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Abstract— The objectives of this paper are to study the rank
properties of flows of hybrid systems and show that they are
fundamentally different from those of smooth dynamical sys-
tems, and consider applications that emphasize the importance
of these differences. It is well known that the flow of a smooth
dynamical system has rank equal to the space on which it
evolves. We prove that, in contrast, the rank of a solution to
a hybrid system, a hybrid execution, is always less than the
dimension of the space on which it evolves and falls within
easily-computed and possibly distinct upper and lower bounds.
Our main contribution is the derivation of conditions for when
an execution fails to have maximal rank, i.e., when it is rank
deficient. Given the importance of periodic behavior in many
hybrid systems applications, for example in bipedal robots,
these conditions are applied to the special case of periodic
hybrid executions. Our secondary contribution is the derivation
of superstability conditions for when a periodic execution is
rank deficient and has rank equal to 0, that is, we determine
when the execution is completely insensitive to perturbations
in initial conditions. The results of this paper are illustrated on
two applications, one of which is the classical single-domain,
planar compass biped.

I. INTRODUCTION

Hybrid systems consist of both continuous and discrete
components and, as such, are capable of modeling a wide
variety of physical systems, i.e., systems that evolve with
both continuous and discrete dynamics. Although hybrid
systems model a wide variety of applications, we may not
in general assume that they share the same fundamental
properties as smooth dynamical systems. Moreover, the in-
teraction of the smooth and discrete components of a hybrid
system can result in solution behavior that is impossible
for smooth dynamical systems to exhibit. For example, the
existence and uniqueness properties of solutions of hybrid
systems — called hybrid executions — are not the same as
for smooth systems [1], [2]; therefore, one may not regard
the stability of hybrid system equilibria in the same way as
the stability of smooth system equilibria [3]. An example of
the fundamental difference between the solutions of smooth
and hybrid systems is Zeno behavior, where under certain
conditions an execution of a hybrid system can take an
infinite number of discrete transitions in a finite amount of
time [4]. Recent work [5] has also shown that Poincaré maps
for hybrid systems are fundamentally different from Poincaré
maps for smooth systems.
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The first contribution of the present work is the extension
of the results in [5] to arbitrary, non-periodic hybrid execu-
tions. In particular, we show that the rank of an execution
will always fall between possibly distinct upper and lower
bounds, and that the upper bound is always less than the
dimension of the space on which the execution evolves.
This result is in marked contrast with smooth dynamical
systems, where the rank of a solution is strictly equal to
the dimension of the space. Our main contribution, however,
is the derivation of conditions describing when an execu-
tion fails to have maximal rank, that is, when it is rank
deficient. The secondary contribution of this work emerges
from application of the main result to periodic solutions of
hybrid systems. We show that when an execution is periodic
and rank deficient it may be possible for the system to
be superstable. Recall that a discrete dynamical system is
said to be superstable when it is completely insensitive to
perturbations in initial conditions [6]. This occurs when the
linearization of the discrete dynamical system is equal to 0 at
a superstable equilibrium point. By considering superstability
from within the context of rank deficiency of executions,
we obtain a condition describing when a periodic hybrid
execution is completely insensitive to perturbations in its
initial conditions.

We foresee that the superstability conditions presented
here could enable the design of controllers that reduce the
sensitivity of hybrid systems to perturbations. In [7], finite-
time controllers and the properties of feedback-linearized
systems are used to reduce the stability analysis of a planar
biped to an interval of the real line. We foresee that, in
analogy to this work, our rank deficiency conditions could
be used to enable the design of (feedback-linearizing) con-
trollers that reduce the stability analysis of complex hybrid
systems to lower-dimensional spaces.

Finally, it is worth noting that, to the authors’ knowl-
edge, there is no prior literature that directly addresses the
fundamental rank properties of hybrid executions, nor the
implications of rank deficiency to the periodic stability of
hybrid systems.

We begin our analysis with a review of the standard
theory of smooth dynamical systems in Section II. We
show that the continuous-time flow of a smooth vector
field can be converted into a discrete map [8], [9]. This
standard theory applies directly to the smooth components
of a hybrid system, leading to straightforward techniques
for linearizing executions of hybrid systems, in Section III.
Using the linearization of a hybrid system we determine the
rank of arbitrary hybrid executions and derive necessary and



sufficient conditions for the rank of an execution to fall below
its upper bound. These are the rank deficiency conditions. In
Section IV we specialize the rank deficiency conditions to
periodic hybrid systems and their executions, called hybrid
periodic orbits, and consider two separate applications. In
the first, we illustrate a necessary and sufficient condition
for a hybrid periodic orbit to be superstable. In the second,
we consider the 2-link planar compass biped and use its
linearization to accurately detect the occurrence of a period-
doubling bifurcation.

II. SMOOTH DYNAMICAL SYSTEMS

In this section we review standard results [8] on the trajec-
tories of smooth dynamical systems that will be necessary to
our analysis of hybrid systems in Section III. In particular we
review how to convert the flow, which depends continuously
on time, into a discrete map. When the flow is a closed orbit
this conversion results in the well-known results on periodic
stability of smooth dynamical systems [9].

A smooth dynamical system is a tuple (M,f), where M is
a smooth manifold with tangent bundle TM and f : M →
TM is a smooth vector field such that for the canonical
projection map π : TM → M , π ◦ f = Id, where Id is
identity on M . We will assume that M ⊂ Rn, in which case
we can write the vector field in coordinates as ẋ = f(x)
with x ∈ M ⊂ Rn where necessarily ẋ ∈ TxM . A smooth
function g : M → N between manifolds induces a map
between the tangent space Dg(x) : TxM → Tg(x)N ; this is
just the Jacobian or derivative.

A. Flows and variational equations

The unique solution to the differential equation ẋ = f(x)
with initial condition x0 ∈ M is a trajectory c : I ⊂
[0,∞) → M such that c(t0) = x0 if I = [t0, t1], for some
t1 > t0. We refer to this curve as an integral curve or orbit
of f(x). The flow of the smooth vector field ẋ = f(x)
is a smooth map φ : I × U → U ′ ⊂ M , where U is
some neighborhood of x0 = c(t0), satisfying the following
properties for all r, s, t ∈ I ,

c(t0) = φ0(c(t0))

c(t0 + t+ s) = φt+s(c(t0)) = φt ◦ φs(c(t0))

φ−r ◦ φr(x0) = x0 ⇒ φ−r = (φr)
−1

The flow, with t considered a parameter, is a diffeomorphism
φt : U → U ′, for all t ∈ I .

The space derivative or fundamental matrix of φt(x0) is
simply the partial derivative of the flow with respect to initial
conditions, Dxφt(x0) := ∂φt(x0)/∂x0, (cf. [8]–[10]) and
satisfies the time-varying, matrix-valued differential equation

Φ̇(t) = A(t) Φ(t), (1)

where Φ(t) = Dxφt(x0) and A(t) := Df
(
φt(x0)

)
. As

an integral curve, Φ(t) is nonsingular for all t and has the
property that φ̇t(x0) = Φ(t)Φ−1(0) φ̇0(x0) = Φ(t) φ̇0(x0).
That is, with x1 = φt(x0), f(x1) = Φ(t) f(x0). Note in
particular that Φ(0) = Idn, the n × n identity matrix. In

general, φt(x0) and Φ(t) must be obtained by simultaneous
numerical integration, as described in [10], [11].

B. Flows to sections
We are interested in the case when the flow is allowed to

evolve until it reaches a certain smooth hypersurface called
a local section, which we may construct through any point
of the flow that is not an equilibrium point [12].

Definition 1: A local section of a vector field ẋ = f(x)
on M is a smooth codimension-1 submanifold S of M that
is also transverse to the flow.

S = {x ∈M | h(x) = 0 and Lfh(x) 6= 0},
where h : M → R is a C1 function and Lfh is the Lie
derivative. More generally, any submanifold N ⊂M is said
to be transverse to the flow (or vector field f ) if f(x) is not
in TxN .

The time it takes a flow to reach a local section from initial
conditions is given by a well-defined map. We reproduce the
following Lemma from [8], the proof of which follows from
direct application of the implicit function theorem.

Lemma 1 (Hirsch & Smale, 1974): Let S be a local sec-
tion, x0 ∈ M and x1 = φt(x0) ∈ S. There exists a unique,
C1 function τ : U0 → [0,∞) called the time-to-impact map
such that for U0 a sufficiently small neighborhood of x0,
φτ(x)(x) ∈ S for all x ∈ U0.

The Lemma allows us to convert the flow to a section into
a discrete map φτ : U0 → V defined by φτ (x) := φτ(x)(x)
for all x ∈ U0, where U0 is defined as above and V :=
φτ (U0)∩S is the image of φτ in S. However, in general φτ
does not have the same rank as the flow φt.

C. Rank of flows to sections
The flow φt : U → U ′, with t considered a fixed param-

eter, is a diffeomorphism, so its total derivative, Dφt, will
always have full rank. This is easily confirmed by computing
Dφt(x) = Dxφt(x) = Φ(t), which is nonsingular. The total
derivative of the flow to a section φτ : U0 → V ⊂ S, on the
other hand, is given [5], [8], [10] by

Dφτ (x0) = Φ(τ(x0)) + φ̇τ (x0)Dτ(x0)

=

(
Idn−

f(x1)Dh(x1)

Lfh(x1)

)
Φ(τ(x0)), (2)

where x0 ∈ U0, x1 = φτ (x0), Idn is the n × n identity
matrix and h defines the section S, as in Definition 1. It was
also established in Theorem 1 and Corollary 1 of [5] that
the flow to a section has rank equal to the dimension of the
section and φτ is therefore only a diffeomorpism between
local sections. We summarize the generic properties of flows
to sections:

(S1) For any local section S of c(t0) there exists a suf-
ficiently small neighborhood U0 of c(t0) such that
φτ (U0) ⊂ S.

(S2) From Theorem 1 and Corollary 1 of [5] we know there
exists a local section S0 through c(t0) such that for
V0 := U0∩S0 and V := φτ (U0)∩S, the restricted map
φτ : V0 → V is a diffeomorphism with rank n− 1.

These properties will be revisited for hybrid systems.



III. HYBRID DYNAMICAL SYSTEMS

Our objective is to understand the rank properties of
arbitrary hybrid executions in order to enable the design
of controllers that improve the stability properties of hybrid
systems. We begin by revisiting the results of the previous
section from the perspective of hybrid systems and their
executions.

A. Hybrid systems and executions

Definition 2: A hybrid system is a tuple H =
(Γ, D,G,R, F ), where
• Γ = (Q,E) is a graph such that Q = {q1, . . . , qk}

is a set of k vertices and E = {e1 = (q1, q2), e2 =
(q2, q3), . . .} ⊂ Q×Q. With the set E we define maps
sor : E → Q which returns the source of an edge, the
first element in the edge tuple, and tar : E → Q, which
returns the target of an edge or the second element in
the edge tuple.

• D = {Dq}q∈Q is a collection of smooth manifolds
called domains, where Dq is assumed to be embedded
submanifolds of Rnq with dim(Dq) = nq ≥ 1.

• G = {Ge}e∈E is a collection of guards, where Ge is
assumed to be an embedded submanifold of Dsor(e).

• R = {Re} is a collection of reset maps which are
smooth maps Re : Ge → Dtar(e).

• F = {fq}q∈Q is a collection of Lipschitz vector fields
on Dq , such that ẋ = fq(x).

The continuous and discrete dynamics of a hybrid system
are described using a notion of solution called a hybrid
execution.

Definition 3: A hybrid execution is a tuple χ =
(Λ, I, ρ, C), where
• Λ = {0, 1, 2, 3, . . . } ⊆ N is an indexing set.
• I = {Ii}i∈Λ such that with |Λ| = N , Ii = [ti, ti+1] ⊂

R and ti ≤ ti+1 for 0 ≤ i < N − 1. If N is finite then
IN−1 = [tN−1, tN ] or [tN−1, tN ) or [tN−1,∞), with
tN−1 ≤ tN .

• ρ : Λ→ Q is a map such that eρ(i) := (ρ(i), ρ(i+1)) ∈
E.

• C = {ci}i∈Λ is a set of continuous trajectories where
each ci is the integral curve of the vector field fρ(i) on
Dρ(i). Specifically, ci(t) = φ

ρ(i)
t−ti(ci(ti)), where φρ(i)t is

the flow associated with fρ(i).
We require the consistency conditions:
• For i < |Λ| and for all t ∈ Ii, ci(ti) = φi0(ci(ti)),
ci(t) ∈ Dρ(i) and ci(ti+1) ∈ Geρ(i) .

• For i < |Λ| − 1, Reρ(i)(ci(ti+1)) = ci+1(ti+1).
1) Assumptions: We will only consider hybrid executions

that are deterministic and non-blocking [1]. We further
impose the following conditions on χ in order to ensure that
the guards and reset maps are sufficiently “well-behaved.”
Let i < |Λ| − 1 and e = (ρ(i), ρ(i+ 1)).

(A1) The execution does not have any equilibria, i.e.,
fρ(i)(ci(t)) 6= 0, for all t ∈ Ii.

(A2) Re has constant rank re and Re(Ge) is a subman-
ifold of Dtar(e).

(A3) Ge is a section, i.e., dim(Ge) = dim(Dsor(e))− 1
and fsor(e)(x) 6∈ TxGe for all x ∈ Ge. Furthermore,
Si ⊂ Ge.

(A4) Re(Ge) is transverse to ftar(e) whenever
dim(Dsor(e)) ≤ dim(Dtar(e)), that is, ftar(e)(y) 6∈
TyRe(Ge) for all y ∈ Re(Ge).

As we will see, assumption (A4) will allow us to tighten the
lower bound on the rank of our executions.

2) Properties: We may extend properties (S1-2) of flows
to sections from Section II to every integral curve ci ∈ C,
i < |Λ|, satisfying (A1-4).

(H1) For any local section Si ⊂ Ge of ci(ti+1) there
exists a sufficiently small neighborhood U i0 of ci(ti)
such that φρ(i)τ (U i0) ⊂ Si.

(H2) From Theorem 1 and Corollary 1 of [5] we know
there exists a local section Si0 through ci(ti) such
that for V i0 := U i0 ∩ Si0 and V i := φ

ρ(i)
τ (U i0) ∩ Si,

the restricted map φρ(i)τ : V i0 → V i is a diffeomor-
phism with rank equal to dim(Dρ(i))− 1.

These properties are generically satisfied by any flow that
reaches a guard, and will be necessary to our results on rank
deficiency in the following subsections.

3) Fundamental hybrid executions: The rank of a hybrid
execution is determined by the rank of its linearization, or
total derivative, at every point. This motivates the following
definition.

Definition 4: The fundamental hybrid execution asso-
ciated with a given execution χ is a tuple Fχ =
(Λ, I, ρ, C,W ) where Λ, I , ρ, and C are given in Defini-
tion 3 and W = {Φi}i∈Λ is a set of continuous matrix-
valued trajectories. Every Φi is an integral curve of Φ̇i(t −
ti) = Dfρ(i)(ci(t)) Φi(t − ti). Specifically, Φi(t − ti) =

Dxφ
ρ(i)
t−ti(ci(ti)) is the fundamental matrix or space deriva-

tive of the flow evaluated along ci ∈ C and every Φi ∈ W
has the property φ̇it(ci(ti)) = Φi(t− ti) φ̇i0(ci(ti)).

As mentioned in Section II, in general, fρ(i) and Φ̇i must
be integrated simultaneously.

B. Rank of hybrid executions

Let H be a hybrid system and χ its hybrid execution
with initial condition in the guard, c0(t0) ∈ Geρ(0) . We are
interested in finding a function relating the initial condition to
a point ci(ti+1) in the guard Geρ(i) , for some i < |Λ|. In fact
this relation is given by the partial function ψρ(i) : V 0 → V i

defined by ci(ti+1) = ψρ(i)(c0(t0)), with

ψρ(i) = φρ(i)τ ◦Reρ(i−1)
◦ · · · ◦ φρ(1)

τ ◦Reρ(0) , (3)

and the neighborhoods V 0 and V i of c0(t0) and ci(ti+1)
defined as in (H2). We may think of the partial function as
describing the progress of the execution through the hybrid
system H.

Remark 1: This sequence of discrete maps ψρ(i) is a
partial function since there is no guarantee that all of the
points in the image of each reset map reach the guard.
More precisely, we could call ψρ(i) a function if we could
guarantee that Reρ(j)(φ

ρ(j)
τ (U j0 )) ⊂ U j+1

0 for every j ≤



i−1 < |Λ|. This condition can be met if each neighborhood
U j0 is made sufficiently small.

Let Fχ be the fundamental execution associated with χ.
We compute the total derivative of φρ(j)τ using (2), as follows.
For ease of notation let x0 = cj(tj), x1 = cj(tj+1) and
hj : Dρ(j) → R define the local section Sj ⊂ Geρ(j) as in
Definition 1. Then,

Dφρ(j)τ (x0) = Φj(τ(x0)) + fρ(j)(x0)Dτ(x0) (4)

=

(
Idnj −

fρ(j)(x1)Dhj(x1)

Dhj(x1) fρ(j)(x1)

)
Φj(τ(x0)),

where τ(x0) = tj+1 − tj is the time it takes the flow to
reach the guard and nj = dim(Dρ(j)) is the dimension
of the manifold. For the sake of brevity, in the following
discussion we will merely assume that Fχ is available when
it is necessary to compute Dφρ(j)τ .

Remark 2: At this point it is worth considering the case
of a trivial hybrid system H that is equivalent to a smooth
dynamical system. Necessarily, the reset maps of a trivial
hybrid system are equal to identity, the vector fields are
equal so that fq = f for all q ∈ Q, and the execution
χ is equivalent to the continuous flow of a single vector
field. For such hybrid systems the choice of local section is
irrelevant because there is no mechanism forcibly restricting
the flow to a transverse local section. This is, however,
exactly what occurs for non-trivial hybrid systems, where
a continuous flow is permitted to evolve on a domain only
until it reaches a guard. Thus, although the results that follow
certainly apply, they are not pertinent to the analysis of trivial
hybrid systems. We therefore consider only non-trivial hybrid
systems, which, as we will see, always have rank less than
the dimension of the space on which they evolve.

Our analysis of the rank properties of χ is aided by
identifying the terms in (3) that can be associated with each
edge in the graph Γ of H.

Definition 5: Let i < |Λ| − 1. For every edge e =
(ρ(i), ρ(i + 1)) ∈ E, the edge map ψe : V i → V i+1

takes the guard of one domain to the next and is defined
ψe = φ

tar(e)
τ ◦Re. Using the edge map, (3) becomes

ψρ(i) = ψeρ(i−1)
◦ · · · ◦ ψeρ(0) , (5)

Dψρ(i) = Dψeρ(i−1)
◦ · · · ◦Dψeρ(0) . (6)

Note in (6) that Dψρ(i) is the composition of i linear maps.
Let {Ai}ki=1 be a collection of ni+1×ni real-valued matrices.
Repeated application of Sylvester’s inequality shows that the
composition

∏k
i=1Ai = A1 ◦A2 ◦ · · · ◦Ak is bounded above

and below:

rank

(
k∏
i=1

Ai

)
≤ min
i∈{1,...,k}

{rank(Ai)}, (7)

rank

(
k∏
i=1

Ai

)
≥

k∑
i=1

rank(Ai)−
k−1∑
i=1

ni. (8)

Recall the rank-nullity theorem [13]: for every linear map
A : Rn → Rm, rank(A)+nty(A) = n, where nty(A) is the
dimension of the nullspace of A. The following Lemma is

a consequence of rank-nullity. We omit the straightforward
proof for the sake of brevity.

Lemma 2: Let A and B be linear maps. Then

nty(B ◦A)− nty(A) = dim(ns(B) ∩ im(A)).
The Lemma and the rank-nullity theorem allow us to

compute the rank of the execution by determining the rank
of every edge map in ψρ(i). For the sake of brevity we omit
the proof of the following result.

Lemma 3: Let i < |Λ|−1. For every edge e = (ρ(i), ρ(i+
1)), the rank of the edge map ψe : V i → V i+1 is bounded
from below by rank(ψe) ≥ rank(Re)− 1.

However, if Re(Ge) is transverse to ftar(e) then
rank(ψe) = rank(Re).

Remark 3: Lemma 3 implies that the rank of an edge map
is only known exactly when the transversality of Re(Ge)
is guaranteed. Since we cannot determine the rank of all
edge maps where transversality is not guaranteed, we cannot
determine the exact rank of the execution. In order to
obtain a tighter lower bound on the rank of the execution,
we track the number of edges where Re(Ge) may not be
transverse to ftar(e). Because we only assume transversality
when dim(Dsor(e)) > dim(Dtar(e)), we need only track the
number of source domains that are greater in dimension than
their target domains.

The following definitions allow us to track the progress of
the execution through the graph Γ of H.

Definition 6: Given i < |Λ|−1, the set of traversed edges
is Ei = {eρ(0), . . . , eρ(i−1)}, and the set of visited vertices
is the set of all source and target vertices of Ei,

Qi = sor(Ei) ∪ tar(Ei) = {ρ(0), . . . , ρ(i)}.
Definition 7: Let m be the number of non-transverse

edges for which we do not assume Re(Ge) is transverse
to ftar(e). Then m is given by

m =
∣∣{e ∈ Ei : dim(Dsor(e)) > dim(Dtar(e))}

∣∣ .
We now show that the rank of an execution falls between

possibly distinct upper and lower bounds. The following
result is the extension of Theorem 4 in [5] to arbitrary, non-
periodic hybrid systems and executions. We omit the proof
for reasons of space1.

Theorem 4: Let H be a hybrid system with execution χ
satisfying assumptions (A1-4). For any i < |Λ| − 1,

rank(ψρ(i)) ≤ min
e∈Ei
{rank(Re)} ≤ min

q∈Qi
{dim(Dq)− 1},

rank(ψρ(i)) ≥
∑
e∈Ei

rank(Re)−m−
∑

q∈sor(Ei)−{ρ(0)}
(dim(Dq)− 1) ,

and where m, Ei and Qi are given in Definitions 6 and 7.
If the upper and lower bounds on rank in Theorem 4

are distinct then there must be a mechanism that causes an
execution to fail to have maximal rank. We determine this
mechanism in the next section.

1Full proofs of Lemmas 2, 3 and Theorem 4 may be found in
the preprint [14], available online for the purposes of review at
http://people.tamu.edu/˜ericdbw/NAHS2011.pdf.



C. Rank deficiency of hybrid executions

Our objective is to understand the causes of rank de-
ficiency. As we will see, rank deficiency can result in
superstable hybrid systems that are completely insensitive
to perturbations in initial conditions. We begin by formally
defining the rank deficiency of a hybrid execution.

Definition 8: Let H be a hybrid system with execution
χ satisfying assumptions (A1-4). We say the execution
is rank deficient at a point ci(ti+1), i < |Λ| − 1, if
ψρ(i)(ci(ti+1)) does not have maximal rank, that is, if
rank

(
ψρ(i)(c0(t0))

)
< r, where r is the upper bound on

rank(ψρ(i)) from Theorem 4.
The following Theorem is the main result of this paper.
Theorem 5: Let H be a hybrid system with execution χ

satisfying (A1-4), initial condition x0 = c0(t0) and i < |Λ|−
1. Then ψρ(i) is rank deficient if and only if∑
e∈Ei−{eρ(0)}

dim(ns(Dψe)∩ im(Dψsor(e))) > rank(ψeρ(0))− r,

where r is the upper bound on ψρ(i) from Theorem 4.
Proof: The proof will follow from recursively applying

the rank-nullity theorem and Lemma 2 to the sequence of
linear maps (6).

First, realize that any two linear maps defined on the same
domain are related by the rank-nullity theorem. In particular,
it is an immediate consequence of rank-nullity that for all j
such that i ≥ j ≥ 2,

dim(Tc0(t0)V
0) = rank(Dψeρ(0)) + nty(Dψeρ(0))

= rank(Dψρ(j)) + nty(Dψρ(j)),

where the statement is obvious for j = 1 since ψρ(1) =

φ
ρ(1)
τ ◦ Reρ(0) = ψeρ(0) . Thus, the rank-nullity of ψρ(i) is

certainly equal to the rank-nullity of ψρ(i−1):

rank(ψρ(i)) + nty(ψρ(i)) = rank(ψρ(i−1)) + nty(ψρ(i−1)).

Applying Lemma 2 to the above equation while noting that
ψρ(i) = ψeρ(i−1)

◦ ψρ(i−1) yields

rank(ψρ(i)) = rank(ψρ(i−1))

− dim(ns(Dψeρ(i−1)
) ∩ im(Dψρ(i−1))).

If we continue in this vein by relating the rank-nullity of
ψρ(j) with ψρ(j−1) for j = i− 1, . . . , 2, we obtain

rank(ψρ(i)) = rank(ψeρ(0))

−
∑

e∈Ei−{eρ(0)}
dim(ns(Dψe) ∩ im(Dψsor(e))).

The result follows by observing that the execution is rank
deficient if and only if r − rank(ψρ(i)) > 0, where r is the
upper bound on rank from Theorem 4.

Remark 4: The left-hand side of the inequality in the
statement of Theorem 5 shows that rank deficiency is pri-
marily affected by the intersection of the nullspace of every
reset map with the tangent space over the execution. To see

this, realize that for any given e ∈ E, the nullspace of the
edge map ψe is the union of the tangent spaces

ns(Dψe) =
(

ns(Dφtar(e)
τ ) ∩ im(DRe)

)
∪ ns(DRe).

Therefore, because the nullspace of the flow to the
guard on the target is small, i.e., nty(Dφ

tar(e)
τ ) =

dim(span{ftar(e)}) = 1, the nullspace of every edge map
is primarily determined by ns(DRe).

Remark 5: The right-hand side of Theorem 5 shows that
the rank of the first edge map in the execution significantly
affects rank deficiency. Since r = mine∈Ei{rank(Re)},
rank(ψeρ(0)) ≥ r and the inequality will not be satisfied
unless enough intersections occur in the left-hand side, or
the intersections are large enough. This is a consequence
of the fact that perturbations to initial conditions propagate
differently through the execution depending on the starting
domain Dρ(0).

In the next Section we discuss how to apply the above
results to improve the stability properties of periodic hybrid
systems, through an artifact of rank deficiency called super-
stability.

IV. APPLICATION TO PERIODIC HYBRID SYSTEMS

We are interested in applying the general results obtained
thus far to periodic solutions of hybrid systems. To this end,
we restrict our attention to hybrid systems with cyclic graphs
and consider the rank properties of hybrid periodic orbits. We
ultimately show that the rank of a periodic orbit is intimately
related to the stability of that orbit.

Definition 9: A hybrid system on a cycle is a hybrid
system H = (Γ, D,G,R, F ) where Γ = (Q,E) is a directed
cycle such that Q = {q1, . . . , qk} is a set of k vertices and
E = {e1 = (q1, q2), e2 = (q2, q3), . . . , ek = (qk, q1)} ⊂
Q×Q.

Definition 10: A hybrid periodic orbit O = (Λ, I, ρ, C)
with period T is an execution of the hybrid system on a cycle
H such that for all n ∈ Λ,
• ρ(n) = ρ(n+ k),
• In + T = In+k,
• cn(t) = cn+k(t+ T ).
Remark 6: Since O is periodic we may index the elements

Sn0 , Sn, Un0 , V n0 and V n defined in (H1-2) using the vertex
set Q of the graph Γ of H rather than the indexing set Λ
(e.g., one can take Sn = Sn+k).

Remark 7: As in Remark 2, we do not consider trivial
hybrid systems on a cycle, so that O is never equivalent to
the closed periodic orbit of a smooth dynamical system.

Definition 11: The fundamental hybrid periodic orbit as-
sociated with O is the fundamental execution
FO = (Λ, I, ρ, C,W ), with the fundamental matrix solu-
tions Φn ∈W such that Φn(t− tn) = Φn+k(t+T − tn+k).

Extending equations (3) and (5) to periodic orbits yields
the following definition for a Poincaré map of a hybrid
system.

Definition 12: Let O be a given hybrid periodic orbit of
H with initial condition x∗ = c0(t0) ∈ Dρ(0), where ρ(0) =



q = ρ(k) and so c0(t0) = φqτ (ck(tk)). The hybrid Poincaré
map Pq : V q → Sq is given by

Pq(x
∗) = ψρ(k) = ψeρ(k−1)

◦ · · · ◦ ψeq (9)
It is well-known that the stability of hybrid periodic orbits

is related to the stability of the hybrid Poincaré map. In
particular, the following result is a corollary to Theorem 1
of [15] and the results of [5].

Corollary 6: Let H be a hybrid system with hybrid pe-
riodic orbit O satisfying (A1-4). Then x∗ = Pq(x

∗) is an
exponentially stable fixed point of the hybrid Poincaré map
Pq : V q → Sq if and only if O is exponentially stable.

As a discrete dynamical system, the stability of the
Poincaré map is determined by the eigenvalues of its deriva-
tive evaluated at a fixed point. The following is a corollary
to Theorem 4.

Corollary 7: The hybrid Poincaré map Pq : V q → Sq is
exponentially stable if and only if all eigenvalues of DPq(x∗)
fall within the unit circle. In particular, Pq(x∗) has only rq =
rank(DPq(x

∗)) many nontrivial eigenvalues, where

rq ≤ min
e∈E
{rank(Re)} ≤ min

q∈Q
{dim(Dq)− 1},

rq ≥
∑
e∈E

rank(Re)−m−
∑

q∈sor(E)−{q}
(dim(Dq)− 1) ,

m is the number of non-transverse edges in the cycle, and
E and Q are the edge and vertex sets of Γ.

It follows that the stability of a rank deficient Poincaré
map is determined by fewer eigenvalues than a Poincaré map
with maximal rank. Of course, this does not imply that rank
deficient orbits are more stable than orbits with maximal
rank. There is, however, a specific case where rank deficiency
always improves the stability properties of the Poincaré map.
Recall that a discrete dynamical system that is superstable
[6] is characterized by the derivative of the system equal to 0.
When this occurs, the discrete dynamical system is said to be
completely insensitive to perturbations in initial conditions.
This notion adapts to periodic hybrid systems as follows.

Definition 13: The hybrid periodic orbit O with initial
condition x∗ and its associated Poincaré map Pq are said
to be superstable at x∗ if rank(DPq(x

∗)) = 0.
All eigenvalues of a superstable Poincaré map are equal

to 0, implying that not only is it exponentially stable, it is
completely insensitive to perturbations in initial conditions.
We obtain the following Corollary to Theorem 5.

Corollary 8: The Poincaré map Pq is superstable if and
only if the lower bound on rank in Corollary 7 is equal to 0
and ∑

e∈E−{eq}
dim(ns(Dψe) ∩ im(Dψsor(e))) = rank(ψeq ).

Using the Corollary and Theorem 5 it is easy to see that
single-domain hybrid systems are rank deficient if and only
if the reset map has rank equal to 0, in which case it is
superstable. The planar compass biped, which we study in
Section IV-B, is a single-domain hybrid system with a reset
map that is never 0-rank, and so is never superstable. We first
illustrate our results and the remarks following Theorem 5
on a simple two-domain hybrid system.

A. Superstability
The following application is a two-domain hybrid system

on a cycle H = (Γ, D,G,R, F ), with graph structure Γ ={
Q = {1, 2}, E = {e1 = (1, 2), e2 = (2, 1)}

}
, and domains

D = {D1, D2}. We will show that this system is insensitive
to perturbations to initial conditions in only one domain.

We define the first domain, D1, of this system to be
the upper-right quadrant of R2. The vector field on D1 is
f1(x, y) =

(
−y + x(1− x2 − y2), x+ y(1− x2 − y2)

)T
.

The flow in this domain is mapped to the next domain, D2,
when it reaches the positive y-axis, which is the guard on
D1: Ge1 = {y = 0}. The reset map Re1 is defined by the
immersion of the xy-plane into R3, Re1(x, y) = (x, y, 0)T ,
which has rank 1 on Ge1 . As an immersion, nty(DRe1) = 0.

The second domain is the subset of R3 defined by
D2 = {x ≥ 0, y ≥ 0, z ≥ 0}, with linear vector field
f2(x, y, z)T = (−x,−z, y)T , and guard Ge2 = {y = 0}.
The flow of f2 is allowed to evolve in D2 until it reaches
the xz-plane, when it is mapped back to the positive x-axis
in D1 by Re2(x, y, z) = (x+ 1, y)T , which has rank 1 and
nullspace ns(DRe2) = span{(0, 0, 1)T }.

This system has a hybrid periodic orbit O with an initial
condition c0(t0) = (1, 0) in D1. Define the Poincaré map
for initial conditions on the x-axis of D1, P1 : V 1 → S1

0

by P1 = Re2 ◦ φ2
τ ◦ Re1 ◦ φ1

τ and the Poincaré map for the
second domain, P2 : V 2 → S2

0 by P2 = Re1 ◦φ1
τ ◦Re2 ◦φ2

τ ,
where V 2 is the positive y axis of D2. It is easy to see that
Re1 is transverse to f2 and Re2 is transverse to f1; thus
the image of both reset maps is transverse to the flow on
the target domain. With no non-transverse edges, Corollary
7 implies that 0 ≤ rank(P1) ≤ 1, 0 ≤ rank(P2) ≤ 1.
Since the maximum rank of both maps is 1, in this case
rank deficiency would also imply superstability.

Applying Theorem 5 directly, we see that in order for P2

to be rank deficient the following inequality must be true,

ns(DRe1)∩ im
(
Dφ1

τ ◦DRe2 ◦Dφ2
τ

)
> rank(Re2 ◦φ2

τ )−1,

where the right-hand side evaluates to 0. However, as noted
above, DRe1 is an immersion and has no nullspace, so the
left-hand side also evaluates to 0 and P2 cannot possibly be
rank deficient. In order for P1 to be rank deficient,

ns(DRe2) ∩ im
(
Dφ2

τ ◦DRe1 ◦Dφ1
τ

)
> 0

must be true. Since we can find exact expressions for the
flows of both φ1

τ and φ2
τ , we obtain Dφ1

τ and Dφ2
τ by taking

partial derivatives, yielding

im(Dφ2
τ ◦DRe1 ◦Dφ1

τ ) = span{(0, 0, 1)T },

which, as noted above, is ns(DRe2). Thus, the nullspace of
the reset map aligns with the tangent space over the execution
and P2 is rank deficient. Applying Corollary 8, we confirm
that the superstability condition is satisfied for P1:

dim(span{(0, 0, 1)T }) = 1 = rank(Re1 ◦ φ1
τ ).

The superstable behavior is confirmed in Figure 1, which
shows initial conditions in D1 converging to the limit cycle
after one iteration.
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Fig. 1. Limit cycle of the superstable two-domain system. All trajectories
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cycle (black) after 1 complete traversal of the cycle.
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Fig. 2. Compass biped dimensions, point-mass locations and measuring
conventions.

The rank deficiency and superstability analysis of this
application was aided by the simplicity of the vector fields
in each domain. In general it is necessary to integrate the
fundamental matrix solutions on each domain in order to
determine the rank deficiency and superstability properties
of more complicated systems.

B. Planar compass biped

In this subsection we consider the compass biped, a
single-domain periodic hybrid system that has been studied
extensively in multiple contexts, with some recent work
including [7] and [16]. The objective of this application is
to show that the eigenvalues of the fundamental execution
accurately predict period-doubling bifurcations.

Period-doubling bifurcations of hybrid systems have been
studied extensively. In [17], [18] the authors study bifurca-
tions using formula that are not well-defined for arbitrary,
multi-domain hybrid systems [5]. In [19] the bifurcation
analysis is aided by the fact that the Poincaré maps are known
exactly. The dynamics of bipedal systems, however, are non-
linear and sufficiently complicated as to require numerical
integration for complete analysis of either their bifurcation
or rank deficiency properties. The equations and analysis
described in previous Sections allow for this analysis.

The compass biped is a 2-link planar robotic mechanism
capable of walking down a shallow slope without control.
The links form the biped’s legs, with the rotary joint con-
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Fig. 3. Time to impact the ground versus the slope angle. After the slope
increases beyond 4.39◦, two impacts are necessary for the biped to complete
a single hybrid periodic orbit: the biped “limps” down the slope.

necting them forming its hip. The stance link is assumed
fixed to the slope and the nonstance link is free to swing
above the slope. The hybrid system model for this simple
mechanism is H = (Γ, D,G,R, F ) with graph structure
Γ = {Q = {q}, E = {eq = (q, q)}}. As this is a 2-link
mechanism, the dynamics evolve on the tangent bundle to
the configuration space Θ := T2. We give the dynamics on
Dq coordinates θ = (θs, θns, θ̇s, θ̇ns)

T , where the angles of
the stance and nonstance legs from the vertical are denoted θs
and θns, respectively. We denote the vector field describing
the biped dynamics as θ̇ = fq(θ; p), where p is the angle of
the slope from the horizontal. The notation fq(θ; p) indicates
that θ is an argument of the function fq and p is a parameter.
The guard, Ge, is defined by the holonomic constraint
function h : Dq → R corresponding to the shallow slope,
h(θ) = (sin(θs) − sin(θns)) tan(p) + (cos(θs) − cos(θns))
such that Ge = {h(θ) = 0}. When the nonstance leg
impacts the slope we model the jump in link velocities as an
instantaneous plastic impact using the reset map Re : Ge →
Re(Ge). We refer the reader interested in further modeling
details to [20] and [21] for a comprehensive overview.

Let O be a hybrid periodic orbit for H with fixed point θ∗

at the first period-doubling bifurcation, denoted p∗. Define
the Poincaré map, Pq : V q → Sq , as in (9). Because H
has only one domain, and Re has full rank on the guard
Corollary 7 implies that rank(Pq) = rank(Re) = 3.

The derivative of the reset map is obtained by simply
taking partial derivatives with respect to θ. The total deriva-
tive of the flow, Dφqτ (Re(θ

∗)), is obtained from (4) with
x1 = Pq(θ

∗), hj = h the function defining the guard, and
fρ(j)(x1) = fq(Pq(θ

∗); p∗).
It is well-known [6] that the linearization of a discrete

dynamical system has an eigenvalue equal to −1 at a period-
doubling bifurcation. By varying the ground slope we find
that the eigenvalues of DPq(θ∗) cross −1 at p∗ = 4.39◦ (see
Figure 4):

σ(DPq(θ
∗)) = (−0.9990, 0.1056, 1.3846E-15,−0.3053),

θ∗ = (0.385171,−0.231931, 1.729380, 2.183038)T .
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Fig. 4. The eigenvalues of DPq(θ∗) versus slope angle. One eigenvalue
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Fig. 5. Phase portrait for 2 steps of the compass biped, with p = 3.485◦

(gray) for just before and p = 3.495◦ (black) after the bifurcation. The
non-stance leg (solid) exhibits the “limping” behavior after bifurcation.

Figure 3, which plots the time T it takes for the swing leg
to impact the ground over several steps, confirms that we do
indeed have a period-doubling bifurcation at p∗ = 3.95◦, and
so we have confirmed that the eigenvalues of our Poincaré
map correctly predict the bifurcation behavior of the system.

V. CONCLUSION

The results presented in this paper emphasize fundamental
differences between smooth smooth and hybrid systems,
implying a depth to hybrid systems that is not yet fully
understood. We have shown that the rank of a hybrid
execution is always less than the dimension of the space
on which solutions evolve. The upper and lower bounds on
the rank are known a priori. The rank deficiency condition is
determined by the alignment of the nullspace of each reset
map with the tangent space to the execution. We applied
our results to a periodic orbit and observed superstability,
which is a desirable artifact of rank deficiency, and noted
that the linearization of the Poincaré map predicts the correct
eigenvalue behavior of the system.

A future research direction is to take advantage of existing
tools — such as those in [22] — and design controllers for

hybrid systems that directly induce rank deficiency and su-
perstability, and hence improved robustness to perturbations.
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