
system (Fm, Gm) and with Q = I . Thus, applying the motor
control law (26), with µm ∈ Kεm(xm) and ü∗r obtained
by differentiating (20) twice, to the motor dynamics model
(11), results in exponential convergence of the SEA spring
torques to the ideal joint torques (20). The next section
presents conditions under which this control law also results
in simultaneous convergence of the joint-angle outputs.

IV. ANALYSIS OF RIGID AND SEA SYSTEMS

Towards the goal of stating the main result of the paper,
we begin by first establishing that the zero dynamics of the
series-elastic actuator control system are identical to the zero
dynamics within the ideal-actuator control system. With this
result in place, we then establish that locally exponentially
stable periodic orbits in the zero dynamics correspond to
invariant sets of the solutions to the series-elastic actuator
control system. These preliminary results are used in the
proof of the main result.

A. Preliminary Result: Equivalence of Zero Dynamics

In Section III-A, it was shown that applying the feedback
control law (17) to the ideal actuator dynamics given in (12)
results in a linear control system (18) on the joint-angle
outputs, xr. As the dimension of the vector xr is 2N − 2
and based on the vector relative degree assumption, by the
Frobenius theorem [17], there exists a 2 dimensional vector
zr = (η1(θ, θ̇), η2(θ, θ̇)) such that the change of coordinates
Φr : (θ, θ̇) 7→ (xr, zr) is a diffeomorphism. By construction,
in the ideal actuator system (13), η1 and η2 satisfy

dηi(θ, θ̇)gr(θ) ≡ 0, ∀i ∈ {1, 2}. (29)

Using the explicit form of gr(θ), given in (15), combining
the two equations in (29), and noting that dzr = (dη1, dη2),
it follows that

Lgrzr(θ, θ̇) =
∂zr(θ, θ̇)

∂θ̇
D−1(θ)B ≡ 0. (30)

Thus, for the ideal actuator system, the time derivative of zr
is given by

żr = Lfrzr(θ, θ̇) (31)

=
∂zr(θ, θ̇)

∂θ
θ̇ − ∂zr(θ, θ̇)

∂θ̇
D−1(θ)(C(θ, θ̇)θ̇ +G(θ)).

Using the diffeomorphism (θ, θ̇) = Φ−1
r (xr, zr), define the

function qr(xr, zr) := Lfrzr(Φ
−1
r (xr, zr)), so that in the

new coordinates (xr, zr) the ideal actuator system equations
(13) read

ẋr = Frxr +Grµr, (32)
żr = qr(xr, zr).

The zero dynamics, żr = qr(0, zr), of the ideal-actuator
control system are obtained through the constraint xr ≡ 0.
The goal of the next two Propositions is to establish a
relationship between the zero dynamics in the ideal system
and the zero dynamics of the series elastic actuator system.

Proposition 1: For the series-elastic actuator system
given in (10) and (11), the function

Φ : (θ, θ̇, θm, θ̇m) 7→ (xr, xm, zr) (33)

is a C∞-local diffeomorphism.



Proof: Following [20], from the Inverse Function
Theorem, Φ is a C∞-local diffeomorphism if and only if
the matrix

dΦ =


dy
dẏ
dym
dẏm
dzr

 , (34)

has full rank.
From the vector relative degree assumption and by the

fact that Φr : (θ, θ̇) 7→ (xr, zr) is a diffeomorphism, it
follows that dy, dẏ, dzr are linearly independent. Further-
more, as ym and ẏm are functions of the motor coordinates
θm and θ̇m, while y, ẏ, and zr are not, it follows that
dy, dẏ, dym, dẏm, dzr are linearly independent. Thus, dΦ has
full rank and by the Inverse Function Theorem, Φ is a C∞-
local diffeomorphism.

Using the diffeomorphism established in Proposition 1, in
the xr, xm, zr coordinates the series-elastic actuator system
equations (10) and (11) become

ẋr = Frxr +Grµ
∗
r +GrA(xr, zr)xm, (35)

ẋm = Fmxm +Gmµm, (36)
żr = q(xr, xm, zr). (37)

where (35) is a restatement of (23) now with consistent
notation. Note that the diffeomorphism (θ, θ̇) = Φ−1

r (xr, zr)
is used to express the decoupling matrix as a function of
xr and zr, i.e. A(xr, zr). Furthermore, the zr dynamics are
(currently) assumed to be a function of xr, xm, and zr.

Proposition 2: The zero dynamics for the series-elastic
actuator system are equivalent to the zero dynamics for the
ideal-actuator system, i.e. q(0, 0, zr) = qr(0, zr).

Proof: We will prove the more general result that
q(xr, xm, zr) = qr(xr, zr) by computing q(xr, xm, zr) :=
żr and showing that the result is equivalent to (31). Note
that

żr =
∂zr(θ, θ̇)

∂θ
θ̇ +

∂zr(θ, θ̇)

∂θ̇
θ̈. (38)

In series-elastic actuator model,

θ̈ = D−1(θ)(BK(θm − θa)− C(θ, θ̇)θ̇ −G(θ)), (39)

and thus

żr =
∂zr(θ, θ̇)

∂θ
θ̇ − ∂zr(θ, θ̇)

∂θ̇
D−1(θ)(C(θ, θ̇)θ̇ +G(θ))

+
∂zr(θ, θ̇)

∂θ̇
D−1(θ)BK(θm − θa). (40)

Recalling from (30) by construction ∂zr(θ,θ̇)

∂θ̇
D−1(θ)B ≡ 0,

the bottom term in (40) vanishes, leaving

żr =
∂zr(θ, θ̇)

∂θ
θ̇ − ∂zr(θ, θ̇)

∂θ̇
D−1(θ)(C(θ, θ̇)θ̇ +G(θ))

which is exactly (31). Hence q(xr, xm, zr) = qr(xr, zr) and
thus the zero dynamics żr = q(0, 0, zr) and żr = qr(0, zr)
are equivalent.

B. Preliminary Result: Periodic Orbits

To establish the main result, we must first show that
solutions of the series-elastic actuator control system (35)–
(37) are bounded on the domain of interest. Here, we
establish the domain of interest as an invariant set around
a periodic orbit in the full SEA system. Proposition 2 and
Theorem 1 of [3] are used to produce a periodic orbit in the
full SEA system. Theorem 2 of [4] is used to construct an
invariant set containing the periodic orbit.

For the ideal-actuator control system, (32), let OZ be
a locally exponentially stable periodic orbit for the zero
dynamics żr = qr(0, z). As shown in the Section II-C, OZ
corresponds to a periodic orbit, Or = ιr0(OZ), for the ideal-
actuator dynamics through the canonical embedding ιr0 :
Zr → Xr×Zr given by ιr0(z) = (0, z). By Theorem 1 of [3],
Or = ιr0(OZ) is a locally exponentially stable periodic orbit
of the closed-loop system (32) with µr ∈ K2

εr . Furthermore,
as Proposition 2 established equivalence of the zero dynamics
in the ideal and the SEA systems, a periodic orbit for the
zero dynamics, OZ , also corresponds to a periodic orbit for
the series-elastic actuator dynamics, OS = ιs0(OZ), through
the canonical embedding ιs0 : Zr → Xr × Xm × Zr given
by ιs0(zr) = (0, 0, zr).

The current goal is to establish an invariant set around the
orbit OS = ιs0(OZ) in the SEA control system. To this end,
the distance of the solution of the SEA control system to the
set OS will be related to the distance of the solution to the
ideal system to the corresponding locally exponentially stable
orbit Or through Tichinov’s theorem on singularly perturbed
systems [9].

Lemma 2: Let OZ be a locally exponentially stable pe-
riodic orbit for the zero dynamics żr = qr(0, z), and let
Or = ιr0(OZ) and OS = ιs0(OZ) be the corresponding
periodic orbits for the ideal actuator and the series-elastic
actuator systems, respectively.

Consider the closed-loop behavior obtained after applying
the motor-torque control law (26), with Lipschitz continuous
µm(xm) ∈ Kεm(xm) and the ideal-actuator control law
(20), to the series-elastic actuator system given in (10) and
(11) with an initial condition (x∗r , x

∗
m, z

∗
r ) in a neighborhood

of OS , described by the flow φst = φst (x
∗
r , x
∗
m, z

∗
r ). It follows

that there exists an ε∗r > 0 such that

dist(φst ,OS) ≤Mδ +O(εr). (41)

for all 0 ≤ εr ≤ ε∗r and all t ≥ 0, and where M and δ are
the stability parameters of Or. y

Proof: Let φrt = φrt (x
∗
r , z
∗
r ) be the solution to the

ideal-actuator control system equations (32) with the initial
condition φr0 = (x∗r , z

∗
r ). It follows from Tichinov’s theorem

on singularly perturbed systems [9] and the RES-CLFs
constructed in Section III that the norm of solutions in



the SEA control system is bounded above by the norm of
solutions in the ideal-actuator system. In particular,

‖φst‖ ≤ ‖φrt‖+O(εr) (42)

Because Or is a locally exponentially stable periodic orbit,

dist(φrt ,Or) ≤Me−αtdist(φr0,Or), (43)

with M and α stability parameters of Or. Letting the stability
parameter δ of Or be δ = dist(φr0,Or) and noting that
the maximum of Me−αtdist(φr0,Or) occurs at t = 0, (43)
becomes

dist(φrt ,Or) ≤Mdist(φr0,Or) = Mδ. (44)

Also from Tichinov’s theorem,

dist(φst ,OS) ≤ dist(φrt ,Or) +O(εr). (45)

Thus, combining (44) and (45),

dist(φst ,OS) ≤Mδ +O(εr), (46)

Lemma 2 has been verified.

Let φst = φst (x
∗
r , x
∗
m, z

∗
r ) be the solution of the SEA

control system dynamics under the assumptions in Lemma
2. A consequence of Lemma 2 is that the set

Ω = {φst : dist(φst ,OS) ≤Mδ +O(εr) (47)

is invariant in the series-elastic actuator control system. This
property will be leveraged in the proof of the main result of
the paper.

V. MAIN-RESULT

This section presents two theorems describing the main
result of the paper. In Theorem 1, it is shown that for
proper choice of control parameters, the proposed hierarchi-
cal control approach results in exponential stability of the
entire series elastic actuator system through simultaneous
convergence of the joint-angle and the motor control objec-
tives. Theorem 2 is a natural consequence of the result from
Theorem 1 together with Theorem 1 of [3]. In particular,
Theorem 2 establishes local exponential stability of the orbit
in the full series-elastic actuator system, OS = ιs0(OZ),
obtained from a locally exponentially stable orbit OZ for
the zero dynamics żr = qr(0, z).

To establish simultaneous convergence of the joint-angle
outputs and the motor outputs, define Vc : Xr × Xm → R
as follows:

Vc(xr, xm) := Vεr (xr) + ρVm(xm), (48)

where ρ > 0 is to be specified. It will be shown that under the
assumptions made in Theorem 1, Vc(xr, xm) can be made
exponentially stable for any twice differentiable “high-level”
control law of the form (20), stated again for reference:

u∗r := A−1(θ)(−L2
fr (θ, θ̇) + µ∗r), (49)

with µ∗r ∈ K2
εr .

Theorem 1: Let OZ be a locally exponentially stable
periodic orbit for the zero dynamics żr = qr(0, z), and let
OS = ιs0(OZ) be the corresponding periodic orbit for the
series-elastic actuator system.

Consider the closed-loop behavior obtained after applying
the motor-torque control law (26), with Lipschitz continuous
µm(xm) ∈ Kεm(xm) and the ideal-actuator control law (49)
with µ∗r ∈ K2

εr , to the series-elastic actuator system given in
(10) and (11). There exist positive constants c1c, c2c, c3c > 0,
an ε̄m > 0 and a ρ > 0 such that the composite Lyapunov
function (48) satisfies

c1c(‖xr‖2 + ‖xm‖2) ≤ Vc(xr, xm) ≤ c2c
ε2
r

(‖xr‖2 + ‖xm‖2),

V̇c(xr, xm, µm) ≤ −c3c
εr
Vc(xr, xm),

for all 0 < εm ≤ ε̄m and all 0 < εr ≤ 1.

Proof: To establish the first set of inequalities, note
that by definition (48), Vc(xr, xm) is a linear combination
of two RES-CLFs, (19) and (28) – both of which satisfy (2)
by definition. Thus, straightforward computation yields

c1r‖xr‖2 + ρc1m‖xm‖2 ≤ Vc(xr, xm), (50)

Vc(xr, xm) ≤ cc2r
ε2
r

‖xr‖2 +
ρcc2m
ε2
m

‖xm‖2. (51)

For εm and ρ satisfying:
ρ

ε2
m

≤ c2r
c2mε2

r

, (52)

it follows that

Vc(xr, xm) ≤ cc2r
ε2
r

(‖xr‖2 + ‖xm‖2). (53)

Picking εm and ρ satisfying (52), and c1c = min(c1r, ρc1m)
and c2c = c2r, the inequalities given in (50) and (53)
establish the first condition of the Theorem.

The proof of the inequality on V̇c uses the property (3) of
the RES-CLFs (19) and (28), together with Lemma 1. From
the assumptions in the Theorem, µm(xm) ∈ Kεm(xm) and
µ∗r ∈ K2

εr ; and therefore, after control is applied,

V̇ ∗εr (xr, µ
∗
r) ≤ −

c3r
εr
Vεr (xr) ≤ −

c1rc3r
εr
‖xr‖2. (54)

V̇m(xm, µm) ≤ −c3m
εm

Vm(xm) ≤ −c1mc3m
εm

‖xm‖2. (55)

Thus, V̇c(xr, xm, µ∗r , µm) satisfies

V̇c(xr, xm, µ
∗
r , µm) ≤ −c1rc3r

εr
‖xr‖2 − ρ

c1mc3m
εm

‖xm‖2

+ 2xTr PεrGA(xr, zr)Txm. (56)

By the Cauchy-Schwarz inequality,

xTr PεrGA(xr, zr)Txm ≤ (57)
‖xr‖ ‖Pεr‖ ‖G‖ ‖A(xr, zr)‖ ‖T‖ ‖xm‖.

From the definition of Pεr in (19) we have

‖Pεr‖ ≤
1

ε2
r

‖Pr‖ ≤
1

ε2
r

λmax(Pr) =
c2r
ε2
r

, (58)



and noting that ‖G‖ = ‖T‖ = 1,

xTr PεrGA(xr)Txm ≤
c2r
ε2
r

‖xr‖ ‖A(xr, zr)‖ ‖xm‖.

To establish a bound on ‖A(xr, zr)‖, we use the fact that
the norm of a matrix A is less than or equal its maximum
singular value, denoted σmax(A) [7]. Therefore, using the
closed set Ω established through Lemma 2, let

σ∗ = max
(xr,xm,zr)∈Ω

σmax(A(xr, zr)), (59)

it follows that

‖A(xr, zr)‖ ≤ σmax(A(xr, zr)) ≤ σ∗, (xr, xm, zr) ∈ Ω.

Thus

xTr PεrGA(xr)Txm ≤
c2rσ

∗

ε2
r

‖xr‖‖xm‖.

Now (56) becomes

V̇c(xr, xm, µ
∗
r , µm) ≤− c1rc3r

εr
‖xr‖2 − ρ

c1mc3m
εm

‖xm‖2

+
2c2rσ

∗

ε2
r

‖xr‖‖xm‖.

Following [9], [3], define ψ(xr, xm) := (‖xr‖, ‖xm‖) and

Λ :=

[
c1rc3r − c2rσ

∗

εr

− c2rσ
∗

εr

ρc1mc3mεr
εm

]
, (60)

so that

V̇c(xr, xm, µ
∗
r , µm) ≤ − 1

εr
ψT (xr, xm)Λψ(xr, xm). (61)

For exponential convergence, we need |Λ| > 0; this is
equivalent to

ρc1rc3rc1mc3mεr
εm

−
(
c2rσ

∗

εr

)2

> 0. (62)

Rearranging (62) we obtain an expression in terms of the
variables of interest in this Theorem:

ρ

εm
>

(c2rσ
∗)

2

c1rc3rc1mc3m

1

ε3
r

. (63)

Thus, choosing

ε̄m < ρε3
r

c1rc3rc1mc3m

(c2rσ∗)
2 , (64)

it follows that for any 0 < εm ≤ ε̄m, |Λ| > 0 and thus
Vc(xr, xm) is exponentially stabilized at a rate proportional
to 1

εr
.

The following Theorem states the main result from the
paper, which is a natural corollary of the application of
Theorem 1 of [3] together with establishment of a Lyapunov
function for the full series-elastic actuator dynamics, as
shown in Theorem 1 of the current paper.

Theorem 2: Let OZ be a locally exponentially stable peri-
odic orbit for the zero dynamics żr = qr(0, z), and let OS =
ιs0(OZ) be the corresponding periodic orbit for the series-
elastic actuator system. Applying the motor-torque control

law (26), with Lipschitz continuous µm(xm) ∈ Kεm(xm)
and the ideal-actuator control law (49) with µ∗r ∈ K2

εr , to the
series-elastic actuator system given in (10) and (11), renders
the periodic orbit for the series-elastic actuator system, OS ,
locally exponentially stable.

VI. SIMULATION RESULTS

To demonstrate the controller developed in this paper, we
implement it on the pendulum on a cart system (see Fig. 1).
In particular, the configuration of the system consists of two
variables, θ ∈ (−π, π) and x ∈ R. In this case, in order
to create a stable periodic orbit in the zero dynamics, we
assume that the cart is forced by a forcing function:

F (x, ẋ) = (m+M)(−x+ ẋ(1− x2 − ẋ2)), (65)

where M is the mass of the cart and m is the mass of
the pendulum. In the case of ideal actuation, this results in
dynamics of the form given in (12) as shown in Table I; here
l is the length of the pendulum and g is the acceleration
due to gravity. In addition, note that we will assume that
we only have control authority over the pendulum, and
thus B = (0, 1)T . The control objective is to stabilize the
pendulum to the upright position; therefore, we pick y = θ.

For this system, we construct the zero dynamics coordi-
nates according to the methods outlined in [20]. In particular,
this results in zero dynamic coordinates given by z =
(η1, η2) with

η1 = x,

η2 = (m+M)ẋ− lm cos(θ)θ̇.

It is easy to verify that this choice of zero dynamics
coordinates results in satisfaction of (30). The end result
is, therefore, zero dynamics of the form given in (1). By
construction of the forcing function (65), it follows that
ż = q(0, z) has a locally exponentially stable periodic orbit.

For this system, we will consider two cases: the ideal
actuator case and the SEA case. In both cases, we show that
the controllers presented in this paper, in stabilizing y → 0,
result in locally exponentially stable periodic orbits.
Ideal actuator case: Simulation results for the ideal actuator
case, i.e., the case where the dynamics are governed by (12)
are shown in Fig. 2 in red. In this case, as expected, it can
be seen that the stable periodic orbit for the zero dynamics

yy

xx

ẋ̇x

zz
θθ

Fig. 1. The pendulum on a cart system used to demonstrate the formal
results of the paper. In this case, the pendulum is actuated and the system
is considered both in the case of ideal actuation and series elastic actuation.
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Fig. 2. Simulation results including (left) periodic orbit that is locally exponentially stable, (middle) convergence of the outputs for both the idea and
SEA system, (right) convergence of the composite Lyapunov function (48) in the case of SEA.

D(x, θ) =

[
m+M −lm cos(θ)
−lm cos(θ) l2m

]
, C(ẋ, θ̇)

[
ẋ

θ̇

]
+G(θ) =

[
(m+M)x− (m+M)ẋ+ (m+M)x2ẋ+ (m+M)ẋ3 + lm sin(θ)θ̇2

−glm sin(θ)

]

TABLE I
IDEAL DYNAMICS OF THE PENDULUM ON A CART WITH THE FORCING FUNCTION F (65).

implies the existence of a stable periodic orbit for the full-
order dynamics (left plot in Fig. 2). In addition, the outputs
y converge exponentially to zero.
SEA case: To demonstrate the main results of this paper,
specifically Theorem 1 and Theorem 2, it is assumed that the
pendulum is actuated through as SEA as governed by (10)
and (11). In this case, controllers satisfying the conditions
of Theorem 1 are chosen to stabilize the output y. The end
result, as predicted by Theorem 2, is a stable periodic orbit
for the full-order SEA dynamics (as shown in Fig. 2). The
convergence of the output y in this case is also shown in
2. Finally, the behavior of the composite Lyapunov function
(48) is shown in the right plot of 2. As predicted by Theorem
1, it converges to zero exponentially for the full-order system.
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