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Abstract—To better understand human walking, three provides a theoretical framework upon which to construct
bipedal robotic models—starting with the compass gait bipd  hybrid models and controllers for the models studied in this
and increasing in complexity to a 3D kneed biped—are studied paper. After model construction, a control strategy isdintr

with controllers of human-inspired design; these controlers are d d which b dt hi h lik i
derived from experimental data measuring the kinematics of uced which can be used to achieve humaniike walking on

human test subjects. The collected data are examined in an the constructed hybrid models. Specifically, human walking
attempt to classify some of the most fundamental behaviors data are analyzed and it is found that many of the kinematics

underlying human walking; it is found that a subset of functions  pehaviors associated with human walking can be modeled
on the kinematics of humans can be represented as a single sta using a singlecanonical human functignthis concept is

of functions. The control scheme uses feedback linearizain | dt truct functi ding h ki
to track the human output functions on a robot. A state- everaged 1o construct tunctions encoding human walking.

based parameterization for time is introduced to make these ~ Obtaining the canonical human function from experimen-
human functions time-invariant. Simulation results indicate the  tal human data is a major result of the paper; this func-
existence of locally exponentially stable periodic orbitsfor  tjgn gives an effective and viable representation of specifi

each model of interest; these orbits represent stable, stég- : . . . -
state walking gaits. The application of the human-inspired kinematic outputs of human walking, without requiring any

control approach results in “humanlike” walking as supported ~ Knowledge of the intricacies of the dynamics or control
by agreement between the outputs of the robot models and governing these outputs. Indeed, the human control system
humans. responsible for walking is highly complex. From the regula-
tion of muscle behavior via transmission of electrocheinica
I. INTRODUCTION waves in the nervous system to the generation of forces by
Essential to the advancement of anthropomorphic roboti#e firing of muscle fibers, the relationship between inputs
is the development of control techniques which result i@nd outputs in the human motor control system can be quite
humanlike bipedal walking. Until recently, research in the&hallenging to decipher. We claim, however, that the most
field of robotic walking has focused on obtaining walking viarelevant outputs of the human walking control system are
mechanism design and strict control theory using passivitgoverned by the canonical human function (10). We can
based control [1], [2], control of zero-moment point [3]],[4 Uuse this idea, without knowledge of the human controller or
hybrid zero dynamics [5], [6], [7], central pattern generat internal dynamics, to provide a control method for a robot
[8], [9], and compliance-based control [10], to name a feWy which we can regulate the internal dynamics, and achieve
methods. The biomechanical component of robotic walkinge same outputs as a human. While this discovery allows
has been largely overlooked, though it is starting to bes to obtain bipedal robotic walking which is kinematically
considered [11]. The authors’ previous work [12] takes thi§imilar to human walking in simulation, the implications of
into consideration, developing a walking controller based this result extend far beyond simulation alone. In fact, the
experimental human walking data. Simple functions are uséthiversality of these kinematics outputs provides insigtd
to model fundamental kinematics behaviors associated wifthman walking. This result suggests that at the most basic,
human walking; these functions are tracked through feddbatinate level, the primary outputs of the human locomotive
linearization and ultimately lead to stable, humanlikekireg ~ System actually constitute a systemspfing dampers
on an anthropomorphic model in simulation. The goal of Using the the canonical equation (10) and feedback lin-
this paper is to understand this method in the context @farization [13], walking is achieved on three well-studied
well-studied bipedal models with the hopes that the induiti bipedal models. Specifically, the compass gait biped [14],
gained will lead to improvements in the control approach. [15], [16], the 2D kneed biped [17], [18], and the 3D
This study of bipedal walking begins by introducing thekneed biped [19] are studied. Simulations are given which
notion of a hybrid system—a particular type of system whiclshow stable walking, and it is found that the results of
exhibits continuous dynamics, i.e., the dynamic model goyhese simulations match the human data remarkably well—
erning continuous motion, and discrete dynamics, regultiran indication that the robotic walking achieved in theseehr
from rigid-body impacts such as foot-strike. This definitio models is indeed humanlike.
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modeled by systems of this form. This section, therefor&omain and Guard. The domain specifies the allowable

introduces the basic terminology of hybrid systems. configuration of the system. For the models considered in

- . this paper, the non-stance foot must be above the ground.

A. Formal Definition of Hybrid Systems This condition is specified by a unilateral constraintwhich
Hybrid systemsr systems with impulse effed20] have naturally leads to a definition for the domain:

been studied extensively in a wide variety of contexts and

have been used to model a wide range of bipedal robotic D ={(g,9) € TQ: h(q) = 0}. 1)

systems [21]. In this section, we introduce a definition o

hybrid systems applicable to bipedal walking. tI'he guard is just the boundary of the domain with the addi-

tional assumption that the unilateral constraint is desirgp
Definition 1: A hybrid control systenis a tuple, i.e., the vector field is pointed outside of the domain, or

where HE=(DU,5 4 19), S—{(q,q')ETQ:h(q)—Oand ag—éq)q<0}. (2)
e D is thedomainwith D C X a smooth submanifold of
the state spac& C R2", Continuous Dynamics.The Lagrangian of a bipedal robot,
e« U CR™ is the admissible control, L:TQ — R, can be stated in terms of the kinetic energy,
e« S C D is a proper subset oD called theguardor K : TQ — R, and the potential energy; : Q — R,
switching surface asL(q,q) = K(q,q) — V(q). The Euler-Lagrange equation
e« A:S — Dis asmooth map called threset map gives the dynamic model, which, for robotic systems (see
« (f,g) is acontrol systenon D, i.e.,i = f(z)+g(z)u. [22]), is stated as:
A hybrid systemis a hybrid control system wit/ = (), . .
e.g.,ygmy agplicable fee)z/dback controllirs have been applie D(g) g+ H(g,q) = Blg)u (3)
making the system closed-loop. In this case, with inertia mapD(¢) and torque distribution map(q), and
# =(D.54.1), H(g,d) = C(a,d) 4 + Glq)

where f is adynamical systeron D C X, i.e.,& = f(z).  containing terms resulting from the Coriolis effect and

Hybrid Period Orbits and the Poincaré Map. In order to  gravity; C(q, ) can be found using standard methods [22].
establish the stability of k-periodic orbits, we will useeth Manipulation of (3) leads to the control systeif g):
standard technique of studying the corresponding Poéncar’

map. In particular, takingz to be the Poincaré section, one f(q,(j)—{
obtains the Poincaré map, : G — G, which is a partial
map defined by:

q _
—D-1<q>H<q,q>]’ g(q)‘[D-%q)B(q)} @)

Discrete Dynamics. In order to define the reset map, it
P(z) = c(1(2)). is necessary to first augment the configuration spé@ce
Attach a frameR, to the stance foot; thew represents the
Cartesian position o2, andvy € S C SO(3)! represents
the orientation of R, about the z-axis. The generalized
coordinatesare then written

wherec(t) is the solution toi = f(z) with ¢(0) = R(2)
and 7(z) is the time-to-impactfunction. In particular, if
z* is a k-fixed point of P (under suitable assumptions on
z*, G, and the transversality o® and G) a k-periodic
orbit O with z* € O is locally exponentially stable if and Ge = (D, Dys P2, ¥, q) € Qe =R3 x S x Q.

only if P* is locally exponentially stable (as a discrete-time )

dynamical systent;,1 = P(z;)). Although it is not possible Without loss of generality, we assume that the values of the
to explicitly compute the Poincaré map, one can compute§ténded coordinates are zero throughout the gait. Morgove
numerical approximation of this map through simulation ané'€ configuration variable does not change through impact
thereby test its stability numerically. This gives a comere SO these values will be zero right after impact. Therefore,

method for practically testing the stability of periodidogs. W€ introduce the embedding : Q — Q. defined by
(0,0,0,0,q) — g.; this will allow us to write the generalized

B. Constructing Hybrid Systems coordinates in terms of the shape coordin&tes.

We will now show how to construct a hybrid system The impact model [23] under consideration assumes that
for a biped given a Lagrangian and a discrete event (ian impulsive force is applied at the non-stance foot upon
this case, foot strike). We begin with the assumption thampact. This motivates the use of the holonomic constraint
the stance foot is pinned to the ground and use this to
describe the continuous dynamics. In order to derive the J(q)q = [ : } )
discrete dynamics, we must introduce additional Cartesian i
coordinates), Wa, Wy, W atthe stan_ce fOOF witly a ITOtatlon 150(n) represents the special orthogonal groupidimensions.
about thez-axis. A more general discussion applicable to a 2For a biped in two dimensions (in thez-plane), it is only necessary to
wider range of bipeds can be found in [21]. consider the additional coordinatgs andp..



in Fig. 1(d). For this model, the configuration spa@ec
has coordinates

goc = (Osr.0:n)"

Combining these coordinates with the configuration of
the model as given in Fig. 1(a) results in Lagrangian
Lca(gea, Goe). Assuming full control authority, i.e.,
Uce = R?, one obtains the appropriate control system
(foa,gcc) as is given by (4).

Let hea(gee) be a unilateral constraint representing the
height of the non-stance foot above the ground. Using the
methods of Sec. Il leads to the domd,g and guardScg
given by (1) and (2), respectively.

The reset mapAqg is given by (6); the corresponding
relabeling mapR ¢ is given by

(d) CG mass/length (e) K2,K3 mass/length (f) Model Constraints

Fig. 1: Configuration, and the mass and length distribution, (Osr + Oshs =Osn) — (Osf, Osn)-

for compass gait (CG), 2D kneed (K2), and 3D kneed (K3) \we can now express the hybrid control system for the
models. Values for parameters are available online [26]. model CG as

with J(¢) a Jacobian matrixy = 1 the velocity ofR., and H€ca = (Deg, Uca, Sea, Aca, fea: goa)- - (7)

: o i3
We the angular veIoc:|ty_ Ot about_the body-fixed-axis. . 2D Kneed Biped (K2).The 2D kneed biped has knees and a
An impulsive wrench is used to impose these constrain{s

. o X ) orso for a total of five links with physical parameters given
through impact. Specifically, the configuratigndoes not in Fig. 1(e). The configuration spagx, has coordinates
change through impact and the post-impact velogityis 9 ' 9 P 2

given in terms of the pre-impact velocity™ by balancing K2 = (osf,esk,9sh,9nsh,9nsk)T.
angular momentum. Using the Schur complement (see [25

the post-impact velocity can be written as a map: ]&omblmng these coordinates with the configuration of

the model as given in Fig. 1(b) results in Lagrangian
it = P(ge,q.) = (5) Lko(gke,qdk2). We again assume full control authority, i.e.,
(I = D™Y(qe) I (¢)(J(qe) D~ 1 (qe) J(ge)) " T (qe))d Ux2 = R?, and obtain cqntrol syster(rnyQ.,gKg) as in (4).
Let hka(gk2) be a unilateral constraint representing the
with I the identity matrix. height of the non-stance foot above the ground; this con-
Motivated by the desire to simplify a bipedal model andstraint naturally leads to domaiRk, and guardSk, given
obtain biperiodic behavior, the left and right legs must béy (1) and (2), respectively.
“swapped” at impact; this trick is common throughout the The reset mapAk» is given by (6) with relabeling map
literature [20]. A coordinate transformatioR (i.e., astate Ryks given by
relabeling procedurgeswitches the roles of the left and right
legs and is included in the reset map: (=Oss = Os —Osh+Onsn + Onsk, Onsic, Onsh O, O )

— (esfa Hska Hsha 9nsh7 ensk)-

~ | R O 7o (q)
Ale.d) = { 0 R ] { 7 o P(u(q),v*(4)) |’ (6) We can now express the hybrid control system for the

. . . model K2 as
where * is the pushforward of and = is the canonical

projection associated withwith pushforwardr*. The reset HCk2 = (Dka, Uk, Sk2, Ak2, fk2, gk2)- (8)
map (6) takes a point on the guard and maps it to the domain.
3D Kneed Biped (K3).The 3D kneed biped has knees and a

C. BIPEDAL MODELS hip with two degrees of freedom at each hip joint. Like K2,

Three related point-foot bipedal models will be considerethis model has five links; however, this model operates in
in this paper; these models are shown in Fig. 1. In order dhree dimensions and thus requires additional coordinates
increasing complexity, these models are: 2D compass-gdibe physical parameters are shown in Fig. 1(e) and the
(CG) biped, 2D kneed biped (K2), 3D kneed biped (K3)configuration spac@xs; for K3 has coordinates
We will now describe the construction of these models. T
gK3 = (Sosfa esfa Hska Hsha Psh s Pnsh, 9nsh7 ensk) .

2.D Compa_ss Gait BIPEd (C_ZG).The_ 2D compass ga.ut Combining these coordinates with the configuration of the
biped consists of two links with physical parameters given . LT . :
model as given in Fig. 1(c) results in a Lagrangifns.

. L o8 :
3The body-fixed angular velocity, can be found using standard kine- Assuming flj'” control aUthor'ty' l.el/ks = R ’ c_me obtains
matics analysis methods [24]. the appropriate control systefiffiks, gk3) as is given by (4).



Let hxs(gks) be a unilateral constraint representing the
height of the non-stance foot above the ground; this con-
straint naturally leads to domaiRks and guardSks given
by (1) and (2), respectively.

Because K3 operates in three dimensions, the reset map is
more complicated. The impact mdjxs : Sxs3 — Dks given
by (5) is used with generalized coordinates as described
in Sec. Il. The additional complexity arises in the state
relabeling procedure. The coordinates other than thodeeat t
foot are exchanged viz.

(9n5k7 onsh; Pnshs Pshs osh; esk)

> (Osk, Osh, Pshs Prshs Onsh, Onsk)- Fig. 2. The experimental setup. Left—placement of the
sensors on test subject; the walking path is in blue. Right—
leg sensor locations.

The coordinates at the new stance faay, andd,;;, and their
associated velocites are found via a nonlinear transfoomat
as described in [27]. The reset mag s is given by applying
the state relabeling procedure just described to the impagata for a single test subject; specifically, we considejestib
map Pks(gks, §k3)- four for the rest of this paper.

We can now express the hybrid control system for the.,,,nical Human Function. Using the data for our chosen

model K3 as subject, we examine various output functions on the subject
H'Cxs = (Dks, Uks, Sks, Aks, fKs, gK3)- (9) kinematics, i.e., we consider angles, slopes, and endteffe
positions. The idea is to determine a set of behaviors which
[II. HUMAN-INSPIRED CONTROLLER DESIGN  can be used to represent human walkingle found that

In Sec. Il, we introduced hybrid systems and showed hoifi€ following functions (see Fig. 1(f)) describe fundanant
to construct hybrid models for the bipeds of interest in thi®ehaviors intrinsic to human walking: sagittal leg slopes,
paper. Our goal now is to develop control laws which resulfnee angles, torso angle and hip velocity. In the coronal
in stable humanlike walking when applied to the hybricPlane, we examined the angles of the hip and the angle
control systems# € e, 7% k2, and.#€ 3. Motivated by ~ between the stance leg and the ground.
our desire to mimic human walking in some capacity, we will One of the primary motivations behind this choice of func-
draw inspiration from experimental human kinematics datdions is the trajectory each function follows over time. Eac
Specifically, we will design functions which mimic some ofof behaviors mentioned qualitatively resembles a second-
the fundamental behaviors of human walking and track the§sder system response and can thus be characterized with
human functions using feedback linearization. Before gointhe following canonical human function:
into detail on the function design process, a description of a(t) = (10)

the experiment is appropriate. 4 . )
e~ %" (a1 cos(agt + az) + agsin(ast + az)) + agt + az.

A. Experimental Setup

The Phase Space System [28] comprises 12 high precisibHnction Fitting. We would like to apply the cannonical
cameras positioned to allow for spatial measurements Biman function (10) to our data to model the behaviors
a number of LED sensors to within an accuracy of Ondescribed. Forma”y, this means that we would like to find
millimeter. For a given test subject, we fixed 19 LED sensoré€ parametera, . ..., a7 for a given function which result in
at strategic points on the subject and instructed the subjdeinctions that fit the data closely as possible; in other word
to walk straightly on flat ground. We collected the positiongor each function, we would like to solve the optimization
of the sensors at 480 Hz. We repeated the process 11 tinfg@blem

for a given subject—three of the test runs represent normal K
walking while the other eight represent fast walking, slow min (ya(t[k], as, . .., a7) — z[k])?, (11)
walking, backward walking, etc. Overall, we measured the {as}a 37

gzaglt c:f nt'hn_e subjects; thelcotlledctt(ra]d daLg arte a;]vanat()jle?enh where 7[k] and z[k] represent the time and human data,
[29]. In this paper, we selected the subject whose data W.etrgspectively, withk € [1,..., K] C Z an index for theK

the least noisy—we use these data for the controller desigp.~ points, andyu(-) the fitting function with parameters
process specified presently. '

" . 4When deciding on a choice of functions, it is necessary tmsbmne

B. Extracting Human Functions from Data function for each degree of actuation. Moreover, a goodaghof functions
We now describe the process of designing human functioffsone in which therg is an approximate one-to-one corredguuce between
hich ch ize behavi fund lto h alki actuators and functions. For example, we would not wantacktboth the

which characterize behaviors fundamental to human w. Ingngle and slope of the stance leg as one actuator would doaftbet work

From this point on, it is assumed that we are considering thetracking these functions.



ai,...,ar. To be clearz[k] is the value of the kinematics with control gaine for control system(f, g). Applying this

function on the human at data poiht control law yields
Solving the optimization problem (11) parameters for the
chosen functions; these parameters are given in Table I. The fa(a.d) = f(g.4) + 9(q) u"P(q, 4, t).

correlations, as given in the same table, show that the fitted

functions very closely model the human data. Indeed, thg, o invariant Pa-
coefficients of correlation are all between 0.984 and 0.999, meterization. Mo-
The accuracy can best be seen in Fig. 4. It is important {Q :~q by our desire
note that we also track the angle of the torso in two of ouy, designautonomous
three models (K2 and K3); however, the magnitude of motiog, ime-invariantcon-
is relatively small and thus has comparatively little effen

the d _ ‘ th ‘ We theref decide to t kttroIIers, we introduce
e dynamics of the system. We therefore decide to track the —— 02
21 parameterization for = /
time as is common in

Position (m)
o
w

mean value of the torso angle for the sake of simplicity.

H C% 0.1 0.2 0.3 0.4 0.5
C. Function Tracking through Feedback Linearization ~ the literature [5], [7]. Time (s) ;

- o p;iip P
The human functions described by (10) with parameters rlijzzrt]i(c))tr? E)he P‘fga;ne . N .
given in Table | essentially encode the human gait. I, ye ! Fig. 3: Forward position of hip.
. ; . o Wwhere Ry rep-
order to reproduce this gait on the robotic models under o
. : resents forward time;
consideration, a control strategy must be leveraged td trac

these functions. The particular control method we will us%"v ? ;Z)O;fallkgrz(z ::(?gbe3a5v%r(;>§;n$;g "”fj;‘ﬂ; I.te;V\(/litt)hi‘;fé t
' ] ip 7 Yhip hip

is feedback linearization (see [13, ch. 9]). As a gener : o . /
. ) L . e averager velocity of the hip; this approximately linear

goal, we would like to achieve autonomous (time-invariant : ; . . N

elationship motivates the following parameterization:

feedback. Yet the canonical human function (10) is time-
dependent. To this end, we will first describe a control law

o(t) = Phip(@) — Phip(a”)

which achieves walking with time-dependent functionsnthe — (14)
we will introduce a state-based parameterization in order Uhip
to express (10) as a state-dependent function without timge ¢poose 1o tracky,,, driving it to a constant. The value

dependence. Then, we will describe a control law whicly¢ ihis constant should be the parametgy from (14).
achieves walking using this autonomous function. g

Autonomous (AT) Feedback Control.The parameterization
(14) is a map from state to time and is applied to the desired
human functions. Motivated by our desire to track the human
functions and using (14), we define the following virtual

Y(¢,t) = ya(q) — ya(t)- (12) output:

To satisfy the ouputs (15), we use the standard method y(a,4) = y*(q,4) — y%(s(q))
of feedback linearization (see [13, ch. 9]., Because we are
tracking functions of positio which have no dependencewith y* the actual function on the kinematics of the robot
on velocitiy ¢, we have a relative degree two system. Ouandy? the desired value from the human functions. Because
goal is to drive (12) to zero, i.ey(q, ¢,t) — 0. Using the of the use of hip velocity, we have a mixed relative degree
Lie derivative notationL s,)y(z) = %f(x) for & = f(x), system. Group the output functions as
the control law which accomplishes this is given by . oo
B dt) = — (LoLyya(g ) (13) y(a:4) = (v1 (4,9),92 ()", (15)
(Lfoy(q,t) +2eLyy(q,t) + 62y(q,t)) wherey; andy, represent the relative degree one and two
outputs respectively. Similar to the time-based case, the

Time-Based (TB) Feedback Control.As mentioned, we
will use feedback linearization to track (10). To begin, defi
the virtual output

TABLE [: Optimized parameter values for human functions.

yt = ercos(eaitas)taasin(astias) 4 g1 4 gy TABLE II: Function choices for models of interest.
[ a | @ [ as | a1 | a5 | as | ar [ Com Function [| CG (TB) | CG (AT) [ K2 (TB) | K2 (A1) [ K3 (TB)
ma | 0 [ 0 | 0 | 0 | 0 [-1267]0.249] 0.995 e . . .
Mns| O | 7.46 |2.452]-0404] 0 | O [-0.119] 0.999 il . . . . .
0. |0.082] 1331 0 [0.207|4154] 0 [0.257] 0.9 O . . .
G2 | 0.380[ 10979 0 | 0.197|-0.421] 0 | 0.658] 0.993 [ . . .
¢ |-0.028 14.480] 0.830| 0.008| 1.166] 0 | 206 | 0.990 o7 . . .
¢nsn| O [13.209-4.161[0.053] 0 | 0 |0.158] 0.992 o . .
¢sa | 0 | 0 | 0 | 0 | 0 [-0.259]-0.184] 0.984 o .
Pi,| 0 | 0 | 0 | 0 | 0 |1.177/0.705] 0.999 o .
90 | 0 | 0 [ 0 [ 0 | 0 | 0 [005] O o .
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(a) Slope constraints

(b) Sagittal Angular Constraints

o9 0.15 >
9 Q,
%o o
o 01 000409

0.4 05 0 0.1 0.2 0.3 0.4 05

(s) 4 Timed (s) 4
LI o ‘P?h ¢ Sp}mh * ‘pj;f
o5, (2 Prsh Pss

(c) Coronal Angular Constraints

Fig. 4: Human data over the course of one step with one leg fadcanonical” functions that are fitted to this data. The

specific variables that are plotted can be seen in Table I.
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Fig. 5: Walking with TB (top)/AT (bottom) on model CG.
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Fig. 6: Walking with TB (top)/AT (bottom) on model K2.
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Fig. 7: Walking with TB on model K3.

control law which drivegy(q, ¢) — 0 is given by
AT, - DR 0 ]
,4)=—A , 16
u™ (g, 4) (4:4) <[ LLyys(q) (16)
[ Lyi(a,4d) } N { ey1(q, ) D
2eLfy2(q,9) e%y2(q) ’
with control gaine and decoupling matriXi(q) given by

Lgyl (q7 Q) :|
LgLysya(q,4)

for a given control systerif, g). We apply this control law:

fo = f(a,@) + 9(a) u*"(q,9).

Alai) = |

K3-TB: =
K2-AT:
K2-TB:
CG-AT#
CG—TB% ‘ ‘ ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1 0.12

Fig. 8: Eigenvalue magnitudes for all models.

IV. SIMULATION RESULTS

In this section, we describe simulations modeling the
bipeds discussed. For models CG and K2, we simulate both
TB and AT control, and for model K3 we simulate only TB.
Through trial and error, we found that tracking the stance
leg slope with TB control is the best choice; however, we
achieve better results with AT control by replacing the stan
leg slope with the velocity of the hip.

Hybrid System Construction. In order conduct a given
simulation, we must construct a closed-loop hybrid system
by applying some form of feedback control to a hybrid
control system. We do this for each of the models: we apply
(13) to (7), (8), (9) to obtain the hybrid systerg( P,
JGER, LB, respectively; we apply (16) to (7) and (8) to
obtain 2 and J44T, respectively. The control gains for
the CG models are set to= 15 and the gains for the K2
and K3 models are set to= 50. The human functions used
in the control laws (13) and (16) are given in Table II.

Stability Analysis. Fixed points were found for each
model—the presence of a fixed point implies the existence
of a periodic orbit. The eigenvalues (see Fig. 8) are allwelo
unity implying that the respective periodic orbits are lbca
exponentially stable.

A. Compass Gait (CG) Simulation Results

The phase portraits for the TB and AT CG models are
shown in Fig. 9(a); the behaviors agree with the human data.
This trend is further confirmed in the plots of the virtual
outputs, Figs. 9(b) and 9(c). It is important to note that, in
order to achieve walking in the CG models, we had to shift
the y-intercept of then? , output function from-0.119 to 0;
this allowed the non-stance leg to clear the ground. Thisas t



only parameter we had to alter, and we used this parametg4]
change in the K2 and K3 models to maintain consistency.

B. 2D Kneed Biped (K2) Simulation Results

The phase portraits for the TB and AT K2 models are
shown in Figs. 9(d) and 9(e). Examination of these figure%]
reveals that AT control and TB control result in slightly -dif
ferent behaviors. This discrepancy is even more pronounced
in Figs. 9(f), 9(g), 9(h), 9(i). The difference in the belhag
of the two K2 models is a result of the parameterization of
time, ¢ (14), which we use to obtain state feedback control;[8]
¢ is linear in time with respect to the human data, however, it
becomes slightly nonlinear when used as a parameterizatiqgy
of time in the autonomous model. The nonlinearity ihas a
greater effect on the system as the complexity of the bipedﬁ\b]
robotic model increases; thus, the discrepancy in behavior
is more apparent in the K2 models than in the CG modelsf.11

(5]

C. 3D Kneed Biped (K3) Simulation Results

The phase portraits for the TB model are shown iifl2]
Figs. 9(j), 9(k), 9(). The phase portraits show the inheren
biperiodicity of 3D walking, as a set of two limit cycles [13]
for each angle, which is incurred by the “sway” of the hips
in the lateral plane. We assume this swaying motion to Hé!
relatively insignificant to the overall walking, see [19 a [15)
such, to obtain walking, we scale down the functions for
the lateral angle constraints of the human. This scaling [£6]
shown in Fig. 9(0) along with the sagittal output constraint
in Figs. 9(m) and 9(n). The slight discrepancy between thé7]

K3 and the human from tracking 2D angle projections. [18]

V. CONCLUDING REMARKS AND FUTURE WORK'  1q,

In this paper, we showed that kinematics outputs of human
walking can be represented by a single mathematical func-
tion. This result allows us to construct walking contradler
for bipedal robots without any knowledge of the human'$®!
complex internal dynamics or control methods. The human
functions are relatively “simple” yet, when implemented vi [21]
feedback linearization control, yield locally exponehia
stable, periodic orbit or in other words, stable walkingtgiai (2]
which are remarkably humanlike in nature.

The methods presented seem to be easily extensiblé?!
in [30], the canonical human walking function is used to
achieve stable walking in the simulation of a human with24]
a transfemoral prosthesis. In [31], a method is present 95]
for obtaining the parameters of the canonical functions i
a manner which guarantees stable walking. Our current gdas)
is to utilize these methods to achieve walking on our 10-DOE"]
bipedal robot, AMBER. Videos can be found online [32].

[28]
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