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Abstract— The varied and complex dynamics of deformable
terrain are significant impediments toward real-world viability
of locomotive robotics, particularly for legged machines. We
explore vertical jumping on granular media (GM) as a model
task for legged locomotion on uncharacterized deformable
terrain. By integrating (Gaussian process) GP-based regression
and evaluation to estimate ground forcing as a function of state,
a one-dimensional jumper acquires the ability to learn forcing
profiles exerted by its environment in tandem to achieving
its control objective. The GP-based dynamical model initially
assumes a baseline rigid, non-compliant surface. As part of
an iterative procedure, the optimizer employing this model
generates an optimal control to achieve a target jump height
while respecting known hardware limitations of the robot
model. Trajectory and forcing data recovered from evaluation
on the true GM surface model simulation is applied to train the
GP, and in turn, provide the optimizer a more richly informed
dynamical model of the environment. After three iterations,
predicted optimal control trajectories coincide with execution
results, within 1.2% jumping height error, as the GP-based
approximation converges to the true GM model.

I. INTRODUCTION

Engineered mechanical systems are well-characterized

through a combination of known design, machining to pre-

cise tolerances, and the use of system identification tools.

Consequently, optimal control formulations for engineered

systems have demonstrated the ability to provide excellent

performance for even complex systems, such as legged

locomotion [1]–[3]. However, when the underlying dynamics

of the controlled system rely on external factors that must

be approximated based on empirical models or are simply

unknown, then employing optimal control methods leads

to degraded performance. Mismatch between the presumed

model dynamics and the actual dynamics may lead to a fail-

ure to meet critical performance outcomes specified within

the optimal control formulation. As robotics researchers

strive to create more complex robotic systems that exploit

hard to model physical properties, we can expect optimal

control methods to break down. Example robotic applications

with an expectation of mismatch between the theoretical

equations and the actual experience of the mechanical system
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Fig. 1: An overview of the presented approach for robotic

jumping on granular media (GM), a task model for loco-

motion on flowable terrain (e.g. sand and soil). We model

the terrain dynamics with a Gaussian process (GP), optimize

a robot jumping maneuver with a constrained nonlinear

program (NLP), and execute the maneuver on a “true” sim-

ulation model of the substrate [11]. The process is repeated

until the task is satisfactorily completed; in this case, when

a target jump height is achieved.

include legged movement over unknown ground substrates

[4], flapping flight [5], [6], and aquatic swimming [7]–[10].

This paper is motivated by prior work regarding hopping

on granular media or soft ground. We demonstrated how

the ground substrate forces lead to different optimal control

signals for the same control objective [4]. To do so, we relied

on meticulously derived and experimentally validated models

for the granular media [11] and applied system identification

to the actuator. Likewise, related work has involved terrain-

tuned controllers to achieve hopping objectives [12]. Both

works involve manual effort that preclude adaptive use by au-

tonomously operating bipedal robots. Given that the control

synthesis must conform to the actual dynamics experienced

by the mechanical system, a means to rapidly estimate online

the unknown forcing function due to foot-ground interaction

is essential to high performance operation.

Kernel Machines in Robotics. Kernel machines and radial

basis function networks for function approximation are often

applied to controls and robotics problems due to their uni-

versal approximation capabilities. Though computationally

complex to implement in the case of online, data-driven

operation, modifications to the baseline learning methods

provide online, real-time implementable algorithms [13]–

[15]. Gaussian processes (GP), in particular, have received

attention in the area of reinforcement learning (RL) [16],

[17], where their inclusion expedites the learning process by

regressing on the unknown model dynamics. RL approaches

have been combined with optimal control methods to jointly
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learn the model dynamics and identify the optimal control

policy to apply [18]. A benefit of GPs in this context

is the ability to generate random draws from a function

space [19] within the context of stochastic optimal control

formulations. The combination of efficient GP learning and

sample synthesis methods with stochastic optimal control

leads to compelling reinforcement learning strategies [20],

[21]. Importantly, these approaches are experiential, data-

driven learning methods. Due to the lack of model informa-

tion, they involve offline training prior to deployment and

are often proof-by-demonstration, as they lack associated

stability theorems.

Kernel Machines and Adaptive Control. Coming from

a more controls oriented perspective, actor-critic networks

with experience replay methods have been used to learn

optimal policies [22]. These offline-learning-then-online-

implemented methods have proven stability and learning

properties. Likewise, a method arising from the model refer-

ence neuro-adaptive control literature, known as concurrent

learning can also learn online and has proven stability and

learning properties [23], [24]. Here, proven learning proper-

ties means that persistent excitation is shown to hold for the

kernel machine regressor dynamics, so that the regression

variables of the kernel machines are known to converge

exponentially fast. Subsequent efforts created online learning

methods using data-driven kernel machines methods that

started with nothing and built the model from scratch [25],

[26] much like the aforementioned RL methods. To achieve

online implementation, data curation and sparsification meth-

ods were applied [27], where the data curation is informed

by the control task and approximation needs. To preserve

the stability and learning guarantees, the method requires a

pre-existing baseline controller.

Contribution. We propose a Gaussian process-based dynam-

ical model of one dimensional hopping, accompanied by a

deterministic process to simultaneously, iteratively learn an

unknown ground substrate forcing profile while optimizing

control to achieve a desired objective. Well-understood equa-

tions of motion are re-arranged to highlight the unknown

substrate forcing and introduce a GP-based component that

enables learning. Without prior experiential data, the GP-

based model assumes a baseline dynamic of rigid ground

hopping. Optimal control generation is restricted to this GP-

based model, conveying an initially inaccurate dynamical

understanding of the world. In an iterative process, optimal

control signals are generated then evaluated against a ‘ground

truth’ granular media (GM) substrate model. The forcing pro-

file exerted by the GM is recovered from resulting trajectory

data; defects from the baseline rigid ground dynamics are

applied to train the GP which, in turn, conveys an incremen-

tally more accurate understanding of the environment to the

optimizer. After a relatively small set of experiential data,

the GP-based forcing model converges to the ‘ground truth’

GM model. Equivalently, the optimizer effectively adapts to

modeling uncertainty by iteratively learning the defect in its

baseline understanding, incrementally rectifying errors in its

performance.

II. OPTIMAL JUMPING CONTROLLER

Optimal control methods have been central to many suc-

cessful implementations of legged robotic control [1]–[3].

This is particularly true of dynamic locomotion, where the

joint velocities have significant dynamic effects on locomo-

tion success (as opposed to quasi-static approaches). Jumping

is an apt example of dynamic locomotion since the velocity

at the instant of takeoff is a major requirement of task

completion. Further, many jumping robots have unactuated

dynamics (e.g. a mechanical spring) around which control

of the jumping maneuver needs to be planned. Modern

bipeds are also being designed with passive springs [28].

These dynamic features motivate our choice of optimal

control methods to achieve robotic jumping. Specifically,

we will employ model-based optimizations, which require

mathematically modeling the mechanical system.

A. Equations of Motion

The one dimensional jumping model, illustrated in Figure

2 and presented in [11], is modeled by three massed bodies: a

linear motor, a thrust rod, and a foot. This robot model jumps

by applying force between the motor and thrust rod, which

can be leveraged to pump energy into the spring-loaded

system. Vertical motor actuation drives rod displacement

which, in turn, transmits forcing to the foot through the

connecting spring (which is massless, but modeled with

linear viscous damping). The closed form system dynamics

are

ẍf =− g +
1

mf
[k(α− ᾱ) + cα̇] +

1

mf
Fsub

α̈ =−
[
mf +mr +mm

mf (mr +mm)
(k(α− ᾱ) + cα̇) +

mm

mr +mm
u

]

− 1

mf
Fsub (1)

where body masses of the motor, rod, and foot are designated

mm, mr, and mf , respectively. The signals xf , α, and β

Fig. 2: (a) A visualization and labeling of the one-

dimensional (linear vertical-only) jumping robot model. (b)
An illustration of the desired jumping task; the robot must

thrust its motor mass in such a manner that it jumps off

the ground and achieves a precise desired jump height at its

apex.
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represent the spatial position of the foot center of mass

(CoM), position of the rod CoM relative to the foot CoM,

and position of the motor CoM relative to the rod CoM,

respectively. Here, motor acceleration β̈ serves as the input

control signal and has been replaced with u. ᾱ represents

the position of the rod, relative to the foot, when no external

forcing, gravity or otherwise, act to compress or extend the

spring. Fsub denotes substrate reaction forces acting on the

foot and is always directed positively upwards.

The system state is defined by, x = [xf ẋf α α̇]
T ∈ IR4.

1) Substrate Force, Fsub: Substrate forcing, Fsub, resists

negative displacement of the foot and is one mechanism by

which energy is stored in the spring, ultimately enabling the

system to lift off the ground. The model of substrate forcing

will vary with substrate type.

a) Flight Phase: During flight, the foot has lifted off

the surface and substrate forcing no longer acts upon the

system, Fsub = 0.

b) Contact Phase: When the foot is in contact with the

ground, xf is coincident with the surface height.

In a rigid ground scenario, then, xf = 0. The resultant

force due to gravity, spring and damping is directed in the

negative, downward direction. Substrate forcing counteracts

all other forces acting on the foot. Fsub can then be inferred

from the first equation in (1), and represented in closed-form

as a function of state,

F sg
sub = mfg − k(α− ᾱ)− cα̇, (2)

where superscript sg denotes the assumption of solid, unde-

formable ground.

When the ground is no longer rigid and is, instead,

modeled as deformable granular media, the assumptions used

for solid ground scenarios no longer hold. F gm
sub , denoting

substrate forcing exerted on the foot by granular media,

becomes a complex nonlinear function of the hopper state

and is dependent upon empirically determined parameters

modeling the granular material [11]. It may be decomposed

into multiple components,

F gm
sub =

mf

mf +Madded
(Fp+Fv)− Madded

mf +Madded
F sg
sub, (3)

where Fp represents a quasi-static forcing component

dependent on foot depth, Fv represents a depth- and

velocity-dependent component and Madded denotes velocity-

dependent added mass to the foot as it intrudes into the

granular media.

B. Solid Ground and Granular Media: A Comparison

Deformation of the ground substrate induces a significant

change in the dynamics of the one-dimensional hopper. Fig-

ure 3 illustrates, in simulation, the distinct hopper trajectories

that evolve assuming a solid ground (solid) versus granular

media (dashed) surface. The forcing profile exerted by each

surface type is illustrated in the bottom plot of the figure.

Identical open-loop sinusoidal control signals have been

applied to both models. Prior to leaving solid ground, the foot

position, xf , does not change. On granular media, however,
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Fig. 3: Trajectory (top) and substrate forcing (bottom)

associated with a single hop of a one-dimensional hopper,

beginning from rest. Solid Ground (solid): Initial state of

the hopper, x0 = [0 mm 0 mm/s 0 mm 0 mm/s]
T

. Due to

the rigid nature of the surface, F sg
sub will always negate

gravity, spring and damping forces when the hopper is at

rest and xf = 0. Granular Media (dashed): Initial state

of the hopper, x0 = [−7.086 mm 0 mm/s 0 mm 0 mm/s]
T

.

xf (0) is the equilibrium depth at which quasi-static granular

media, gravity, spring and damping forces cancel.

xf sinks deeper into the granular material prior to take-off.

Surface deformation dissipates energy, robbing it from the

spring and ultimately leading to a lower peak hop height.

Forcing profiles associated with each surface additionally

reveal distinctions in both shape as well as peak value.

C. Optimal Control
The presented method takes a trajectory optimization

approach to optimal control [29]. Specifically, we use direct

collocation to transcribe the optimal control problem into a

large-scale NLP, a method which improves the reliability of

algorithm convergence [30]. Further, direct collocation ap-

proaches allow us to compute all objectives, constraints, and

derivatives thereof in closed-form. A closed-form representa-

tion allows for faster computation, which is an important re-

quirement for applications where we aim to adjust behaviors

on-the-fly. For those unfamiliar with trajectory optimization

methods, here we present an abbreviated explanation of the

methods in [4] along with the appropriate modifications for

this study.
We begin by rearranging our system dynamics into a

typical set of first-order ODE’s, ẋ = f(t, x, u(t)), where t,
x, and u(t) are time, state, and time-varying control inputs

respectively. In collocation methods, we then discretize the

optimal control problem, allowing the optimizer to operate

on a discrete set of variables defining a piecewise trajectory.

This includes a discrete time tape, ti, where 0 = t0 < t1 <
t2 < · · · < tN = T , state variables, xi, and control inputs,
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ui, where i ∈ {1, 2, 3, . . . , N − 1}, and includes duplicate

variables for each dynamical domain (e.g. contact and flight

phases). The variables ti, xi, ui, will all be relegated to free

variables for the optimization to design. T is the duration

of each domain and also a free design variable. We used

N = 25 uniformly spaced discrete points, and finer grids

did not significantly change the optimal solution.

Each discrete point, i, is rendered dynamically consistent

with the next point, i+1, via “defect” constraints in the NLP,

which approximate implicit integration:

(xi+1 − xi)− 1

2
(ti+1 − ti)(ẋi+1 + ẋi) = 0, (4)

ẋi − f(ti, xi, ui) = 0, (5)

∀i, with the above constraint encoding a trapezoidal inte-

gration scheme. While Hermite-Simpson methods are also

common [31], for the hopping application, trapezoidal meth-

ods have been sufficiently accurate to achieve satisfactory

matches with experimental hopping results [4]. We now build

a vector w of all optimization variables, w = {xi, ẋi, ui},
and define the objective,

J(w) =
t2 − t1

2
J(x1, ẋ1, u1)+ (6)

N−1∑
i=2

ti+1 − ti−1

2
J(xi, ẋi, ui)+

tN − tN−1

2
J(xN , ẋN , uN )

where J(x, ẋ, u(t)) is the integrand of a continuous-time

cost. The resulting NLP becomes simply:

w∗ =argmin
w

J(w) (7)

s.t wmin ≤ w ≤ wmax, (8)

cmin ≤ c(w) ≤ cmax, (9)

in which c(w) represents the concatenation of all constraint

functions, including defect constraints (4-5) and additional

task constraints1 (see [4] for additional constraint details). To

facilitate faster solving, we export symbolic representations

of J(w), δJ(w)/δw, c(w), and δc(w)/δw to the large-

scale interior-point solver, IPOPT [32], using a MATLAB-

based NLP parsing framework [33]. Note that this trick

is possible because f(t, x, u(t)) and J(x, ẋ, u(t)) can be

written symbolically.

In a previous study, the dynamics governing granular

media were given a priori from physics-based models and

measurement [4]. Here, we replace this measured model

with a Gaussian process model. Since Gaussian processes

can similarly be written as closed form expressions, we

hypothesize that optimal control formulations with GP’s will

be similarly tractable.

III. ONLINE LEARNING OF EXTERNAL FORCING

This section describes the GP-based online learning pro-

cess. For simplicity, we will use the full GP equations. The

actual online implementation should follow the data curation

and sparsification approaches described in [25]–[27].

1Such as jumping to the correct height, not exceeding actuator force
limits, enforcing workspace/acceleration limits, etc.

A. Gaussian Processes

Gaussian processes (GPs) present a Bayesian approach

to function regression and modeling over potentially high-

dimensional domains, and in the presence of a limited set

of function evaluations or training data [34]. Given a set

of (possibly noisy) evaluations of an unknown function,

τ(x) : IRn → IR, a GP represents a prior over functions,

Z(x) ∼ GP(m(x), κ), (10)

where Z(x) : IRn → IR represents the function regression,

m(x) is the mean function and κ(x, x′) is a kernel function

describing covariance. We choose to employ a squared

exponential kernel,

κ(x, x′) = exp

(
−1

2
(x− x′)TΣ(x− x′)

)
+ σdampI,

x, x′ ∈ IRn, (11)

which provides a measure of similarity between any two

elements, x and x′, in the domain of τ(x) based on L2

proximity. Σ is a bandwidth parameter influencing the scale,

over the domain, with which the function regression varies,

while σdamp represents variance associated with noise in the

training data. The latter may be interpreted as a damping

factor to tune for over-fitting in regression.

In particular, we approximate an unknown function, τ(x),
by the model, y(x) = μ(x) + Z(x), where μ(x) captures

a global trend from the training data. The global trend

is represented as a linear combination of a set of basis

functions, f(x) = {1 f1(x) f2(x) . . . fm(x)}T , such that

μ(x) = f(x)TΘ, where Θ ∈ IRm are linear coefficients.

Z(x) depicts a non-stationary GP representing regression

over any residual deviations from μ(x).
The GP-based function approximation is more specifically

represented by [35],

y(x) = μ(x) + rT (x)R−1(ŷ − μ(x̂)). (12)

x̂ = [x̂1 x̂2 . . . x̂p]
T

, where x̂i ∈ IRn and ŷ ∈ IRp, com-

prises a set of p training samples; evaluation of each element

of x̂ by the unknown function has yielded ŷi = τ(x̂i), possi-

bly with noise. R is the covariance matrix such that Ri,j =

κ(x̂i, x̂j) and rT (x) = [κ(x, x̂1) κ(x, x̂2) . . . κ(x, x̂p)]
T

.

B. Learning Ground Forcing as a Function of State

To construct a learning-enabled dynamical model of one

dimensional hopping, we begin with (1). However, ground

forcing, Fsub, will instead be formulated as the summation

of multiple components, including contribution from a GP,

Fsub(x) = F sg
sub(x) + μ(x) + rT (x)R−1(ŷ − μ(x̂)), (13)

where again x̂ and ŷ comprise training data; x̂i ∈ IR4 and

ŷi ∈ IR together comprise a training tuple, identifying a

point in the state space and the corresponding ground force

experienced, respectively.

F sg
sub(x) is defined by (2). When no training data has been

collected, the latter two components of (13) vanish and the

model reduces to the baseline solid ground assumption. As
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training data is collected, the latter two terms of (13) model

forcing components of the terrain that represent defects from

a rigid surface environment.

A global linear trend, μ(x), is extracted from the training

data, with residuals from this global trend modeled by the

GP in the final term of (13). To compute, μ(x), let f(x) =
[1 xf ẋf α α̇]

T
. Then the corresponding linear coefficients

are computed in closed form from a weighted least-squares

fit,

Θ = (FTR−1F )−1(FTR−1Φ̂), (14)

where, Φ̂ = [(ŷ1 − F sg
sub(x̂1) . . . (ŷp − F sg

sub(x̂p))]. F =

[f(x̂1) f(x̂2) . . . f(x̂p)]
T

and p denotes cardinality of the

training set [35].

C. State Smoothing

Ground forcing, Fsub, applied during the course of the

hopper trajectory must be recovered to train the GP-based

model of (13). Any direct sensing of this quantity is assumed

absent. Through recovery of the relevant quantities from

the first equation of (1), however, Fsub can be computed.

We assume the state of the system, x = [xf ẋf α α̇], is

completely observable. In particular, however, acceleration

associated with the foot, ẍf , is not immediately and conve-

niently accessible. To recover this quantity, trajectory data

measured from the dynamical system (1) is subjected to a

fixed-lag Kalman smoothing process, which will incur some

time delay. The output of this process is a smoothed state

trajectory, xs(t) =
[
xs
f (t) ẋ

s
f (t) ẍ

s
f (t)α

s(t) α̇s(t) α̈s(t)
]T

,

which yields the missing quantity ẍs
f . Substrate forcing is

then estimated as a function of the smoothed system state,

Fsub = mfg − [k(αs(t)− ᾱ) + cα̇s(t)] +mf ẍ
s
f (t). (15)

D. Iterative Optimal Control and Learning

We apply an iterative procedure to recover a GP-based

dynamical model of the one dimensional hopper system,

described jointly by (1) and (13), simultaneously hopping

on an unknown surface while learning the forcing profile

that surface exerts as a function of the system state, x. From

a validation perspective, the unknown surface is modeled

by granular media with known environmental parameters;

this granular media model serves as our ground truth against

which to compare the evolution and accuracy of the GP-

based dynamical model that is iteratively trained.

Prior to any experimental attempts, the set of training data

is empty, Γ = ∅. Each learning iteration begins with the

hopper in an initial state, at rest on the hopping surface.

An optimizer then employs the GP-based dynamical model,

described by (1) and (13), to generate an optimal control

signal enabling a target peak hop height to be attained

while minimizing actuation effort. The control signal is

subsequently evaluated on a one dimensional hopper operat-

ing on the ground truth surface, whose complex, nonlinear

forcing profile is described by a granular media model

with known parameters. If target peak hop height is not

attained using the generated control signal on the ground

truth GM surface, trajectory data is collected, smoothed and

substrate forcing, Fsub(x
s(t)), is recovered. The training set,

Γ, is augmented with the tuples, (xs(t), Fsub(x
s(t))) for all

t discretely measured and computed. This training set is

limited to trajectories, and corresponding forces, occurring

during contact with the ground, prior to the hopper attaining

flight.

Γ = (x̂i, ŷi) : ∀i = 1 . . . p, with cardinality p, is subse-

quently applied to update the GP-based model of substrate

forcing. First, the deviation of Fsub(x̂) from the equivalent

solid ground forcing profile, F sg
sub(x̂), is computed and a

global linear trend is extracted, using (14) to compute the

linear coefficients. The GP is trained on the remaining resid-

ual, Fsub(x̂) − F sg
sub(x̂) − μ(x̂), and represents a regression

estimate of this quantity over the state space. This process

then repeats, with the optimizer informed by a newly trained

GP-based approximation of substrate forcing. Algorithm 1

sketches the iterative optimal control and learning process.

Algorithm 1 Iterative Hopper Control and Learning

1: procedure CONTROL AND LEARN(targetHopHeight)

2: training set, Γ ← ∅
3: currentHopHeight ← 0
4: initialize GP

5: while currentHopHeight 	= targetHopHeight do
6: generate optimal control, uopt, using GP-based

model, (1) and (13)

7: evaluate uopt on ground truth GM surface

8: extract hopper state trajectory, x(t)
9: currentHopHeight ← max(xf (t) + α(t))

10: apply Kalman smoothing to recover xs

11: compute Fsub using (15)

12: append Γ with new data: (xs, Fsub)

13: ∀(x̂i, ŷi) ∈ Γ, compute ŷi − F sg
sub(x̂i)

14: update μ(x) using (14)

15: train GP with data: (x̂i, Fsub(x̂i) − F sg
sub(x̂i) −

μ(x̂i))
16: end while
17: end procedure

IV. RESULTS

Validation of the simultaneous control and learning ap-

proach, detailed in Algorithm 1, is demonstrated in simu-

lation. We challenge the hopper to learn the forcing profile

associated with an unknown granular media surface. In an

iterative process, it generates optimal control signals to hop

to an arbitrarily selected target hop height using its current

GP-based model of the world. The results from exercising

that control signal on a ground truth model of the GM

environment then informs the GP-based approximation of

state-dependent substrate forcing. Line 7 of Algorithm 1

is accomplished in simulation using an ode45 numerical

integrator. MATLAB is employed for all implementation and

computation of the process delineated in Algorithm 1.
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Fig. 4: Execution of the GP/motion planning jumping experiment with the goal of achieving a 30mm hop height (as measured

by the rod position). In three iterations of learning → planning → jumping, the simulated jumping task improves in accuracy

from 104% error to 1.2% error.

Fig. 5: Evolution of the ground-reaction force predition

across three trials. Each trial updates the Gaussian process

model and a new strategy is computed by the motion

planning optimizer. By the third trial, the actual experienced

force sufficiently matches the GP prediction to achieve a

jump apex with 1.2% error.

A. Optimization

The optimization routine is tasked with returning a locally

optimal control trajectory given a commanded hop height

(30 mm) and a GP external forcing model. In this case, the

optimization returns a vector of βi (a motor trajectory β
corresponding to each discrete time step, where N = 25 each

in the flight and contact phases). We define our objective

integrand to be J(xi, ẋi, ui) = (β̇i)2, which penalizes

actuator velocity as both a proxy for energy cost and favors

a more-easily trackable position trajectory on hardware. One

could substitute instanteous power as the objective, however,

such power minimizing solutions tend to rail actuator forces

suddenly between zero and non-zero values. Such “banging”

strategies are typically more sensitive to timing errors in

hardware implementation.

The GP forcing model Fsub is converted to a symbolic

expression, substituted into the system dynamics for sym-

bolic differentiation, and converted into a set of constraints

for the NLP. IPOPT solves the NLP to a tolerance of 10−9,

for both feasibility and duality. Each optimization converged

to an optimal solution in less than 10 seconds.

B. Simulation

After each optimization, the output motor trajectory is

simulated in a variable-time-step “truth” model and com-

pared to the optimizer’s prediction. Figure 4 shows the

iterations, from Algorithm 1, until the target jump height

is reached (less than 1 mm error). After three iterations,

the GP model had been sufficiently trained such that the

optimizer generated a successful, accurate jump (with 0.4

mm or 1.2% error). This is a significant improvement over

the initial model, which yielded a 31.3 mm error (or 104%),

showing that significant practical improvements can occur

over relatively few iterations, when the problem and obser-

vations are formulated to emphasize the uncertainty.

In terms of task completion, the course of improvement

was not gradual or smooth. In fact, iteration 2 showed nearly

the same jumping performance as iteration 1 in terms of

effective jump height. However, the underlying difference

can be seen in Figure 5, where the GP estimate of the forcing

has converged closer to the true model. Thereafter, just a third

iteration is sufficient to cut the jumping error from 104%

to 1.2%. This behavior underscores how a learned model

approach can yield quickly adaptive behaviors in robotic

applications, for a targeted task.

V. CONCLUSION

Introducing a GP representation of an uncertain quantity

into the dynamical model of a vertical hopper provides a

means to iteratively learn characteristics of its environment

in tandem with refining optimization processes for achieving

its control objectives. Because the uncertain GP model is

formulated to target the uncertain components, as is done

in neuro-adaptive control, a relatively small number of itera-

tions is required for the GP-based model of substrate forcing
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to converge to the true GM model. Simultaneously, defects

when executing the generated optimal controls also vanish as

the optimizer becomes better informed through a GP trained

on incrementally larger and diversified training sets.

The utility of integrating a GP into the modeling and

optimization process is demonstrated in §IV. After three

iterations, evaluation of the generated optimal control on the

GM surface meets the execution expectations of the opti-

mizer. Simultaneously, we find the GP-based approximation

of ground forcing has quickly converged to that of the ground

truth GM model. This is particularly significant given the

model began with only the baseline assumption of a solid

ground environment and quickly bridged the gap between

these very distinct dynamical models of the environment; a

gap that is comparatively illustrated by Figure 3.

In the study of legged robotic locomotion, we find different

substrates require diverging control strategies, which are

computed in cases where terrain parameters are known a

priori. In practice, however, a robot likely lacks the ability

and opportunity to methodically characterize properties prior

to task execution. An ability to both learn and exploit the

terrain dynamics in tandem with the process of locomotion,

where every step is an experiment, presents great utility to

legged mobility over uncertain and challenging terrain.
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