
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Learning Terrain Dynamics: A Gaussian Process
Modeling and Optimal Control Adaptation
Framework Applied to Robotic Jumping

Alexander H. Chang , Member, IEEE, Christian M. Hubicki , Member, IEEE, Jeffrey J. Aguilar ,

Daniel I. Goldman , Aaron D. Ames , Senior Member, IEEE, and Patricio A. Vela , Member, IEEE

Abstract— The complex dynamics characterizing deformable
terrain presents significant impediments toward the real-world
viability of locomotive robotics, particularly for legged machines.
We explore vertical, robotic jumping as a model task for
legged locomotion on presumed-uncharacterized, nonrigid ter-
rain. By integrating Gaussian process (GP)-based regression and
evaluation to estimate ground reaction forces as a function of the
state, a 1-D jumper acquires the capability to learn forcing pro-
files exerted by its environment in tandem with achieving its con-
trol objective. The GP-based dynamical model initially assumes a
baseline rigid, noncompliant surface. As part of an iterative pro-
cedure, the optimizer employing this model generates an optimal
control strategy to achieve a target jump height. Experiential data
recovered from execution on the true surface model are applied
to train the GP, in turn, providing the optimizer a more richly
informed dynamical model of the environment. The iterative
control-learning procedure was rigorously evaluated in experi-
ment, over different surface types, whereby a robotic hopper
was challenged to jump to several different target heights. Each
task was achieved within ten attempts, over which the terrain’s
dynamics were learned. With each iteration, GP predictions of
ground forcing became incrementally refined, rapidly matching
experimental force measurements. The few-iteration convergence
demonstrates a fundamental capacity to both estimate and adapt
to unknown terrain dynamics in application-realistic time scales,
all with control tools amenable to robotic legged locomotion.

Index Terms— Gaussian process (GP), learning, optimal
control, robotic jumping, terrain dynamics.

Manuscript received November 30, 2019; revised March 21, 2020; accepted
July 1, 2020. Manuscript received in final form July 13, 2020. This work was
supported by NSF under Grant CPS#1544857. Recommended by Associate
Editor A. Chakrabortty. (Corresponding author: Alexander H. Chang.)

Alexander H. Chang and Patricio A. Vela are with the Institute for
Robotics and Intelligent Machines, Georgia Institute of Technology,
Atlanta, GA 30332 USA (e-mail: alexander.h.chang@gatech.edu;
pvela@ece.gatech.edu).

Christian M. Hubicki is with the Department of Mechanical Engi-
neering, Florida A&M University–Florida State University, Tallahassee,
FL 32310 USA (e-mail: hubicki@eng.famu.fsu.edu).

Jeffrey J. Aguilar and Daniel I. Goldman are with the School of
Physics, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
jjaguilar1@gmail.com; daniel.goldman@physics.gatech.edu).

Aaron D. Ames is with the Department of Mechanical and Civil Engineer-
ing, California Institute of Technology, Pasadena, CA 91125 USA (e-mail:
ames@caltech.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2020.3009636

I. INTRODUCTION

ENGINEERED mechanical systems are well character-
ized through a combination of known design, machining

to precise tolerances, and the use of system identification
tools. Consequently, optimal control formulations for engi-
neered systems have demonstrated the ability to provide
excellent performance for even complex systems, such as
legged locomotion [1]–[3]. However, when the underlying
dynamics of the controlled system rely on external factors
that must be approximated based on empirical models or are
simply unknown, employing optimal control methods leads
to degraded performance. A mismatch between the presumed
model dynamics and the actual dynamics may prevent the
satisfaction of critical performance outcomes specified within
the optimal control formulation. As robotics researchers strive
to create more complex robotic systems that exploit hard-
to-model physical properties, we can expect optimal control
methods to break down. Such robotic applications prone to
mismatch between the theoretical equations and the actual
experience of the mechanical system include legged movement
over unknown ground substrates [4], flapping flight [5], [6],
and aquatic swimming [7]–[10]. This particular work focuses
on vertical, robotic hopping, as a preliminary model task
for legged locomotion, where terrain dynamics that drive
locomotion are presumed to be poorly modeled or unknown.

A. Review of Related Work

1) Locomotion on Soft Terrain: Control approaches
addressing legged locomotion over soft terrain often relegate
surface deformation effects to uncertainty terms in the con-
troller or presume simplifying, closed-form approximations of
the terrain model (e.g., spring damper) [11]–[14]. Strategies
accommodating terrain variation may then apply sensor-driven
switching between terrain-tuned controllers to achieve task
objectives [15]. These approaches, however, are not well
suited to achieving high-performance control objectives when
the underlying terrain is arbitrarily soft or exhibits complex
nonlinear behavior.

Prior work regarding robotic jumping on soft ground gran-
ular media (GM) alternatively employed optimal trajectory
synthesis, in conjunction with an empirically tuned model of

1063-6536 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9036-100X
https://orcid.org/0000-0003-0848-3177
https://orcid.org/0000-0002-6888-7002
https://orcid.org/0000-0002-2092-3772
https://orcid.org/0000-0003-3055-3215
https://orcid.org/0000-0002-6954-9857

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

terrain forcing, to achieve precise control objectives [4].
As generalized, terradynamic models do not exist (in contrast
to fluid systems, for example, which can be modeled gener-
ally via Navier–Stokes equations), we relied on meticulously
derived and experimentally validated models for the GM
[16], [17] and applied system identification to the actuator.
We demonstrated that distinct ground substrates might lead to
diverging optimal control signals for identical control objec-
tives [4]; variation of even the GM ground model parameters
will influence different control solutions to accomplish the
same task [16]. Although control strategies may be com-
puted in cases where terrain parameters are known a priori,
in practice, a robot likely lacks the ability and opportunity
to methodically characterize terrain properties prior to task
execution. Manual effort to do so precludes adaptive use by
autonomously operating systems, such as bipedal robots.

Given that the control synthesis must conform to the actual
dynamics experienced by the mechanical system, a means to
rapidly estimate (or learn) online the unknown forcing function
due to foot–ground interaction is essential to high-performance
operation.

2) Kernel Machines in Robotics: Kernel machines and
radial basis function networks for function approximation are
often applied to control and robotics problems due to their
universal approximation capabilities. Though computationally
complex to implement in the case of online, data-driven
operation, modifications to the baseline learning methods
provide online, real-time implementable algorithms [18]–[20].
Gaussian processes (GPs), in particular, have received atten-
tion in the area of reinforcement learning (RL) [21], [22],
where their inclusion expedites the learning process by regress-
ing on the unknown model dynamics. RL approaches have
been combined with optimal control methods to jointly learn
the model dynamics and identify the optimal control policy
to apply [23]. A benefit of GPs, in this context, is the ability
to generate random draws from a function space [24] within
the context of stochastic optimal control. The combination
of efficient GP learning and sample synthesis methods with
stochastic optimal control leads to compelling RL strategies
[25], [26]. Importantly, these approaches are experiential,
data-driven learning methods. Due to the lack of model infor-
mation, however, they involve offline training prior to deploy-
ment. If deployed online with no prior knowledge, learning
typically involves on the order of hundreds or more examples
due to the tension between exploration and exploitation.

3) Kernel Machines and Adaptive Control: From a more
controls oriented perspective, actor-critic networks with expe-
rience replay methods have been used to learn optimal
policies [27]. These offline-learned-then-online-implemented
methods have proven stability and learning properties.
Likewise, a method arising from the model reference
neuro-adaptive control literature, known as concurrent learn-
ing, can also learn online and has proven stability and learning
properties [28], [29]. Here, proven learning properties means
that persistent excitation is shown to hold for the kernel
machine regressor dynamics so that the regression variables
of the kernel machines are known to converge exponentially
fast. Subsequent efforts created online learning methods using

data-driven kernel machine methods that started with nothing
and built the model from scratch [30], [31] much like the afore-
mentioned RL methods. To achieve online implementation,
data curation and sparsification methods were applied [32],
where the data curation was informed by the control task and
approximation needs. The method requires a preexisting base-
line controller to preserve stability and learning guarantees.

4) Gaussian Process Regression: GP-based regression is
one strategy applied to learn uncertainty online. Its utility
in modeling uncertain dynamical elements, stemming from
complex robot-terrain interactions, has found application in
different classes of mobile platforms [33], [34].

GPs applied to learn substrate forcing, in the context of
jumping on a particular simulated GM model, previously
suggested that online learning would occur rapidly [35].
As opposed to learning the dynamics of the entire system
from scratch, online learning targeted the unknown external
forcing component. This data-driven approach facilitated the
incremental accumulation of knowledge, ultimately permit-
ting estimation of the uncertain element driving the system’s
dynamics and follow-on model-based optimal control. The
underlying strategy of targeted learning of unknown dynam-
ical quantities was demonstrably practical while being more
dimensionally tractable than learning the system dynamics in
their entirety. The nonparametric nature of a GP frees it from
any a priori structural presumptions; we show its application
as a regression element, in this particular work, provides the
flexibility to learn complex dynamical profiles associated with
various categorically distinct terrain.

B. Target Problem and Contribution

1) Robotic Jumping, a Model Task: Jumping frequently
functions as a model task for legged locomotion as it encom-
passes similar mathematical (and physical) challenges. Akin to
bipedal running, it requires changes in contact modes (hybrid
system dynamics) and control through periods of underactu-
ation (flight phases). The control-learning approach [35] pre-
sented here uses optimal control methods for hybrid systems,
similar to those at the core of many model-based legged con-
trol techniques [2], [36]. The particular application we explore
entails learning of presumed-unknown terrain dynamics that
influence vertical, robotic jumping outcomes. The strategy,
however, potentially extends to more complex, higher degree
of freedom (DoF) legged systems as well [37], where control
feasibility continues to be impacted by modeling uncertainty
associated with complex and unknown robot-terrain interac-
tions. Ground forcing, in this context, must be learned quickly
with respect to several DoFs describing robot-terrain motion,
in lieu of just vertical motion. Safety measures guarding
against mechanical instability may guide exploratory control
and learning of unmodeled quantities [38], [39]. Evaluation in
more deployment-realistic scenarios, where terrain dynamics
may transition drastically, warrants adoption of supplemental
strategies to manage novel encounters [40], [41].

2) Contribution: We extend a previously proposed GP-
based dynamical model of 1-D jumping, accompanied by a
deterministic process to iteratively learn an unknown ground

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: LEARNING TERRAIN DYNAMICS: GP MODELING AND OPTIMAL CONTROL ADAPTATION FRAMEWORK 3

Fig. 1. Flowchart illustrating an iterative optimal control-learning framework. With each jump, the algorithm regresses an updated terrain model and then
uses the learned model to generate and execute a new optimal control signal.

forcing profile, all while optimizing control to achieve the
desired objective [35]. Whereas the original work involved
simulation, the extensions involve experimental validation that
the strategy will work in practice by showing reproducible
outcomes on three different classes of terrain.

Well-understood equations of motion are rearranged to
highlight the presumed-unknown terrain forcing and introduce
a GP-based component that enables learning. Without prior
experiential data, the GP-based model assumes a baseline
rigid ground dynamical representation of the terrain. Optimal
control generation is driven by this GP-based model, which
initially conveys an inaccurate dynamical understanding. In an
iterative process, as shown in Fig. 1, optimal control signals
are generated and then evaluated on the true ground model.
The forcing profile exerted by the terrain substrate is recovered
from measured trajectory data; defects with respect to the base-
line rigid ground dynamics are applied to train the GP which,
in turn, conveys an incrementally more accurate understanding
of the environment to the optimizer. Experimental validation of
this approach was performed on a 1-D, vertical robotic jumper,
operating over a variety of categorically distinct surfaces:
leveled solid ground, a trampoline surface, and a bed of poppy
seeds (a model GM [17]). The robot quickly accomplished
specified control tasks, each within 10–15 control-learning
iterations. Using this model-based data-driven learning and
control approach, each terrain model was learned, and spec-
ified tasks were completed precisely, while only requiring a
small set of experiential data.

II. SYSTEM DYNAMICS

This section reviews the equations governing 1-D jumping,
as applicable to any surface type, rigid or deformable. The
equations are arranged to highlight terrain substrate forcing,
Fsub, the unknown quantity in this system.

A. Equations of Motion

The 1-D jumping model, shown in Fig. 2 and presented
in [16], is modeled by three massed bodies: a linear motor,
a thrust rod, and a foot. This robot model jumps by apply-
ing force between the motor and thrust rod, which can be

Fig. 2. (a) Visualization and labeling of the 1-D (vertical-only) jumping
robot model. (b) Illustration of the jumping task; the robot must thrust its
motor mass to jump off the ground and achieve a specified jump height at its
apex.

leveraged to pump energy into the spring-loaded system.
Vertical motor actuation drives rod displacement which,
in turn, transmits forcing to the foot through the connecting
spring (which is mass-less, but modeled with linear viscous
damping). The closed-form system dynamics are

ẍ f = −g + 1

m f
[k(α − ᾱ) + cα̇] + 1

m f
Fsub

α̈ = −
[

m f + mr + mm

m f (mr + mm)
(k(α − ᾱ) + cα̇) + mm

mr + mm
β̈

]

− 1

m f
Fsub (1)

where body masses of the motor, rod, and foot are designated
mm , mr , and m f , respectively. The signals x f , α, and β
represent the spatial position of the foot center of mass
(CoM), position of the rod CoM relative to the foot CoM,
and the position of the motor CoM relative to the rod CoM,
respectively. β̈ denotes acceleration of the motor relative to
the rod; in the physical platform, this is driven by dynamics
related to internal motor feedback tracking [4]. The control
input will be a synthesized reference motor trajectory, u = β∗,
against which β is tracked to arrive at β̈. For later reference,
xr = x f + α denotes spatial position of the thrust rod.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

ᾱ represents the position of the rod, relative to the foot, when
no external forcing, gravity or otherwise, acts to compress
or extend the spring. Fsub denotes substrate reaction forces
acting on the foot and is always directed positively upward.
The system state is defined, x = [x f ẋ f α α̇]T ∈ IR4.

1) Substrate Force, Fsub: Substrate forcing, Fsub, resists
negative displacement of the foot and is one mechanism by
which energy is stored in the spring, ultimately enabling the
system to lift off from the ground. The model of the substrate
force will vary with the substrate type and the relevant phase
of the hybrid system. During the flight phase, the foot has
lifted off the surface and substrate forcing no longer acts on
the system, Fsub = 0. During the stance phase, the foot is in
contact with the ground, and x f is coincident with the surface
height. The substrate forcing Fsub then becomes a positive
quantity, modeled according to the material composition of
the jumping surface.

Specifically, in a rigid ground scenario, x f = 0. The
resultant force due to gravity, the spring, and damping is
directed in the negative, downward direction. Substrate forcing
counteracts all other forces acting on the foot. Values of Fsub

follow from the first equation in (1), in closed-form, as a
function of state:

FSG
sub = m f g−k(α − ᾱ)−cα̇ (2)

where superscript SG denotes the assumption of solid, unde-
formable ground.

When the ground is no longer rigid and is, instead, modeled
as a deformable material, then the assumptions used for solid
ground scenarios no longer hold. Consider GM, a material
characterizing a particular example class of deformable sur-
faces. The function FGM

sub , denoting substrate forcing exerted
on foot by the GM, becomes a complex nonlinear function of
the hopper state and is dependent upon empirically determined
parameters modeling the material [16]. It may be decomposed
as

FGM
sub = Fp + Fv (3)

where Fp denotes a quasi-static forcing component dependent
upon foot depth, while Fv varies as a function of depth,
velocity, and added mass to the foot during GM intrusion.

In general, deformation of the ground substrate may induce
a significant change in the dynamics of the 1-D hopper,
in contrast to operation on solid ground. Open-loop signals
designed for solid ground scenarios but applied on GM, for
example, lead to system trajectories that may diverge greatly
from operation on the former. Fig. 3 (left-hand side) shows
such a scenario. An open-loop control signal is designed
to achieve a peak jump height of 30 mm (dashed) on a
simulated 1-D, robotic hopper operating on level solid ground.
On simulated GM (solid), however, the ground yields and
x f (red) sinks prior to takeoff. Terrain deformation dissipates
energy, robbing it from the spring, ultimately leading to a
lower peak jump height, 7.64 mm, which falls short of the
target by 74.5%. The nonlinear behavior of this complex,
deformable terrain type does not permit the use of simple
feedback mechanisms; we have seen that tunable control signal
characteristics, such as amplitude, do not necessarily trend

linearly, nor monotonically, with achieved peak jump height on
this surface [4]. Alternative approaches to legged locomotive
control over soft terrain have presumed spring-damper-based
models of the robot-ground interactions [11], [13], [14], [42].
These assumptions, however, remain ill-suited for operation
over GM, a class of terrain characterized by its complex,
hydrodynamically driven nonlinear behavior.

In the context of this study, each terrain type the leg hops
on will have its own unique substrate interaction force profile,
which will require learning.

III. ONLINE LEARNING OF EXTERNAL FORCING

This section describes the GP-based online learning process.
In particular, it describes how the measured state variables of
the robot lead to estimates of external ground forcing, through
an inverse dynamics procedure.

A. Gaussian Processes

GPs present a Bayesian approach to function regression and
modeling over potentially high-dimensional domains and in
the presence of a limited set of function evaluations or training
data [43]. Given a set of (possibly noisy) evaluations of an
unknown function, τ (x) : IRn → IR, a GP represents a prior
over functions

Z(x) ∼ GP(m(x), κ) (4)

where Z(x) : IRn → IR represents the function regression,
m(x) is the mean function, and κ(x, x′) is a kernel function
describing covariance. We choose to employ a squared expo-
nential kernel

κ
(
x, x ′) = exp

(
−1

2

(
x − x′)T

�
(
x − x′)) + σdampI,

x, x′ ∈ IRn (5)

which provides a measure of similarity between any two ele-
ments, x and x′, in the domain of τ (x), based on �2 proximity.
� is a bandwidth parameter influencing the scale, over the
domain, with which the function regression varies, while σdamp

represents variance associated with noise in the training data.
The latter may be interpreted as a damping factor to tune for
overfitting in regression outcomes.

In particular, we approximate the unknown function τ (x) by
the model y(x) = μ(x)+ Z(x), where μ(x) captures a global
trend from the training data. The global trend is represented
as a linear combination of a set of basis functions, f (x) =
{1 f1(x) f2(x), . . . , fm(x)}T, such that μ(x) = f (x)T	,
where 	 ∈ IRm captures the linear coefficients. Z(x) denotes
a nonstationary GP representing regression over any residual
deviations from μ(x).

The GP-based function approximation is more specifically
represented by [44]

y(x) = μ(x) + rT(x)R−1(ŷ − μ(x̂)) (6)

where x̂ = [x̂1 x̂2, . . . , x̂ p]T and ŷ ∈ IRp together comprise a
set of p training samples; the evaluation of each element of
x̂, x̂i ∈ IRn, by the unknown function has yielded ŷi = τ (x̂i).
R is the empirical covariance matrix such that Ri, j = κ(x̂i , x̂ j)
and rT(x) = [κ(x, x̂1) κ(x, x̂2), . . . , κ(x, x̂ p)]T.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: LEARNING TERRAIN DYNAMICS: GP MODELING AND OPTIMAL CONTROL ADAPTATION FRAMEWORK 5

B. Learning Ground Forcing as a Function of State

To construct a learning-enabled dynamical model of 1-D
hopping, we begin with (1). However, ground forcing, Fsub,
will instead be formulated as the summation of multiple
components, one of which is a GP

Fsub(x) = FSG
sub (x) + μ(x) + rT(x)R−1(ŷ − μ(x̂)) (7)

where again x̂ and ŷ comprise training data; x̂i ∈ IR4 and
ŷi ∈ IR together comprise a training tuple, identifying a point
in the state space and the corresponding ground force expe-
rienced, respectively. For subsequent reference, these tuples
compose the reference training data set,
 = {(x̂i , ŷi) : i ∈ N,
i ≤ p}, where p = |
| designates cardinality of the data set.

FSG
sub (x) is defined by (2). When no training data has

been collected, the latter two components of (7) vanish, and
the model reduces to the baseline solid ground assumption.
As training data are collected, the latter two terms of (7) model
components of terrain forcing that represent defects from a
rigid surface environment.

A global linear trend, μ(x) = f (x)T	, is extracted from
the training data, after which residuals from this global trend
are modeled by the GP in the final term of (7). To compute
μ(x), let f (x) = [1 x f ẋ f α α̇]T. Then, the corresponding
linear coefficients are computed in closed form from a damped,
weighted least-squares fit

	 = (
FT R−1 F + ρμI

)−1(
FT R−1�̂

)
(8)

where �̂ = [(ŷ1 − FSG
sub (x̂1), . . . , (ŷ p − FSG

sub (x̂ p))]T. F =
[f (x̂1) f (x̂2), . . . , f (x̂ p)]T and p denotes the cardinality of
the training set [44]. ρμ is a damping parameter influencing
the pseudoinverse of F .

We have applied a weighted least squares fit as a
low-complexity approach to extract a coarse global trend,
μ(x), for the terrain forcing function being approximated. The
GP then regresses over the function’s residual that remains
after this underlying trend has been removed.

C. State Smoothing

Ground forcing, Fsub, applied during the course of the hop-
per trajectory must be recovered to train the GP-based model
of (7). Any direct sensing of this quantity is assumed absent.
Through recovery of the relevant quantities from the first
equation of (1), however, Fsub can be computed. We assume
the state of the system, x = [x f ẋ f α α̇], is completely
observable. In particular, however, acceleration associated with
the foot, ẍ f , is not immediately and conveniently accessible.
To recover this quantity, measured trajectory data produced
by the dynamical system, (1), is subjected to a fixed-lag
Kalman smoothing process with trivial integrator dynamics.
The output of this process is a smoothed state trajectory,
xs(t) = [xs

f (t) ẋ s
f (t) ẍ s

f (t) αs(t) α̇s(t) α̈s(t)]T, providing the
missing quantity ẍ s

f . Substrate forcing is then estimated as a
function of the smoothed system state

Fs
sub(t) = m f g − [

k
(
αs(t) − ᾱ

) + cα̇s(t)
] + m f ẍ s

f (t). (9)

This smoothed trajectory and recovered forcing data is
appended to the training data set,
 =
 ∪ {(x̂i , ŷi)},

where x̂i = xs
i and ŷi = (Fs

sub)i . Time parameter, t , has been
replaced by discrete time index, i .

D. Data Curation

GP training incurs matrix inversion costs whose complexity
is O(p3) in the worst case. Evaluation cost of the GP-based
regression model, (7), scales linearly with the cardinality
of the training set, e.g., it is O(p). When used within the
numerical optimization method, the cost of gradient evaluation
will naturally scale with the number of terms required to sym-
bolically express the GP-based model of Fsub. This scales by
the evaluation cost O(p) for each gradient iteration. To speed
up the learning and optimization computations, we incorporate
a data sparsification procedure that trains a GP model from a
subset of the full data set [31], [32], [45].

An initial data set,
 = {(x̂i , ŷi) : i ∈ N, i ≤ p}, with
cardinality p = |
| is reduced to the subset
̄ ⊆
 via an
iterative procedure. Initially,
̄ = ∅. Each iteration then selects
a random element of the set, (x̂cent, ŷcent) ∈
, to serve as a
center; all elements falling within its shadow are culled

cull = {
(x̂i , ŷi) ∈
 : ‖x̂i − x̂cent‖� < �−2

cull

}
. (10)

The threshold �cull determines which elements are to be culled
and associated with the center element, (x̂cent, ŷcent). The
scaled Euclidean distance ‖·‖� is the weighted �2-norm, with
respect to the GP squared exponential kernel’s bandwidth
parameter, �, in (5). The center is appended to the reduced
data set,
̄ =
̄ ∪ {(x̂cent, ŷcent)}, and the reference data set
updated,
 =
 \
cull. This procedure repeats until
 = ∅.

After every hop, when a new set of batch data is to be assim-
ilated into the GP model, data sparsification is first applied.
Training with the reduced set
̄ uses a density-weighted pro-
cedure that factors in the removed data [45] when performing
the matrix inversion during GP training. Data accumulates into
the set
̄ as needed (based on �cull).

IV. ITERATIVE OPTIMAL CONTROL-
LEARNING FRAMEWORK

The dynamics model, force recovery procedure, and learn-
ing process contribute to an online, iterative optimal control
synthesis and learning framework [35]. In a prior imple-
mentation of the framework, a cyclic procedure (Fig. 1) to
generate an optimal motion plan, apply it to a robotic hopper,
then collect trajectory data and retrain a GP-based model of
ground forcing, resulted in optimal control solutions whose
predicted hopper trajectories coincided with simulated reality
after a few control-learning iterations. This section delineates
the procedure and supporting components.

A. Optimal Jumping Control

This work leverages trajectory optimization methods to
generate an optimal control solution, u = β∗. Using a direct
collocation approach, a trajectory optimization problem is tran-
scribed into a large-scale nonlinear program (NLP) [46], [47].
An NLP formulation allows casting of hard constraints, such as
physical and task constraints, as inequality/equality constraints

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

rather than as weighting factors within the objective function.
Furthermore, direct collocation approaches admit computation
of all objectives, constraints, and derivatives thereof in closed-
form.

In this work, objectives, constraints, and their respective
derivatives are all exported as closed-form expressions by a
MATLAB-based parser [48]; the resulting NLP is solved using
Interior Point OPTimizer (IPOPT) [49], a large-scale interior
point solver. We approximate the trajectory using N = 31
trapezoidally integrated collocation points for each of the
stance and flight phases of this hybrid system (62 total).

The optimal control specification and problem setup follows
that of [4]. We begin by rearranging our system dynamics
into a typical set of first-order ordinary differential equations
(ODEs), ẋ = f (t, x, u(t)), where t , x, and u(t) are time, state,
and time-varying control inputs, respectively. Collocation
methods discretize the optimal control problem and then apply
a numerical optimizer on the discrete set of variables defining
the piecewise state and control trajectories. This includes a
discrete time tape, td

i , where 0 = td
0 < td

1 < td
2 <. . .< td

N =
T d , and state variables, xd

i , and control inputs, ud
i , where

i ∈ {1, 2, 3, . . . , N − 1}. Variables are duplicated for each
dynamical domain, d ∈ D = {stance, flight}. The variables,
xd

i , ud
i = β∗,d

i , and td
i , are free variables for the optimization

process to determine. In this manner, durations of each dynam-
ical domain, T d , are free to be designed as well. A vector of all
optimization variables, w = {xd

i , ẋd
i , ud

i , β̇
∗,d
i , td

i }, is built from
states, first-order time derivatives, and control inputs, over all
i and d defined. Depending on the motor’s internal control
loop, definition of additional design variables was required to
encode the first-order dynamics of integral control terms.

Each discrete point, i , is rendered dynamically consistent
with the next point, i + 1, via “defect” constraints in the NLP,
which approximate implicit integration

(
xd

i+1 − xd
i

) − 1

2

(
td
i+1 − td

i

)(
ẋd

i+1 + ẋd
i

) = 0 (11)

ẋd
i − f

(
td
i , xd

i , ud
i

) = 0 (12)

for all i , derived from a trapezoidal integration scheme.
The equations of motion f include the GP-based forcing
model Fsub in symbolic form.

The control task is to achieve a specified “jump height”
defined as the difference between the initial rod height, x0

r ,
and the rod’s highest point during the jump, x f

r , as shown
in Fig. 2(b). Consequently, targeted jumping requires adding
an equality constraint x f

r −x0
r = h∗ with h∗ equal to the target

jump height.
In hardware implementation, the true actuation signal, β̈,

arises from a low-level trajectory tracking control loop applied
to the linear motor of Fig. 2(a). The closed-loop motor
dynamics introduce a dynamic response that impacts jump-
ing performance. We explicitly account for these tracking
dynamics in the optimization by modeling the control loop
as part of the system dynamics [4]. In brief, the solution, u,
is computed with anticipation, both of how the tracking will
perform given the closed-loop dynamics and the saturation
limits of the actuator force, Fm .

The objective function is defined

J(w) =
∑
d∈D

[
td
2 − td

1

2
J
(

xd
1 , ẋd

1 , ud
1, β̇

∗,d
1

)

+
N−1∑
i=2

td
i+1 − td

i−1

2
J
(

xd
i , ẋd

i , ud
i , β̇

∗,d
i

)

+ td
N − td

N−1

2
J
(

xd
N , ẋd

N , ud
N , β̇∗,d

N

)]
(13)

where J (·) is the integrand of a continuous-time cost.
We defined the objective integrand to be J = β̇∗,d

i (t)2, which
penalized actuator velocity as a proxy for energetic cost and
also favored more-easily trackable position trajectories on
hardware. One could substitute instantaneous power as the
objective; however, such power minimizing solutions tend
to rail actuator forces violently between zero and nonzero
values. Such “banging” strategies are typically more sensitive
to timing errors in hardware implementation.

The resulting NLP is

w∗ = argmin
w

J(w) (14)

s.t. wmin ≤ w ≤ wmax (15)

cmin ≤ c(w) ≤ cmax (16)

where c(w) represents the concatenation of all constraint
functions, including defect constraints (11) and (12) and
task constraints, such as jumping height, actuator limits,
workspace/acceleration limits, and so on [4]. The optimization
routine was tasked to return a locally optimal control trajec-
tory. In addition to the other states in w, the optimization
returns a vector u = β∗ comprising the concatenation of
sequences, β∗,stance

i and β
∗,flight
i . In implementation, IPOPT

solved the NLP to a tolerance of 10−9, for both feasibility
and duality. All told, the optimal control computations were
performed given (1) an a priori robot model, (2) an a priori
model of the motor control loop, and (3) a GP-based model
of the terrain forcing.

B. Iterative Optimal Control and Learning

We apply an iterative control-learning procedure to recover
a GP-based dynamical model of the 1-D hopper system,
described jointly by (1) and (7). While hopping on an unknown
surface, the forcing profile that surface exerts as a function
of the system state, x, will be simultaneously learned. Prior
to any experimental attempts, the reference training data set
is empty,
 = ∅, corresponding to the zero function for
any learned components of the unknown forcing model. Each
learning iteration begins with the hopper at rest on the jumping
surface. An optimizer then employs the GP-based dynamical
model, described by (1) and (7), to generate an optimal control
signal enabling a target peak jump height to be attained, while
minimizing actuation effort. The control signal is subsequently
applied to the 1-D hopper. If the target peak jump height is
not attained using the generated control signal on the surface,
trajectory data are collected, smoothed, and substrate forcing,
Fs

sub(t), is recovered per (9). The reference training set,
,

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: LEARNING TERRAIN DYNAMICS: GP MODELING AND OPTIMAL CONTROL ADAPTATION FRAMEWORK 7

Algorithm 1 Iterative Hopper Control and Learning

is augmented with the computed tuples, (xs(t), Fs
sub(t)), for all

discretely measured t . This training set is limited to trajectories
and corresponding forces occurring during the stance phase of
the jump prior to the hopper transitioning to the flight phase.

The reduced training data set,
̄, is extracted from the
cumulative reference set,
, with cardinality k ≤ p. It is
used to update the GP-based model of substrate forcing.
First, the deviation of Fsub(x̂) from the equivalent solid
ground forcing profile, FSG

sub (x̂), is computed and a global
linear trend is extracted, using (8) to compute the linear
coefficients. The GP is trained on the remaining residual,
Fsub(x̂)− FSG

sub (x̂)−μ(x̂), and represents a regression estimate
of this quantity over the state space. This process then repeats,
with the optimizer informed by a newly trained GP-based
approximation of terrain forcing. Algorithm 1 sketches the
iterative optimal control and learning process.

V. EXPERIMENTAL VALIDATION

Preliminary validation of the simultaneous control and
learning approach, detailed in Algorithm 1, was demonstrated
in simulation [35]. When challenging the hopper to learn
the forcing profile associated with an unknown, simulated
GM surface, the target hop height was achieved by the third
control-learning iteration. Fig. 3 shows outcomes produced in
a similar simulated environment, where the hopper model and
learning parameters have been updated to reflect those applied
in follow-on physical experiments (Sections V-A and V-B).
Results of each control-learning iteration, in Algorithm 1,
are depicted. The target jump height is achieved, within
approximately 3% error, with the final jump. Hopping with the
learned model was a significant improvement over the initial
model, which yielded a 22.36 mm (or 74.5%) error. It showed
that significant practical improvements can occur over

relatively few iterations when the problem and observations
are formulated to emphasize the uncertainty in the system
(here, the unknown terrain forcing model) as opposed to
attempting to learn the entire set of dynamics. A comparison
of the underlying ground reaction force models, seen in Fig. 3
(right-hand side), shows that the GP-based estimate of ground
forcing converges to the true model. This behavior underscores
how a learned model approach can yield quickly adaptive
behaviors in robotic applications for a targeted task. To con-
firm whether the situation would be reproduced in reality,
we applied the same iterative control-learning procedure to a
physical robotic hopper. This section describes the experiments
and their outcomes.

A. Experimental Apparatus

The experimental setup of [4] and [16], with minor mod-
ifications, was utilized to generate all experimental results
presented in this section. It is shown in Fig. 4(a) on the left
together with an annotated model on the right describing the
motor, foot, and rod properties associated with (1). A coil
spring couples the foot to the bottom of the thrust rod. The
motor actuates along the rod and is additionally mounted to a
low friction air-bearing, vertical linear slide. This restricts the
motion of the entire hopper apparatus to a single dimension.
The foot of the robot is the only component to interact
with any jumping surface and is composed of a lightweight,
3-D printed cylinder with base radius, 38.1 mm, and height,
35 mm. Fig. 4(b)–(d) shows the three categorically distinct
surface types employed during the experiments: solid ground,
a trampoline surface, and a GM bed.

Performance of Algorithm 1 was evaluated for control tasks
requiring the hopper to achieve a range of targeted peak jump
heights. Jump heights were defined to be the maximum tracked
height attained by the rod marker, relative to its resting position
at the start of the jump, shown in Fig. 2(b). To facilitate the
measurement of state variables x f and xr , spherical, white
markers were mounted to both the foot and rod, respectively.
A gray-scale PointGrey Grasshopper camera with a high-frame
rate (200 Hz) was positioned to simultaneously capture both
markers during the course of each experiment. Marker tracking
was performed frame-to-frame.

B. Experimental Procedure

In the interest of repeatability and consistency across exper-
imental trials, we defined and followed an experimental proto-
col, with minor adjustments for each terrain tested. To reduce
the impact of transient effects after setting the hopper in its
initial resting configuration, a waiting period was observed
after lowering the robot onto the experimental terrain and
commanding initial motor position, β∗

0 . For each surface, this
pause allowed spring-induced oscillations to dampen out (from
the hopper spring or the trampoline). On GM, additional
procedures were in place to ensure reproducible outcomes.
Preceding execution of any robotic jump, the hopper was
elevated off the GM surface. The bed of poppy seeds was
then fluidized using a 5-hp air blower through a flow diffuser
at the bed’s base. Cessation of airflow then led to a consistent,

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 3. Simulation of Algorithm 1 jumping experiments on GM, with the goal of achieving a 30-mm jump height (as measured by the rod position),
is illustrated in the three leftmost plots. In three iterations of learning → planning → jumping, the simulated jumping task improved in accuracy from 74.5%
error to −3.2% error. The evolution of the ground reaction force prediction, across three iterations, is shown in the rightmost plot. Each iteration updated
the GP-based model, from which a new strategy was computed by the motion planning optimizer. By the third iteration, the actual experienced ground force
sufficiently matched the GP prediction to achieve a jump apex with −3.2% error.

Fig. 4. (a) Experimental Hopper: one-dimensional, vertical robotic hopper resting on a bed of poppy seeds (left-hand side) and a free-body diagram
representation of the hopper model (right-hand side), illustrating motor (dark gray), foot (light gray), and rod (white) and model parameters. (b)–(d)
Hopping experiments applied the iterative control-learning framework to 3 surfaces types with categorically distinct robot-terrain dynamics (b) solid ground,
(c) trampoline, and (d) GM.

loose-packed terrain state [4], φ = 0.57, after which the
hopper was lowered to rest on the GM bed, in preparation
for jumping.

The experimental apparatus had a specialized terrain bed
constructed for the experiments (Fig. 4). The most important
consideration was to ensure that the GM terrain type was
properly configured. In these experiments the GM surface was
realized by a bed of poppy seeds (∼1-mm diameter) [16].
A generously sized 56 cm × 56 cm glass container was filled
with poppy seeds, to a depth of 15 cm, to avoid boundary
effects associated with walls of the container [Fig. 4(d)]. The
solid ground and trampoline terrain types involved placing a
custom object over the GM bed. For solid ground, the object
was a 12.7-mm-thick aluminum plate, as shown in Fig. 4(b).
The plate was mounted and leveled, such that the surface plane
normal aligned with the gravitational force vector. For the
trampoline, the object was an elevated, hollow square frame
(46 cm × 46 cm) outfitted with a thin, elastic rubber sheet
secured to the frame’s borders [see Fig. 4(c)]. The setup was
configured such that the hopper foot maintained its position
at the center of the terrain bed during the course of all
experiments.

The three terrain types were chosen because of the distinct
behaviors they each exhibit. The GM bed behaves as a
soft dissipative surface; energy expended by the hopper is
absorbed by the GM and never restored. The elasticity of
the trampoline’s rubber sheet confers energy-restorative (as
opposed to dissipative) properties to the soft surface. Lastly,
solid ground represented the baseline condition, where no
learning should be required (outside of minor modifications
to correct for incorrectly identified system parameters). For
each terrain type and hop height, we performed ten runs of an
optimal control trajectory that would meet the hop height. The
standard deviation (SD) of hop height was then measured to
serve as an indication of the natural variance associated with
the task. Repeatability of task convergence, for the hopper,
cannot be better than this natural variance.

Additional parameters influencing performance of the sys-
tem and Algorithm 1 are detailed in Table I (i.e., GP and
data curation parameters). A single set of GP hyperparameter
values were used for all experimental trials. These hyperpa-
rameters were held static across all experimental iterations
of Algorithm 1, irrespective of the targeted jump height or
terrain class. Variation of the data curation parameter, �cull,

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: LEARNING TERRAIN DYNAMICS: GP MODELING AND OPTIMAL CONTROL ADAPTATION FRAMEWORK 9

Fig. 5. Hopper was tasked to jump to four different peak heights (dark green line) on each surface type, in accordance with Table II (a) solid ground, (b)
trampoline surface, and (c) GM. Peak jump heights, over the course of 15 control-learning iterations, were measured. Task completion was declared when
±5% of the target jump height was attained (shaded green). Error bars show 1 SD associated with jump height measurements on a particular surface. If not
visible, it is because the variability is low.

TABLE I

GP LEARNING PARAMETERS

TABLE II

EXPERIMENTAL TRIALS

occurred by surface type and was primarily motivated by
a desire to achieve roughly equivalent reduced data set
cardinalities, |
̄|, across the experiments.

The carefully engineered experimental environment, in con-
junction with the established experimental procedure, was nec-
essary to evaluate the efficacy of the iterative control-learning
procedure, Algorithm 1. This experimental structure ensured
that all relevant variables were controlled in order to quantify
the effectiveness of Algorithm 1, in a consistent and highly
repeatable manner. Future work will extend the evaluation of
this control-learning approach to additional challenging terrain
profiles in less controlled experimental settings.

C. Task: Jump to Target Height

On each terrain type, the robotic hopper was tasked to
achieve a set of different peak jump heights (Table II),
all realizable for the terrain in question. For each experi-
mental trial associated with a particular target jump height,
15 control-learning iterations from Algorithm 1 were executed.
At the start of each trial, both the reference and reduced
training data sets were initialized,
 = ∅ and
̄ = ∅,

prompting the GP-based model, (7), to presume rigid ground
dynamics. Peak hop heights attained during each iteration were
recorded to capture the progress of the system over the course
of a single trial. Fig. 5 shows the outcomes, per terrain type
and jump height, over the trials.

D. Results: Achieving the Target Jump Height

As Fig. 5 demonstrates, through successive optimal
control-learning iterations, the robotic hopper attained each
targeted jump height regardless of its initial ignorance of
the particular ground dynamics influencing the system. The
shaded green regions show ±5% bounds with respect to each
targeted jump height (solid dark green lines); we equate these
shaded regions to task completion, for the purposes of this
study. The plots are broken down by terrain type: solid ground
[Fig. 5(a)], trampoline [Fig. 5(b)], and GM [Fig. 5(c)]. Each
colored line shows the peak jump height measured over the
course of successive optimal control-learning iterations for a
particular targeted jump height. Error bars illustrate ±1 SD,
characterizing variance in measured experimental jump heights
on a particular surface type. If not visible, then the error
bar is smaller than the plotted dot’s radius, meaning that
the experimental variance is small. From the plots, only the
GM terrain has an experimental variance on par with the
plotted ±5% error region. Convergence to within 5% error
typically occurred within 10 to 11 iterations, as seen by the
experimental traces lying within the shaded green bands. The
majority of progress, to achieve each desired jump height, was
made within the first six iterations (error less than 10%). The
remaining iterations saw the convergence of the measured peak
jump heights toward the targeted height.

During solid ground experiments [Fig. 5(a)], the initial
predicted model was sufficiently close to reality such that
measured jump heights were within the 5% window on the
first hop (i.e., Iteration 0), but consistently below the target
height. Higher target jump heights led to a greater initial
error, which was corrected within two jumps as the system
refined its parametric model of the ground interaction forces
and instantiated a GP model for additional corrections. Across

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 6. Spatial rod (top), xr , and foot (bottom), x f , trajectories progress toward task completion as the GP-based model becomes incrementally better
informed through accumulated experiential data. Trajectories measured for control-learning Iterations 0–3, 6, 10, and 15 are illustrated, where a jump height
of 60 mm was targeted on each surface type (a) solid ground, (b) trampoline surface, and (c) GM.

the learning iterations, the median error for each target height
was close to the initial error at Iteration 0.

The trampoline peak height graphs in Fig. 5(b), indicate
consistently incorrect hop heights were achieved during
Iteration 0; they all fell short of targeted hop heights by
more than 40%. After accumulating ground reaction force
data and learning a revised model from the data recovered
during Iteration 0, the subsequently synthesized control then
drove the hopper to overshoot the target height, in Iteration 1
(with the exception being the target hop height of 60 mm).
By Iteration 6 and onward, measured peak jump heights
converged toward the target height, remaining within a
±5% vicinity. Importantly, from Iteration 3 to Iteration 6,
the peak height outcomes lay within 10% of the target height.

Similar outcomes were seen for the experiments on GM,
in Fig. 5(c); only, the initial errors were greater and in the
range of 55% − 65%. As GM is energy dissipative in nature,
the energy expended by the robotic hopper to deform the
terrain was dissipated and never restored. By Iteration 3, peak
heights were within 10% of the target height and remained
there. Iterations 6–10 consisted of learning trials whereby
recovered data better informed the dynamics, and subsequently
the optimizer, in order to synthesize an appropriate control
signal. By Iteration 10, the system was capable of synthesizing
control signals whose outcomes were within 5% of the target
hop height. Considering that the natural variability of hopping
on GM (for repeated runs of the exact same signal) was as
large as or larger than the 5% bounds, one could conclude
that learning occurred within seven hops for almost all of the
cases.

When considering the simulated outcomes of Fig. 3,
the experimental outcomes are quite close. In the case of
GM, experimental variation provides additional sources of
discrepancy. These, however, do not prevent the learning
rate from being roughly equivalent; experimental learning
convergence did not differ by an order of magnitude versus
simulation. Overall, the outcomes indicate that the preliminary
findings from [35] are experimentally reproducible for GM
and other terrain types (here, the trivial solid ground and
trampoline surfaces).

E. Results: State Space Exploration
To explore the experimental results further, this section

reviews the evolution of the hopper state–space trajectories
over successive learning iterations, as shown in Fig. 6, for
the case of a task hop height of 60 mm. Early iterations are
colored red with later iterations trending to blue. In the case
of solid ground [Fig. 6(a)], all measured trajectories closely
overlapped with that of Iteration 0; accumulated experiential
data introduced little to be learned since the GP-based model’s
baseline presumption of rigid ground dynamics already served
as a sufficient model of the terrain. For the other surfaces,
the measured trajectories undershot the desired target height
in Iteration 0. The undershoot was corrected during subsequent
iterations, with trajectories clustering as less novel experiential
data was accumulated by the GP, and the targeted peak jump
height was effectively attained.

Fig. 7 shows the iteration-to-iteration progression of the
hopper state trajectory for a target jump height of 60 mm,
on each terrain class. Although the hopper state space is 4-D,
the state coordinate α̇ is absent from this plot since we may
visualize up to three dimensions. We found α̇ to be the
least influential coordinate for the recovered ground forcing,
Fsub, as computed from the inverse dynamics of (1). The
coordinate α̇ informs (1) solely through a damping term, cα̇;
the small damping coefficient, c, makes this term negligible,
especially compared with its neighboring term that captures
more dominant spring stiffness effects. Through Fig. 7, a more
complete illustration is provided of the trajectories explored
by the robotic hopper while exercising Algorithm 1 over the
course of successive control-learning attempts. Because little
is learned during the course of a solid ground trial, the initial
trajectory traveled, in Fig. 7(a), clustered closely with trajec-
tories measured during subsequent iterations. On the GM and
trampoline surfaces [Fig. 7(b) and (c), respectively], however,
a greater separation was present between trajectories during
early iterations, as new experiential data more drastically
refined the GP-based model of ground reaction forcing. As the
model began to coincide with reality and the task objective was
met, the trajectories produced in later iterations also aligned
with optimizer predictions. Trajectories measured during late

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: LEARNING TERRAIN DYNAMICS: GP MODELING AND OPTIMAL CONTROL ADAPTATION FRAMEWORK 11

Fig. 7. Stance phase hopper state trajectories explored over successive iterations for a target jump height of 60 mm (a) solid ground, (b) trampoline surface,
and (c) GM.

Fig. 8. Predicted (dashed red) versus measured (dark green) ground forcing (a) solid ground, (b) trampoline surface, and (c) GM.

iterations incurred only minor changes, having already accom-
plished the desired task.

F. Results: Ground Reaction Force Prediction

Success at the task objective relies on accurate force pre-
diction for the synthesis of a task-achieving control signal.
Using force recovery via inverse dynamics of (1), as employed
for learning, we compare actual ground reaction forcing,
recovered from measured jump trajectories, with the force
predictions used to craft the corresponding control.

The GP-based model of Fsub entails a baseline assumption
of rigid ground dynamics, in the absence of any training data.
Then, we expect the predicted ground forces to coincide with
the recovered ground forcing in the solid ground experiments.

Because the true ground forcing model should already closely
coincide with the baseline assumption of (7), in this context,
Iterations 1 and onward should introduce few if any, drastic
defects with respect to the baseline solid ground dynamics.
Fig. 8(a) shows a comparison of the predicted and actual
recovered ground reaction forcing, applied by solid ground
terrain, over the course of 15 control-learning iterations where
a target peak jump height of 60 mm was commanded. Ground
reaction force predictions align very closely with actual recov-
ered measurements of Fsub in most iterations. Shaded green
shows a 2 SD region associated with force measurements.
Associated measurements of the area under the plots are found
above and to the left of each plot.

The trampoline and GM cases are a bit more interesting.
The underestimated trampoline forcing in Iteration 0 of

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 8(b) illustrates the mismatch between reality and the
GP-based model’s prediction (initially solid ground). The areas
under the predicted and actual recovered ground forcing plots
(i.e., effective work exerted on the hopper) are indicated in
red and green texts, respectively, above each forcing plot
in Fig. 8(b). As iterations proceeded, these values began to
coincide, along with the overall shapes. The actual measured
forces do not precisely match, with the trampoline error being
the largest. The mismatch for both scenarios is offset by higher
than actual force predictions prior to- and after- the actual
recovered force profile’s peak time. Despite this, we observed
that the total area under the actual and predicted forcing
profiles (i.e., total work) still proceeded to align over the
course of 15 control-learning iterations.

For the GM case in Fig. 8(c), the force predictions better
matched the actual trend experienced in reality. As the learned
ground forcing model permitted improved predictions of the
achieved hop height, the synthesized control signals exhibited
less deviation from one iteration to the next.

The three sets of forcing plots for Iteration 15 have visually
different profiles. The trampoline force plot has a lower peak
value and a larger spread than that of the solid ground model.
Furthermore, there is a small force increase at the tail end of
the jump maneuver relative to the solid ground model. This
may be the optimizer attempting to gain extra forcing from
the elastic surface prior to losing contact. The actual hopper
motor trajectories to be discussed in Section V-G provide
further evidence for this assertion. In contrast, the GM force
profile is more peaked, in the sense of having a higher peak
value and a lower spread relative to solid ground. Further-
more, there is a clear transition from a single “hump” to a
double “hump” forcing profile, between Iterations 1 and 2
in Fig. 8(c). This suggests a shift in the control strategy
generated by the optimizer. This strategy is accentuated with
successive iterations, leading to a small initial peak in the force
profile, following by a later, larger peak, consistent with a
double-pump motor action. Prior research uncovered a similar
motion strategy, whereby the “delayed stutter jump” exploited
GM jamming phenomena to improve jump height [16]. Here,
the optimal hopping strategy appears to be exploiting similar
phenomena to induce higher forces than would be generated
by a single-pump control trajectory. More evidence for the
double-pump will be seen when reviewing the experimental
motor control trajectories. Ultimately, as the system learned
the unique forcing profile of each terrain type, customized
control strategies arose from the exploitation of these forces to
achieve the specified task objective. These customized control
actions formed quickly (within two hops), and converged to
an optimal response shortly thereafter (usually within four
more hops), becoming more refined as more forcing data were
collected.

Discussion (Proposed Approach Versus RL): RL has
emerged as a popular approach to solving for the optimal
policy in a model-free manner with some generalization
capacity. As noted in the literature review of Section I-A,
RL approaches typically fall into one of two categories.
In the first, they require offline, a priori training to provide
a strong prior during deployment that can be refined through

additional experience and exploration. In the second, where
only online learning is involved, they require a large number
of iterations to establish an ideal policy for a given task.
The generalization to variations in the task will require
more iterations, usually in direct proportion to the variation.
These properties hold for traditional RL, and for deep RL
methods. The training data requirements are a function of the
model-free or model-minimizing nature of RL approaches.
Methods reflecting a mixture of these two categories reflect
some mix of the two properties. Here, instead of removing
the role of the model, the described iterative-learning method
aims to overcome the model’s limitations through online
learning. An idealized, but inaccurate model, still provides
a sufficiently good prior from which to hypothesize optimal
control strategies for achieving a specified task. The current
results show that learning the mismatch during the course
of execution, plus using it to revise the model accordingly,
leads to task achievement within a few iterations. It suggests
that any engineering knowledge used to design a control
system has value when deployed toward a task, even when
there is substantial uncertainty in its fidelity. The inclusion
of adaptive or learning components will permit the rapid
realization of the task without requiring a priori knowledge
of the scenario’s properties. The generalization to parametric
task variation is handled by the optimal control synthesis step.

G. Results: Control Trajectories

Observations made when examining the evolution of the
forcing profile are further supported by the evolution of
the control signal, β∗, the output from the optimal control
synthesis described in Section IV-A (Fig. 9). Reference motor
trajectories, β∗, are shown in dashed green; actual motor
trajectories, β, are shown in red. Just as the learned forcing
profiles for the three terrains differed, therefore, too did the
control strategies. The solid ground trajectory [Fig. 9(a)]
converged to a policy that pushed, paused slightly, then
pushed further before quickly retracting (higher downward
slope than there was an upward slope initially). The forcing
profiles in Fig. 8(a), however, are absent of any similar
“kinks.” We find the initial pump injected sufficient energy to
continue robot spring compression during the brief actuation
pause. In this manner, a smooth forcing profile still resulted,
per (2). The subsequent pump then continued the compres-
sion. Influenced by the selected objective function, (13),
the optimization effectively exploited robot spring dynamics
to minimize (β̇∗(t))2 terms. In contrast, for the trampoline
surface, the pause was extended in time and occurred during
the period of peak rod contraction, where the trampoline’s
restorative elastic forces were greatest. The slope of the motor
retraction phase was also smaller, indicating less of a need to
retract from the surface, compared with solid ground scenarios,
and instead exploit the trampoline’s elastic response. Lastly,
for the GM case, the inflection point in the motor trajectory,
which developed by Iteration 2, was further exaggerated
during subsequent optimization iterations. A pause, similar to
that observed for the solid ground scenario, was effectively
advanced in time and made more pronounced, along with a

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: LEARNING TERRAIN DYNAMICS: GP MODELING AND OPTIMAL CONTROL ADAPTATION FRAMEWORK 13

Fig. 9. Synthesized control inputs (a) solid ground, (b) trampoline surface, and (c) GM.

Fig. 10. (a) Mean, over all experimental runs, of each of the reference and reduced training set cardinalities (|
| and |
̄|, respectively) are compared across
15 control-learning iterations. (b) Mean of |
̄|, as a percentage of |
|, is additionally depicted across successive iterations, demonstrating a linearly decreasing
trend; while |
| grows linearly, |
̄| grows sublinearly.

more gradual transition from the first short peak to the next
larger peak. This feature signified the switch from a single
push to a double push strategy as the optimization’s means
of exploiting the learned terrain dynamics. The converged
optimal control solutions inherently depend on the GP-based
model of the terrain reaction forces. This computed control
input evolves as the GP’s understanding of the terrain is
incrementally refined.

H. Results: Training Set Reduction
The applied data curation procedure (Section III-D)

is designed to target system bottlenecks with respect to
computational complexity and further facilitate online
application. Computational costs are primarily driven by the
cardinality of the training set used to train the GP-based
model, (7). Fig. 10(d) shows the accumulated cardinalities for
the full reference data set,
, and the reduced set,
̄, over the

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 11. Simulation analysis of data curation performance impact. (a) Algorithm Performance: Comparative experiments were run, in simulation, of Algorithm 1
with and without data curation. For a target jump height of 60 mm on GM, an average of 7.43 and 6.14 iterations were run prior to achieving the target
height and learning the terrain model, with and without data curation, respectively (top). Mean iteration-to-iteration training set cardinalities, |
| and |
̄|, were
collected as well (bottom). (b) Computational Performance: GP training durations and average CPU time (per step) utilized during gradient descent-based
search for optimal trajectory solutions. Measurements corresponding to simulated experiments with and without data curation are indicated by different colored
symbols. Time spent to curate the data was recovered by improved optimization iterations.

course of successive control-learning iterations. Mean training
set cardinalities across all experiments for each terrain type,
versus the learning iteration, are plotted. Data growth of
 is
linear, whereas the reduced set growth is sublinear, as can be
seen by the diminishing percentage retained with respect to
the full reference set, |
̄|/|
|, in Fig. 10(b).

Comparative analyses of computational performance associ-
ated with data curation, in Algorithm 1, was further studied in
simulation. The robotic hopper and experimental GM terrain
were replaced by a simulated model, in which measurement
noise was injected to mimic real-world uncertainty in observed
hopper state trajectories (and indirectly in subsequently recov-
ered terrain forcing profiles). Fig. 11(a) (top) shows the
mean number of control-learning iterations, in Algorithm 1,
simulated on the GM terrain prior to attaining the targeted
jump height of 60 mm. With data curation in place, an average
of 7.43 control-learning iterations was needed. Without data
curation, an average of 6.14 iterations was needed. Mean car-
dinalities describing the full versus reduced data sets, over the
course of several iterations, are shown in Fig. 11(a) (bottom).
Computational performance is captured in Fig. 11(b). Here,
we illustrate measurements of CPU time utilized during both
learning and trajectory optimization, with respect to train-
ing set cardinality. Measurements collected during simulated
experiments that employed data curation are shown in purple;
those associated with experiments absent of any data curation
are shown in green. Computational timing associated with
learning (triangles and circles) does not exceed 11 ms in these
experiments; for large data set cardinalities, it remains orders
of magnitude less than time spent during even a single step
of the gradient descent-based trajectory optimization (asterisks
and crosses). Computation associated with both learning and
optimization was performed in MATLAB (for both physical

and simulated experiments). These results demonstrate, espe-
cially at later control-learning iterations where |
̄| is a fraction
of |
|, data curation greatly ameliorates the computational
penalty associated with large reference data sets,
, without
severely increasing the number of control-learning iterations
needed to accomplish the specified task.

VI. CONCLUSION

This work proposed and presented experimental validation
of an iterative adaptation framework combining GP modeling
with optimal control methods. The approach is especially
promising in the context of terradynamic applications,
where accurate environmental models are scarce or entail
empirical characterization efforts ill-suited for practical, rapid
robot deployment. As an example application for learning
presumed-unknown dynamics in the context of dynamic
robotic maneuvers, we addressed the problem of robotic jump-
ing on dissipative poppy seed GM, energy-restorative tram-
poline material, and solid ground. With every jump, the robot
incrementally learned the terrain dynamics and reoptimized
its control strategy to accommodate new understanding. After
five jump attempts, the robot reached to within 10% of the
targeted jump height. After ten jump attempts, it developed a
strategy to leap within 5% of the targeted jump height.

While jumping is a lower dimensional task model for
legged locomotion, this work demonstrates that the key tools
of model-based legged locomotion control are tractable even
when the terrain dynamics, a key component of the model, are
initially unknown and learned on-the-fly. Otherwise, the neces-
sity to manually characterize complex deformable terrain
would hinder locomotion in natural environments where the
class of terrain (or even terrain parameters) can change dras-
tically. This work experimentally demonstrated that dynamic

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: LEARNING TERRAIN DYNAMICS: GP MODELING AND OPTIMAL CONTROL ADAPTATION FRAMEWORK 15

locomotion tasks can be achieved precisely even when key
system quantities begin poorly modeled or entirely unknown.
Specifically, incremental learning of the unknown external
forcing, during the course of iterative control synthesis and
execution, can be accomplished in only a handful of repeti-
tions. Though promising, one aspect not considered was safety
or stability during the learning iterations. We aim to consider
this in future efforts.

REFERENCES

[1] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Trans. Autom. Control, vol. 48,
no. 1, pp. 42–56, Jan. 2003.

[2] I. R. Manchester, U. Mettin, F. Iida, and R. Tedrake, “Stable dynamic
walking over uneven terrain,” Int. J. Robot. Res., vol. 30, no. 3,
pp. 265–279, Mar. 2011.

[3] A. D. Ames, “Human-inspired control of bipedal walking robots,” IEEE
Trans. Autom. Control, vol. 59, no. 5, pp. 1115–1130, May 2014.

[4] C. M. Hubicki, J. J. Aguilar, D. I. Goldman, and A. D. Ames, “Tractable
terrain-aware motion planning on granular media: An impulsive jump-
ing study,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2016, pp. 3887–3892.

[5] H. E. Taha, C. A. Woolsey, and M. R. Hajj, “Geometric control approach
to longitudinal stability of flapping flight,” J. Guid., Control, Dyn.,
vol. 39, no. 2, pp. 214–226, Feb. 2016.

[6] A. Ramezani, X. Shi, S.-J. Chung, and S. Hutchinson, “Lagrangian
modeling and flight control of articulated-winged bat robot,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2015,
pp. 2867–2874.

[7] S. D. Kelly, P. Pujari, and H. Xiong, “Geometric mechanics, dynamics,
and control of fishlike swimming in a planar ideal fluid,” in Natural
Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding,
S. Childress, A. Hosoi, W. W. Schultz, and J. Wang, Eds. New York,
NY, USA: Springer, 2012, pp. 101–116.

[8] K. A. Morgansen, B. I. Triplett, and D. J. Klein, “Geometric methods
for modeling and control of free-swimming fin-actuated underwater
vehicles,” IEEE Trans. Robot., vol. 23, no. 6, pp. 1184–1199, Dec. 2007.

[9] M. Porez, F. Boyer, and A. J. Ijspeert, “Improved lighthill fish swim-
ming model for bio-inspired robots: Modeling, computational aspects
and experimental comparisons,” Int. J. Robot. Res., vol. 33, no. 10,
pp. 1322–1341, Sep. 2014.

[10] J. Wang and X. Tan, “Averaging tail-actuated robotic fish dynamics
through force and moment scaling,” IEEE Trans. Robot., vol. 31, no. 4,
pp. 906–917, Aug. 2015.

[11] V. Vasilopoulos, I. S. Paraskevas, and E. G. Papadopoulos, “Compliant
terrain legged locomotion using a viscoplastic approach,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2014, pp. 4849–4854.

[12] F. B. Mathis and R. Mukherjee, “Two-mass robot hopping on an elastic
foundation: Apex height control,” in Proc. IEEE 1st Int. Conf. Control,
Meas. Instrum. (CMI), Jan. 2016, pp. 167–171.

[13] D. Koepl and J. Hurst, “Impulse control for planar spring-mass running,”
J. Intell. Robotic Syst., vol. 74, nos. 3–4, pp. 589–603, Jun. 2014.

[14] H.-J. Kang et al., “Biped walking stabilization on soft ground based on
gait analysis,” in Proc. 4th IEEE RAS EMBS Int. Conf. Biomed. Robot.
Biomechatronics (BioRob), Jun. 2012, pp. 669–674.

[15] W. Bosworth, J. Whitney, S. Kim, and N. Hogan, “Robot locomotion
on hard and soft ground: Measuring stability and ground properties
in-situ,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2016,
pp. 3582–3589.

[16] J. Aguilar and D. I. Goldman, “Robophysical study of jumping dynamics
on granular media,” Nature Phys., vol. 12, pp. 278–283, Nov. 2016.

[17] C. Li, T. Zhang, and D. I. Goldman, “A terradynamics of legged loco-
motion on granular media,” Science, vol. 339, no. 6126, pp. 1408–1412,
Mar. 2013.

[18] A. Gijsberts and G. Metta, “Real-time model learning using incremental
sparse spectrum Gaussian process regression,” Neural Netw., vol. 41,
pp. 59–69, May 2013.

[19] D. Nguyen-Tuong, B. Scholkopf, and J. Peters, “Sparse online model
learning for robot control with support vector regression,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2009, pp. 3121–3126.

[20] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online learning
in high dimensions,” Neural Comput., vol. 17, no. 12, pp. 2602–2634,
Dec. 2005.

[21] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 2, pp. 408–423, Feb. 2015.

[22] S. Levine and P. Abbeel, “Learning neural network policies with guided
policy search under unknown dynamics,” in Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 1071–1079.

[23] J. Boedecker, J. T. Springenberg, J. Wulfing, and M. Riedmiller,
“Approximate real-time optimal control based on sparse Gaussian
process models,” in Proc. IEEE Symp. Adapt. Dyn. Program. Reinforce-
ment Learn. (ADPRL), Dec. 2014, pp. 1–8.

[24] Y. Pan and E. A. Theodorou, “Data-driven differential dynamic program-
ming using Gaussian processes,” in Proc. Amer. Control Conf. (ACC),
Jul. 2015, pp. 4467–4472.

[25] Y. Pan, X. Yan, E. Theodorou, and B. Boots, “Scalable reinforcement
learning via trajectory optimization and approximate Gaussian process
regression,” in Proc. NIPS Workshop Adv. Approx. Bayesian Inference,
2015, pp. 1–5.

[26] Y. Pan, X. Yan, E. Theodorou, and B. Boots, “Adaptive probabilis-
tic trajectory optimization via efficient approximate inference,” 2016,
arXiv:1608.06235. [Online]. Available: http://arxiv.org/abs/1608.06235

[27] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral rein-
forcement learning and experience replay for adaptive optimal control
of partially-unknown constrained-input continuous-time systems,” Auto-
matica, vol. 50, no. 1, pp. 193–202, Jan. 2014.

[28] G. Chowdhary, “Concurrent learning for convergence in adaptive control
without persistency of excitation,” Ph.D. dissertation, School Aerosp.
Eng., Georgia Inst. Technol., Atlanta, GA, USA, 2010.

[29] G. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson, “Concurrent
learning adaptive control of linear systems with exponentially conver-
gent bounds,” Int. J. Adapt. Control Signal Process., vol. 27, no. 4,
pp. 280–301, Apr. 2013.

[30] H. A. Kingravi, G. Chowdhary, P. A. Vela, and E. N. Johnson, “Repro-
ducing kernel Hilbert space approach for the online update of radial
bases in neuro-adaptive control,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 23, no. 7, pp. 1130–1141, Jul. 2012.

[31] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela, “Bayesian
nonparametric adaptive control using Gaussian processes,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 537–550, Mar. 2015.

[32] H. Kingravi, “Reduced-set models for improving the training and
execution speed of kernel methods,” Ph.D. dissertation, School Elect.
Comput. Eng., Georgia Inst. Technol., Atlanta, GA, USA, 2014.

[33] J. Hidalgo-Carrio, D. Hennes, J. Schwendner, and F. Kirchner, “Gaussian
process estimation of odometry errors for localization and mapping,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 5696–5701.

[34] C. Cunningham, M. Ono, I. Nesnas, J. Yen, and W. L. Whittaker,
“Locally-adaptive slip prediction for planetary rovers using Gaussian
processes,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 5487–5494.

[35] A. H. Chang, C. M. Hubicki, J. J. Aguilar, D. I. Goldman, A. D. Ames,
and P. A. Vela, “Learning to jump in granular media: Unifying optimal
control synthesis with Gaussian process-based regression,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 2154–2160.

[36] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames, “3D
dynamic walking with underactuated humanoid robots: A direct collo-
cation framework for optimizing hybrid zero dynamics,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2016, pp. 1–8.

[37] X. Xiong, A. D. Ames, and D. I. Goldman, “A stability region criterion
for flat-footed bipedal walking on deformable granular terrain,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 4552–4559.

[38] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe
learning of regions of attraction for uncertain, nonlinear systems with
Gaussian processes,” in Proc. IEEE 55th Conf. Decis. Control (CDC),
Dec. 2016, pp. 4661–4666.

[39] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller opti-
mization for quadrotors with Gaussian processes,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2016, pp. 493–496.

[40] C. D. McKinnon and A. P. Schoellig, “Learning multimodal models for
robot dynamics online with a mixture of Gaussian process experts,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 322–328.

[41] A. H. Chang, C. Hubicki, A. Ames, and P. A. Vela, “Every hop
is an opportunity: Quickly classifying and adapting to terrain during
targeted hopping,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 3188–3194.

[42] C. Hubicki and J. Hurst, “Running on soft ground: Simple, energy-
optimal disturbance rejection,” in Proc. CLAWAR, 2012, pp. 543–547.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

[43] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
Cambridge, MA, USA: Massachusetts Institute of Technology, 2012.

[44] S. Ba and V. R. Joseph, “Composite Gaussian process models for
emulating expensive functions,” Ann. Appl. Statist., vol. 6, no. 4,
pp. 1838–1860, Dec. 2012.

[45] H. A. Kingravi, P. A. Vela, and A. Gray, “Reduced set KPCA for
improving the training and execution speed of kernel machines,” in Proc.
SIAM Int. Conf. Data Mining, May 2013, pp. 441–449.

[46] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization
using nonlinear programming and collocation,” J. Guid., Control, Dyn.,
vol. 10, no. 4, pp. 338–342, Jul. 1987.

[47] A. V. Rao, “A survey of numerical methods for optimal control,” Adv.
Astron. Sci., vol. 135, no. 1, pp. 497–528, Aug. 2009.

[48] M. S. Jones, “Optimal control of an underactuated bipedal robot,” Ph.D.
dissertation, School Mech., Ind., Manuf. Eng., Oregon State Univ.,
Corvallis, OR, USA, 2014.

[49] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Program., vol. 106, no. 1, pp. 25–57, 2006.

Alexander H. Chang (Member, IEEE) received the
bachelor’s degree in computer and telecommunica-
tions engineering and the master’s degree in electri-
cal engineering from the University of Pennsylvania,
Philadelphia, PA, USA, in 2005 and 2006, respec-
tively. He is currently pursuing the robotics Ph.D.
degree with the Intelligent Vision and Automa-
tion Laboratory, School of Electrical and Computer
Engineering, Institute for Robotics and Intelligent
Machines, Georgia Institute of Technology, Atlanta,
GA, USA, under the supervision of Professor
Patricio A. Vela.

His research interests focus on biologically inspired robotic locomotion,
specifically snakelike robotic motion modeling and control.

Christian M. Hubicki (Member, IEEE) received
the bachelor’s and master’s degrees in mechanical
engineering, with minor degrees in physics and
music, from Bucknell University, Lewisburg, PA,
USA, in 2007 and 2011, respectively, and the dual
Ph.D. degree in robotics and mechanical engineering
from Oregon State University, Corvallis, OR, USA,
in 2015.

In 2015, he joined the Georgia Institute of
Technology, Atlanta, GA, USA, where he was
a Post-Doctoral Fellow with the Department of

Mechanical Engineering and the School of Physics. In 2018, he started his
position as the Director of the Optimal Robotics Laboratory, Florida State
University, Tallahassee, FL, USA, with research specializing in legged robotics
and applied optimization. He is currently an Assistant Professor of mechanical
engineering with Florida State University and the FAMU-FSU College of
Engineering, Tallahassee, FL, USA.

Dr. Hubicki was a recipient of the Gilbreth Lectureship from the National
Academy of Engineering in 2020.

Jeffrey J. Aguilar received the B.S., master’s, and
Ph.D. degrees in mechanical engineering from the
Georgia Institute of Technology, Atlanta, GA, USA,
in 2010, 2012, and 2016, respectively.

During his graduate program, he worked in the
CRAB Laboratory, Georgia Institute of Technology,
and utilized a simple robotic system to study the
dynamics of jumping on hard substrates and gran-
ular media. He is currently Managing Engineer-
ing of research and development with Hi Fidelity
Genetics, Durham, NC, USA, a startup focused on

developing new sensor technologies to collect data for computational crop
breeding. His work has involved the creation of the RootTracker, a scalable
capacitance-based sensor for mapping in-field root systems.

Daniel I. Goldman received the B.S. degree in
physics from the Massachusetts Institute of Tech-
nology, Cambridge, MA, USA, in 1994, and the
Ph.D. degree with a focus on nonlinear dynamics
and granular media from The University of Texas at
Austin, Austin, TX, USA, in 2002.

He was a Post-Doctoral Researcher in locomotion
biomechanics with the University of California at
Berkeley, Berkeley, CA, USA. He became a Faculty
Member with the Georgia Institute of Technology,
Atlanta, GA, USA, in 2007, where he also became

an Adjunct Member with the School of Biology and a member of the
Bioengineering Graduate Program. He is currently a Dunn Family Professor
with the School of Physics, Georgia Institute of Technology. His research
program investigates the interaction of biological and physical systems with
complex materials, including granular media.

Prof. Goldman is a Georgia Power Professor of Excellence and a Fellow of
the American Physical Society. He received the NSF CAREER/PECASE
Award, the DARPA Young Faculty Award, the Sigma Xi Young Faculty
Award, and the Burroughs Welcome Fund Career Award at the Scientific
Interface.

Aaron D. Ames (Senior Member, IEEE) received
the B.S. degree in mechanical engineering and the
B.A. degree in mathematics from the University of
St. Thomas, St. Paul, MN, USA, in 2001, and the
M.A. degree in mathematics and the Ph.D. degree in
electrical engineering and computer sciences from
the University of California at Berkeley, Berkeley,
CA, USA, in 2006.

He was a Post-Doctoral Scholar at the California
Institute of Technology, Pasadena, CA, USA, from
2006 to 2008. He began his faculty career at Texas

A&M University, College Station, TX, USA, in 2008. He was subsequently
an Associate Professor in mechanical engineering and electrical and computer
engineering with the Georgia Institute of Technology, Atlanta, GA, USA.
He is currently the Bren Professor of mechanical and civil engineering and
control and dynamical systems at the California Institute of Technology. His
laboratory designs build and test novel bipedal robots, exoskeletons, and
prostheses with the goal of achieving human-like robotic locomotion. His
research interests span the areas of robotics, safety-critical nonlinear control,
and hybrid systems.

Dr. Ames received the NSF CAREER, Eckman, and Ruberti awards, among
others.

Patricio A. Vela (Member, IEEE) received the
B.Sc. and Ph.D. degrees in control and dynamical
systems from the California Institute of Technology,
Pasadena, CA, USA, in 1998 and 2003, respectively,
where his graduate research focused on geometric
nonlinear control and robotics.

In 2004, he was a Post-Doctoral Researcher in
computer vision with the School of Electrical and
Computer Engineering (ECE), Georgia Institute of
Technology, Atlanta, GA, USA, He joined the ECE
Faculty, Georgia Institute of Technology, in 2005,

where he is currently an Associate Professor with the School of ECE,
Institute of Robotics and Intelligent Machines. His research interests lie
in the geometric perspectives to control theory, computer vision, the role
that computer vision can play for achieving control-theoretic objectives of
(semi-)autonomous systems, and the control of nonlinear systems, typically
robotic systems.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 24,2020 at 00:14:40 UTC from IEEE Xplore. Restrictions apply.

