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Abstract— The recent study on density functions as the dual
of value functions for optimal control gives a new method for
synthesizing safe controllers. A density function describes the
state distribution in the state space, and its evolution follows
the Liouville Partial Differential Equation (PDE). The duality
between the density function and the value function in optimal
control can be utilized to solve constrained optimal control
problems with a primal-dual algorithm. This paper focuses
on the application of the method on robotic systems and
proposes an implementation of the primal-dual algorithm that
is less computationally demanding than the method used in the
literature. To be specific, we use kernel density estimation to
estimate the density function, which scales better than the ODE
approach in the literature and only requires a simulator instead
of a dynamic model. The Hamilton Jacobi Bellman (HJB)
PDE is solved with the finite element method in an implicit
form, which accelerates the value iteration process. We show an
application of the safe control synthesis with density functions
on a segway control problem demonstrated experimentally.

I. INTRODUCTION

Safety constraints such as collision avoidance are present
in many robotic applications, the classic methods for dealing
with safety constraints include motion planning [12], [15]
and artificial potential field [14], both of which are effective
methods yet not able to guarantee safety. Control Barrier
Function (CBF) was first proposed in [1], and have seen
success in obstacle avoidance for robotics [6], [10], [24].
With properly computed control invariant set, it is able
to guarantee that the safety constraint is always satisfied.
However, the computation of a control invariant set [4], [11]
or a winning set in the differential game setting [19] is not
trivial and the myopic nature of CBF makes it suboptimal.

For optimality, one needs to pose the problem as a
constrained optimal control problem. There exist methods
that solve the problem for a single initial condition; the stan-
dard solution would be the Pontryagin Maximum Principle
(PMP) method with costate [13]. However, PMP is typically
hard to solve except for some simple cases. Other methods
such as model predictive control [18] and shooting method
[5] use various types of approximation of the constrained
optimal control problem to simplify the computation so
that it can be handled by numerical optimization tools. For
polynomial systems, occupation measure [16], [17], [26],
[27] is capable of synthesizing safe controllers by relaxing
the infinite dimensional linear programming to a semidefinite
programming problem, but the computation of semidefinite
programming do not scale well.
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Density functions have been studied as the dual of the
Lyapunov function in [21], [22]. We showed in [9] that
when an optimal control problem has a solution, the density
function under the optimal control strategy is the dual of the
value function. Furthermore, the constrained optimal control
problem can be cast as an optimization over the density func-
tion, which makes the representation of the safety constraints
straightforward. As a result, the constrained optimal control
problem can be solved with a primal-dual algorithm.

The contributions of this paper focus on the implementa-
tion of density functions on robotic systems: (i) We propose
to apply numerical methods such as finite element method
and kernel density estimation to approximate the solution of
the HJB PDE and the Liouville PDE, which accelerates the
computation. Moreover, comparing to the ODE approach in
the literature, the kernel density estimation only requires a
simulator instead of an explicit dynamic model. (ii) We apply
the density approach on a practical robotic application, the
segway, and presents experiment result, as shown in Fig. 1

Fig. 1: Segway experiment

Nomenclature For the remainder of the paper, N denotes
the set of natural numbers, N+ denotes the positive natural
number, R denotes the set of real numbers, R≥0 denotes the
nonnegative real numbers. Given a dynamic equation ẋ =
f(x), Φf (x0, T ) denotes the flow map of the dynamics with
initial state x0 and horizon T . 〈a, b〉X =

∫
X a(x) · b(x)dx

denotes the inner product of two functions a and b. 0 denotes
a vector of all zeros or a function that is always zero,
depending on the context. 1S denotes the indicator function
of a set S.

II. REVIEW OF DENSITY FUNCTIONS

In this section, we review the concept of density function
and value function and the duality between them.
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Optimal control and value function Consider the following
discounted optimal control problem with infinite horizon.

min
u

∫ ∞
0

e−κtC (x (t) , u (t)) dt s.t. ẋ = F (x, u) , (1)

where x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm is the control
input, F : X × U → X is the dynamic equation described
as an ODE, C : X × U → R is the running cost function,
and κ is the discount factor.

The Pontryagin Maximum Principle [20] gives necessary
conditions for the optimality of the solution, and the opti-
mal control problem can be solved with Hamilton-Jacobi-
Bellman PDE, which utilize the principle of optimality [3].
In the infinite horizon case, the HJB equation becomes

min
u∈U
{∇V (x) · F (x, u) + C (x, u)} − κV = 0, (2)

where

V (x0) = min
u(t)∈U

∫ ∞
0

e−κtC (x (t) , u (t)) dt,

s.t. x(0) = x0, ẋ = F (x, u)

(3)

is the value function of the optimal control problem, which
represents the optimal cost-to-go for an initial condition x0.
Once the value function is known, the optimal policy is then

u? (x) = arg min
u∈U

{∇V (x) · F (x, u) + C (x, u)} . (4)

Density function for dynamic systems Taking a different
perspective, a density function ρ : [0,∞] × X → R can
be understood as the measure of state concentration (or
presence) in the state space. Given the dynamics ẋ = f(x),
the evolution of density function follows the Liouville PDE:

∂ρ

∂t
+∇ · (ρ · f) = φ(t, x, ρ)

ρ (0, x) = ρ0 (x) ,
(5)

where φ : [0,∞) × X × R → R is the supply function,
indicating the intensity that new states enter or leave the
state space. φ(t, x0, ρ(x0, t)) > 0 denotes a source, and
φ(t, x0, ρ(x0, t)) < 0 denotes a sink. We allow φ to depend
on ρ to allow more flexible characterization of the supply.

The Liouville PDE can be solved as an ODE since
∂ρ

∂t
+∇ · (ρ · f) =

dρ

dt

∣∣∣∣
ẋ=f(x)

+ (∇ · f)ρ = φ. (6)

This implies that we can integrate the following ODE to
get the density function alone the trajectory of the dynamic
system ẋ = f(x) as[

ẋ
ρ̇

]
=

[
f (x)

φ (t, x, ρ)−∇ · f · ρ

]
. (7)

With this, we can evaluate the density function at any state
xt, any time t > 0 with the following two step procedure:
• First, solve the reverse ODE of ẋ = −f(x) with initial

condition xt to get Φ−f (xt, t) = Φf (xt,−t).
• Then, solve the extended ODE in (7) with initial condi-

tion [Φf (xt,−t)ᵀ, ρ0(Φf (xt,−t))]ᵀ to time T to obtain
[xᵀt , ρ(t, xt)]

ᵀ.

Assumption 1. X is forward invariant under all possible
dynamics considered in the optimal control problem.

Remark 1. Assumption 1 is clearly true when X = Rn.
For a compact X , invariance of X can be achieved if some
barrier function intervention is implemented on ∂X , see [2],
[11] for example.

For a stationary supply function, i.e. a φ only depending on
x and ρ, one would hope that there exists a stationary density
function that any initial condition ρ0 converges to, i.e.,

φ (x, ρs)−∇ · (ρs · f) = 0. (8)

This is not always the case, but we provide sufficient
condition for the convergence in Lemma 1.

Define the extended dynamics in (7) as f . Given a sta-
tionary supply function φ and an initial density function ρ0,
from the two step procedure shown above, we have

ρ (x, t) = Φf ([Φf (x,−t) , ρ0 (Φf (x,−t))]ᵀ, t)↓ρ, (9)

where ↓ ρ means the projection of [xᵀ, ρ]ᵀ to ρ.

Lemma 1. Given a stationary supply function φ and an
initial density function ρ0, assume that there exists a ρs :
X → R such that

∀x ∈ X , φ (x, ρs)−∇ · (ρs · f) = 0.

For any x ∈ X , if there exists T ≥ 0 such that ∀t ≥
T, ρ0(Φf (x,−t)) = ρs(Φf (x,−t)), then ∀t ≥ T, ρ(x, t) =
ρs(x) .

This is Theorem 1 in [9], see the proof therein.

Corollary 1. With Lemma 1 and Assumption 1, if there exists
a T > 0 such that Φf (x,−T ) /∈ X , then clearly

ρ0(Φf (x,−T )) = 0 = ρs(Φf (x,−T )),

therefore the density at x converges to the stationary density
ρs in finite time T .

Duality in optimal control In this section, we review
the duality relationship between the value function and the
density function in optimal control problems. We consider
the infinite optimal control problem in (1).

Assumption 2. We assume that given the dynamics ẋ =
F (x, u), state cost C, input range U , and supply function
φ, there exists a unique differentiable value function V that
satisfies the HJB PDE in (2); and there exists a differentiable
stationary density function ρs that satisfies (8).

Remark 2. The existence and uniqueness of the HJB PDE
can be guaranteed under mild assumptions of the dynamics
and cost function, such as Lipschitz continuity, see [7] for
example.

For the uniqueness of ρs, we give the following proposi-
tion.
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Proposition 1. Assume that the supply function is

φ(x, ρ) = φ+(x)− κρ, (10)

and ∃T > 0, ε > 0 such that ∀x ∈ X ,∀t > T , −κ −
∇ · f |Φf (x,t)< −ε. If there exists a stationary density ρs
satisfying (8), then ρs is unique and any differentiable density
function ρ(t, x) satisfying (5) will converge to ρs as t→∞.

Proof. Given any two differentiable density functions ρ1, ρ2

satisfying (5), let ρ̄ .
= ρ2 − ρ1 and define the Lyapunov

function V (t) = 1
2

∫
X ρ̄(x)2dx. Then we have

∂ρ̄

∂t
= −∇ · (ρ̄ · f)− κρ,

V̇ =

∫
X
ρ̄ · ∂ρ̄

∂t
dx =

∫
X
ρ̄ · (−∇ · (ρ̄ · f)− κρ̄)dx

Integrating by parts and use the adjoint condition due to
Assumption 1,

V̇ =

∫
X
−κρ̄2 − ρ̄∇ρ̄ · fdx

∀t > T , at any state x ∈ X , there are two possibilities. First,
Φf (x,−t) /∈ X . In this case, by Corollary 1, ρ̄(t, x) = 0.
Second, Φf (x,−t) ∈ X , then by assumption, −κ − ∇ ·
f |Φf (x,t)< −ε. Combining the two cases, we have

V̇ ≤
∫
X
−ερ̄2dx = −2εV,

which implies that lim
t→∞

V = 0. Furthermore, since ρ1, ρ2 are
differentiable, ρ̄ is differentiable, thus continuous, therefore
V (t) = 0 implies ρ̄(t, x) = 0 everywhere in X as t goes to
infinity. Taking ρ1(t, x) = ρs(x),∀t completes the proof.

Lemma 1 shows that when the rate of state aggregation
is slower than the dissipation caused by the discount, the
density functions converge to a unique stationary ρs.

The duality is between the value function V and the
stationary density function ρs satisfying (8), both functions
of only x. Consider the overall cost rate under the supply
φ+. By Bellman’s principle of optimality, we know that there
exists a pure state feedback law u? that minimizes the overall
cost J , and is determined by the following equation:

J?p =〈φ+, V 〉X
s.t. u?(x) = arg min

u∈U
∇V · F (x, u) + C(x, u)

Cu? +∇V · Fu? − κV = 0,

(11)

where Cu(x) = C(x,u(x)), Fu(x) = F (x,u(x)). The
overall cost J? is simply the inner product of the optimal
value function and the positive supply φ+. The optimization
sign is left out because V u?

is completely determined by the
equality constraints. We denote (11) as the primal problem.

Alternatively, when the density function reaches a station-
ary distribution ρs under control strategy u, the overall cost
rate can also be represented as

Jd = 〈Cu, ρs〉X , (12)

which is interpreted as the inner product of the stationary

state distribution and the state cost.
This means that instead of thinking of the value function

for each x, we can think about the stationary density distri-
bution ρs. The following optimization solves for the optimal
overall cost:

J?d = min
ρs,u
〈ρs, Cu〉X

s.t.∇ · (ρs · Fu)) = φ+ − κρs,
∀x ∈ X ,u(x) ∈ U , ρs(x) ≥ 0,

(13)

which we denote as the dual problem.

Lemma 2. The optimization in (13) and (11) are dual to
each other and if there exists optimal solutions to both
problems, there is no duality gap, i.e., J?p = J?d .

Proof. This is Theorem 1 in [8], see the proof therein.

III. CONSTRAINED OPTIMAL CONTROL SYNTHESIS WITH
DENSITY FUNCTION

In this section, we review the density function approach for
constrained optimal control, utilizing the duality relationship
reviewed in Section II. The reason for using the density
function is that most state constraints cannot be posed on the
value function, while posing them on the density function is
straightforward. The following constrained optimal control
problem is considered:

min
u

∫ ∞
0

e−κtC(x(t),u(x))dt

s.t. ẋ = F (x, u),∀x ∈ X ,u(x) ∈ U
∀t, x(t) /∈ Xd,

(14)

where Xd is the danger set. The safety constraint x /∈ Xd
is hard to pose in the primal optimization, but can be easily
posed in the dual problem:

min
ρs,u
〈ρs, Cu〉X

s.t.∇ · (ρs · Fu)) = φ+ − κρs,
∀x ∈ X ,u(x) ∈ U , ρs(x) ≥ 0,

∀x ∈ Xd, ρs(x) ≤ ρmax.

(15)

where ρmax is the tolerance, and it takes the value 0 if the
constraint is absolute.

We showed in [8] that the constrained optimal control
problem can be solved with a primal-dual algorithm. The
primal problem is a optimal control problem (posed as
HJB) with an additional term corresponding to the safety
constraint:

J?p =
〈
φ+, V

u?
〉
X

s.t.u?(x) = arg min
u∈U

∇V · F + C

Cu? + σ1Xd
+∇V · Fu? − κV = 0.

(16)

where σ : X → R≥0 is the Lagrange multiplier associated
with the safety constraint and 1Xd

is the indicator function of
the danger set. The dual problem evaluates the density func-
tion under the current controller and updates the Lagrange
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multiplier σ. The primal-dual algorithm iterates between the
primal and dual problem until it finds a safe controller. The
procedure is shown in Algorithm 1, where α > 0 is the
step size and ε > 0 is the tolerance on the complementary
slackness condition.

Algorithm 1 Primal-dual algorithm for safe optimal control

1: σ[0]← 0, k = 0
2: do
3: Solve (16) with σ[k], get u?.
4: Compute the stationary density ρs under u?.
5: σ[k + 1]← max {0, σ[k] + α ((ρs − ρmax)1Xd

)}.
6: k ← k + 1
7: while ‖max(0, ρs − ρmax)1Xd

‖∞ > ε
8: return u?, ρs, V

IV. SAFE CONTROL SYNTHESIS FOR A ROBOTIC SYSTEM
WITH DENSITY

In this section, we present the application of the density
approach on a segway control problem.
Solving Hamilton Jacobi Bellman PDE Algorithm 1 re-
quires solving the HJB PDE in (16) multiple times. We use
a finite difference method (FDM) to turn the HJB into a
difference equation by dividing the state space into a uniform
grid. Let xg denote the array of grid points and Vg denote
the array of V values on xg . The partial differentials become
differences between neighbors in Vg . Upwind scheme is used
to improve the stability of the FDM [23]. To be specific, let
I = (i1, ..., in) be the index of a grid point, and I−,k =
(i1, ..., ik − 1, ..., in), I+,k = (i1, ..., ik + 1, ..., in) are the
indices of the two neighbors on the k-th dimension. Then
define the backward and forward differences as

∇+V (xIg) =


V I
g −V

I−,1
g

∆x1

...
V I
g −V

I−,n
g

∆xn

 ,∇−V (xIg) =


V

I+,1
g −V I

g

∆x1

...
V

I+,n
g −V I

g

∆xn


(17)

When I+,k or I−,k are out of bounds of the grid on the
boundary, the corresponding entries of the backward and
forward differences are simply zero. Then under the upwind
scheme, ∇V · f(xIg) is computed as

∇V · f(xIg) ≈ max{0, f(xIg)} · ∇+V (xIg) + min{0, f(xIg)} · ∇−V (xIg),

(18)
where the max and min are taken entry-wise.

To accelerate the computation, the HJB PDE is written in
an implicit form and becomes a linear equation of Vg . When
fixing the control strategy u, the value function satisfies

Cu + σ1Xd
+∇V · Fu = 0,

which is turned into a difference equation of Vg:

Cu(xg) + σ1Xd
(xg) +∇VgFu(xg) = 0. (19)

This is merely a linear algebraic equation of Vg , and can
be solved with linear solvers. Although direct methods such

-1.5 -1 -0.5 0 0.5 1 1.5
0

1

2

Fig. 2: Epanechnikov kernel

as LU decomposition are more accurate, they are too slow
and requires too much memory. Therefore, we use indirect
methods such as gradient descent instead. As a comparison,
to solve the HJB equation with 148176 grid points, the direct
method takes 218s and the indirect method takes 12.6s with
10−5 accuracy. Once Vg is solved, the control input at each
grid point xIg can be evaluated as

u(xIg) = arg min
u∈U

∇V (xg) · F (xIg, u) + C(xIg, u) (20)

The algorithm alternates between solving (19) for Vg and
updating the controller u based on (20) until convergence.

Kernel density estimation Since we are using a grid to
compute HJB, σ at each grid point is required for the
primal-dual algorithm, which in turn depends on ρs at each
grid point. The ODE approach for computing ρs introduced
in Section II is a convenient way to obtain ρs(x), but it
suffers from two shortcomings: (i) the computation load is
heavy with a big grid (number of ODEs to solve grows
exponentially with the grid dimension) (ii) it requires that an
accurate model is known. We propose to use kernel density
estimation, a method widely used in probability estimation,
to approximate the density function.

More specifically, given φ+, we sample N initial con-
ditions x0 according to φ+ and for each x0, simulate the
system under u, resulting in state sequence {x(t)} , t =
0, ts, 2ts, ...,Mts. M is picked to be large enough so that
e−κMts � 1. Each sample then bears mass

m(x(t)) = e−κt
tsΦ+

N
, (21)

where Φ+ =
∫
X φ+(x)dx denotes the total supply rate. To

get the density at x, one simply compute

ρ̂s(x) =

N∑
i=1

M∑
j=1

Kh(x− xi(jts))m(xi(jts)), (22)

where Kh is the kernel with bandwidth h and xi(jts) denotes
the j-th state sample in the i-th trial. Here we choose the
Epanechnikov kernel, which is defined as

Kh(s) =


3

4h

(
1− s2

h2

)
, |s| ≤ h

0 |s| > h

. (23)

It satisfies the requirement for a kernel, i.e.,
∫∞
−∞Kh(s)ds =

1 for all h > 0, as shown in Fig. 2. For s ∈ Rn, one can
simply take the product of n Epanechnikov kernels to get an
n-dim kernel:

Kh(s) =
∏n

i=1
Khi

(si),
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Fig. 3: Kernel density estimation

where h ∈ Rn>0 is the bandwidth vector. Moreover, the
Epanechnikov kernel is a kernel with finite support, which
implies

∀s /∈ {s | |si| < hi} ,Kh(s) = 0.

This is particularly useful for density function estimation for
safe control synthesis, since it gives a compact neighborhood
of the query point x such that any sample outside the
neighborhood will not affect the density estimation of x.
Suppose we use a kernel with infinite support, such as the
Gaussian kernel, the density inside the danger set would
never be zero and the primal-dual algorithm would not be
implementable.

There exist many results about the accuracy of kernel
density estimation, we quote the following lemma from [25]:

Lemma 3. For simplicity, let h = [h, ..., h]. Let ρ̂s be the
kernel density estimation of ρs, then for a ρs ∈ Σ(β, L), for
any fixed δ > 0,

P

{
sup
x∈Rn

|ρ̂s(x)− ρs(x)| > Φ+

√
C log n

nhd
+ Φ+ch

β

}
≤ δ

for some constants c and C where C depends on δ.

Σ(β, L) =

{
g : |Dsg(x)−Dsg(y)| ≤ L ‖x− y‖ ,

∀ |s| = β − 1,∀x, y

}
,

where Dsg(x) = ∂s1+...+sd

∂x
s1
1 ...∂x

sd
d

and |s| =
∑d
i=1 si.

This is adapted from Theorem 9 in [25], see more detail
and other bias analysis results therein. Lemma 3 essentially
says that if ρs is smooth enough and one takes enough
samples, the bias of the kernel density estimator can be
bounded uniformly in the state space.

To demonstrate the performance of kernel density estima-
tion, the following toy example is considered.

x =

[
−0.05 0.6
−0.6 −0.05

]
x, φ+ ∼ N (µ,Σ), κ = 0.15,

with µ = [−2, 2]ᵀ, Σ = 0.1I2. The discount factor κ is
picked such that the condition for Lemma 1 is satisfied
since −κ−∇ · f(x) = −0.05 everywhere. Fig. 3 shows the
comparison between the ODE computation and the result of
kernel density estimation. As the theorem predicts, the bias
is almost negligible.

V. APPLICATION ON A SEGWAY

To demonstrate the proposed method, we apply the pro-
posed method on a segway control example. The control

objective of the segway is to move from the initial position
to the destination while avoiding an obstacle, which has a
round shape. The state of the segway is x = [s, v, θ, θ̇]ᵀ,
where s and v are the longitudinal position and velocity, θ
and θ̇ are the pitch angle and angular velocity. The dynamics
of the segway can be obtained via the Lagrangian method:[

v̇

θ̈

]
=

[
M +m ml cos(θ)
ml cos(θ) ml2 + Je

]−1 [
u/r

mlgθ − u

]
, (24)

where m is the cart mass, l is the CG height of the cart, r is
the wheel radius, g is the gravitational acceleration, M is the
equivalent mass of the wheels (accounting for the moment
of inertia) and Je is the moment of inertia of the cart.

Fig. 4: Simulation of the safe controller

Initially, the segway is equipped with a legacy controller
designed with LQR:

u0 = K1Satη(s− sdes) +K2v +K3θ +K4θ̇, (25)

where K is obtained by solving the Riccati equation for the
linearized dynamics, sdes is the position of the destination,
set to be sdes = 1.8m, and Satη is the symmetric saturation
function with range [−η, η].

Fig. 5: Experiment run of the segway

0 1 2 3 4 5 6
-10

0

10

20

Fig. 6: Input signals during the experiment

The segway has a pole installed on one side, which
would collide with the obstacle if following u0. We follow
the procedure presented in Section IV to synthesize a safe
controller that avoids the collision with the obstacle, which
uses linear equation solvers to solve the HJB PDE and kernel
density estimation for the density computation. The cost
function follows the same setting in [8]:

J =

∫ ∞
0

e−κt ‖u(t)− u0(t)‖2 dt, (26)
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which penalizes the deviation from u0.
Let z(x)

.
= [s+L sin(θ+θ0)+r cos(θ), r+L cos(θ+θ0)−

r sin(θ)]ᵀ be the position of the tip of the pole, where L is
the length of the pole, θ0 is the original pitch angle of the
pole. The danger set Xd is defined as

Xd = {x | z(x) ∈ Xobs ∨ |θ| > θmax} , (27)

where Xobs ⊆ R2 is the circle area shown in Fig. 4, and θmax

is the bound for the pitch angle. The set of initial condition
is the following

X0 = [−1.9, 1.8]×[−0.1, 0.1]×[−0.01, 0.01]×[−0.02, 0.02].

The initial condition appears with intensity proportional to
a Gaussian distribution within X0

φ+(x) =

{
ν · p(x | µ,Σ), x ∈ X0

0, x /∈ X0

,

where ν is the intensity, p is the probability density func-
tion of a multivariate Gaussian with mean and covariance
µ = [−1.85, 0, 0, 0]ᵀ, Σ = diag([0.25, 0.01, 10−4, 4 ·10−4]).
The primal-dual algorithm terminates after 223 iterations,
outputting a safe controller. A simulation run of the obtained
controller is shown in Fig. 4. The segway accelerates before
reaching the obstacle so that the tip got tilted down to avoid
the obstacle. The dotted line shows the trajectory of the pole
tip, which indeed avoids the obstacle.

We conducted experiment on a customized segway plat-
form in AMBER Lab at Caltech, as shown in Fig. 1. The
Segway frame is a Ninebot Elite E+, with stock motors,
and fully custom internals. The wheel encoders and a YOST
LX Embedded IMU are connected to a Jetson TX2, which
runs the controller on the ERIKA 3 RTOS at 500 hz. The
torque commands are then sent through two Elmo Gold Solo
Twitters to the motors.

Fig. 5 shows the result of the experiment, where the
hardware experiment reproduced the behavior demonstrated
in the simulation, avoiding the obstacle. Fig. 6 shows the
input signals during the experiment. The red plot denotes
the control input of the safe controller u?, and the blue plot
denotes the original LQR controller u0. The video of the
experiment can be found at https://youtu.be/pdEtknFGu-A.

VI. CONCLUSION

This paper presents the implementation of the density
function approach for safe control synthesis on robotic
problems. The primal HJB PDE was solved with a finite
element method in the implicit form, which is faster than
solving it in the explicit form. Kernel density estimation
is used to approximate the density function under a fixed
controller, and we showed guarantee on the precision of the
approximation. The density function safe synthesis algorithm
is applied on a segway control example, and the simulation
and experiment result shows the efficacy of the method.
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