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Abstract— The backup control barrier function (CBF) was
recently proposed as a tractable formulation that guarantees
the feasibility of the CBF quadratic programming (QP) via an
implicitly defined control invariant set. The control invariant
set is based on a fixed backup policy and evaluated online by
forward integrating the dynamics under the backup policy. This
paper is intended as a tutorial of the backup CBF approach
and a comparative study to some benchmarks. First, the backup
CBF approach is presented step by step with the underlying
math explained in detail. Second, we prove that the backup
CBF always has a relative degree 1 under mild assumptions.
Third, the backup CBF approach is compared with benchmarks
such as Hamilton Jacobi PDE and Sum-of-Squares on the
computation of control invariant sets, which shows that one
can obtain a control invariant set close to the maximum control
invariant set under a good backup policy for many practical
problems.

I. INTRODUCTION

Control barrier functions (CBF) [1], [2] were proposed
as a method that enforces constraints on dynamic systems,
which typically works as a supervisory controller on top
of a legacy controller. To guarantee the satisfaction of the
safety constraints, a CBF quadratic program (QP) is solved
online. While CBF is getting increasingly popular due to its
simple implementation and strong guarantee, the construction
of CBF is sometimes overlooked.

To guarantee that the CBF QP is always feasible, a control
invariant set is needed, which is defined as a set in which
any trajectory of the dynamic system can stay indefinitely.
The concept of control invariant sets has been studied under
various background and names, such as viability kernel [3],
infinite time reachable set [4], and various methods have been
proposed to compute the control invariant set depending on
the system dynamics, see [5] for an overview. Unfortunately,
the computation of control invariant sets is notoriously
difficult. Even for simple cases such as linear or polynomial
dynamics, computation tools such as Minkowski operations
[6], robust linear program [7], and Sum-of-Squares [8] do
not scale well. For general nonlinear dynamic systems, the
standard tool for computing invariant sets is Hamilton Jacobi
PDE [9], which typically cannot scale beyond systems with
state dimensions 4 due to the exponential complexity.

Due to the difficulty of synthesizing proper control barrier
functions based on control invariant sets, CBF QP has

1 Yuxiao Chen and Aaron D. Ames are with Department of Mechanical
and Civil Engineering, California Institute of Technology, Pasadena, CA,
USA chenyx,ames@caltech.edu

2 Mario Santillo and Mrdjan Jankovic are with Ford
Research and Advanced Engineering, Dearborn, MI, USA
msantil3,mjankov1@ford.com

been implemented without control invariant sets. One simple
treatment is to assume infinite actuation power [10], in
which case the feasibility of the CBF QP can be guaranteed
when a simple sign condition is satisfied. To be specific,
if one can show that when the Lie derivative of the CBF
w.r.t. the input dynamics is zero, the CBF condition is
satisfied by the intrinsic dynamics, the CBF QP is always
feasible under infinite actuation. Another simplification is to
assume that the velocity instead of the acceleration is under
control [11], which can guarantee the feasibility of the CBF
QP for constraints on the position since the CBF QP can
always pick a velocity pointing away from the constraint.
In essence, assuming direct velocity control is similar to
assuming infinite actuation as an instantaneous change of
velocity requires infinite force. Obviously, these assumptions
are not true in practice, and the safety of the system is subject
to parameter tuning. The simplified approaches might work
for low-speed cases as the change of velocity is not severe,
but will not work in general for highly dynamic applications.

Another issue of CBF without a control invariant set is the
relative degree. For example, a typical vehicle/robot model
with acceleration input is a second (or higher) order model
with the position states and velocity states. If one directly
uses the constraint on the position as a control barrier func-
tion, the relative degree of the CBF is 2, and its Lie derivative
does not contain the acceleration input. Several solutions
have been proposed for the high relative degree, such as
Input-Output Linearization [12], [13] and backstepping type
formulations [14]. Again, the CBF performance is subject to
parameter tuning.

To the best of our knowledge, under limited input, there
is not a generic method that guarantees the feasibility of the
CBF QP without a control invariant set. All of the above-
mentioned methods rely on heuristics and tuning to work in
practice. Even when the CBF works well in the test cases,
there is no guarantee of performance for cases not included
in the test.

The idea of control barrier functions based on backup
controllers (referred to as backup CBF for the remainder of
this paper) [15] was proposed based on a simple observation
that extends a small control invariant set, which is typically
easier to obtain, to a larger control invariant set by fixing a
backup controller. The backup CBF guarantees the feasibility
of the CBF QP and circumvents the difficult computation of
a control invariant set by implicitly representing the control
invariant set. However, the implicit representation calls for
online integration of the dynamics, and the resulting control
invariant set is typically suboptimal in the sense that it is not
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the maximum control invariant set. This paper is intended
as a tutorial to the backup CBF approach by demonstrating
the method step by step on some simple examples. We also
provide explanations and visualizations on the advantage
and disadvantages of the backup CBF over some benchmark
formulations.

II. PRELIMINARIES AND A MOTIVATING EXAMPLE

A. Control barrier functions

We begin by a brief review of control barrier functions.
Consider the following control affine system:

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ U ⊆ Rm, (1)

where x is the system state and u is the input. Suppose there
exists a function h : Rn → R that satisfies

∀ x ∈ X0, h(x) ≥ 0

∀ x ∈ Xd, h(x) < 0

∀ x ∈ {x | h(x) ≥ 0} , ∃ u ∈ U s.t. ḣ+ α (h) ≥ 0,

(2)

where X0 is the set of initial states and Xd is the danger set
that we want to keep the state away from. α(·) is a class-K
function, i.e., α(·) is strictly increasing and satisfies α(0) =
0. Then h is called control barrier function, and for any
legacy controller, the CBF controller is a supervisory con-
troller that enforces the state to stay inside {x | h(x) ≥ 0}
with the following quadratic programming:

u? = arg min
u∈U

∥∥u− u0
∥∥2

s.t. ∇h · f (x, u) + α (h) ≥ 0,
(3)

where u0 is the input of the legacy controller.
The third condition in (2) ensures that (3) is always

feasible, yet it is difficult to find an h that satisfies it. For
clarity, we refer to a function that satisfies the first two
conditions in (2) a CBF candidate, a function that satisfies
all three conditions a valid CBF.

The CBF condition is closely tied to the concept of a
control invariant set, which is defined as follows.

Definition 1. A set S is a control invariant set if there exists
a control law π : Rn → U such that for all initial condition
x(0) ∈ S, ∀t ≥ 0, x(t) ∈ S.

It is straightforward to see that for a valid CBF, {x|h(x) ≥
0} is a control invariant set. On the other direction, suppose
for a CBF candidate h, its 0-level set is a control invariant
set. Immediately from Definition 1,

h(x) = 0→ ∃u ∈ U s.t.ḣ(x, u) ≥ 0,

otherwise the state will exit S, which contradicts Definition
1. Then h can be shown to be a valid control barrier
function by picking an α large enough given some continuity
condition (Lipschitz continuity of h and ḣ). As a result, the
third condition in (2) is also referred to as the set invariance
condition.

Fig. 1: Difference between h and h0 for the double integrator
example

B. Double integrator example

As a motivating example, consider a simple double inte-
grator with

ẋ =

[
ṡ
v̇

]
=

[
v
u

]
, u ∈ [−umax, umax], v ∈ [−vmax, vmax].

The safety constraint is X ≤ C with a constant C. Suppose
one directly takes the safety constraint as a CBF candidate:
h0(x) = C − s. There are two issues. First, h0 has relative
degree 2, i.e., ḣ0 is not a function of u. Second, the set
{x|h0(x) ≥ 0} is not control invariant. Consider the case
where s = C, v > 0, the limited input cannot stop the state
from crossing into the danger set due to inertia.

For this simple system, it is widely known that a simple
valid CBF exists:

h(x) = C − s− 1v>0
v2

2umax
, (4)

which is the safety constraint combined with the minimum
stopping distance. When h(x) ≥ 0, one can always apply
the maximum deceleration u = −umax until v = 0 and
the safety constraint remains satisfied. Fig. 1 shows the
difference between h and h0 where h0 includes a part of the
state space from which the safety constraint will eventually
be violated.

In fact, the above CBF is exactly the backup CBF with
the backup policy being

π(x) = −1v>0umax.

We shall show later that the backup policy π takes the
system to a small control invariant set S0 = {x|v = 0}, and
{x|h(x) ≥ 0} with h in (4) is the set of initial conditions that
can be brought to S0 while satisfying the safety constraint.
In this view, h is induced from the backup policy π.

As mentioned in the Introduction, computing a control
invariant set is very difficult, especially for high-dimensional
nonlinear systems. We shall show that for complicated dy-
namic systems, a valid CBF can be fairly easily obtained
from a backup policy. Though the CBF induced from a
backup policy might not have the nice closed form as in



the double integrator case, the CBF QP can be solved online
and is guaranteed to be feasible.

C. Notation and preliminaries

Before going into the detail, some important notations are
reviewed. Given the dynamic system in (1), a control policy
π : Rn → U , the closed-loop dynamics under π is ẋ =
fπ(x) = f(x) + g(x)π(x). We let Φfπ : Rn × (−∞,∞)→
Rn denote the flow map, i.e., Φfπ (x0, t) denotes the solution
x(t0 + t) to the Initial Value Problem (IVP) at time t0 + t
with x(t0) = x0 under the dynamics fπ . Note that since (1)
is time invariant, the initial time t0 is irrelevant. Moreover,
the flow map is additive in t:

Φfπ (Φfπ (x, t1), t2) = Φfπ (x, t1 + t2). (5)

Since the flow map can be written as

Φfπ (x0, t) = x0 +

∫ t

0

fπ(x(τ))dτ, (6)

it is differentiable w.r.t. both t and x. By inspection,
∂ Φfπ (x0,t)

∂t = fπ(Φfπ (x0, t)). To obtain the partial derivative
over x0, take derivative on both sides:

∂ Φfπ (x0, t)

∂x0
= I+

∫ t

0

dfπ
dx

∂x(τ)

∂x0
dτ,

from [16], we can define Q(t) =
∂ Φfπ (x0,t)

∂x0
as the sensitivity

Jacobian, and taking derivative over t on both sides yields

Q̇(t) =
dfπ(x(t))

dx(t)
Q(t), (7)

where x(t) = Φfπ (x0, t). This fact will play a key role on
the derivation of the CBF condition.

Proposition 1. For all τ ≥ t,

dΦ(x(t), τ − t)
dt

|u(t)=π(t) = 0. (8)

Proof. Note that the flow map can be written as

Φfπ (x(t), τ − t) = x(t) +

∫ τ

t

fπ(x(τ))dτ,

taking the derivative over t gives

dΦ(x(t), τ − t)
dt

= ẋ(t)− fπ(x(t)),

and the result follows as ẋ|u=π(x) = fπ(x).

The physical interpretation of Proposition 1 is that the flow
under the backup strategy π would not change with time if
the current state follows π.

III. BACKUP CBF

This section presents the backup CBF step by step.

Fig. 2: Enlarging a known control invariant set S0 with the
backup policy π

A. Definition and CBF QP

Consider a safe region C .
= {x|hC ≥ 0} ⊆ Rn, a control

invariant set S0
.
= {x|hS ≥ 0} ⊆ C with hC , hS : Rn → R

differentiable. Given a backup controller π, define the T -time
constrained reachable set as

S = R(S0, C, fπ, T )
.
= {x ∈ Rn|Φfπ (x, T ) ∈ S0 ∧ ∀t ∈ [0, T ],Φfπ (x, t) ∈ C},

(9)
which contains the states from which the flow under fπ will
stay in C and reach S0 by T . The theoretical root of the
backup CBF approach is the following simple observation.

Theorem 1. [17] Given an initial control invariant set S0,
a safe region C ⊆ Rn, and a backup controller π, for all
T > 0, the T -time constrained reachable set S defined in
(9) is a control invariant set and S0 ⊆ S ⊆ C.

The proof can be found in [17], we provide a brief proof
for completeness.

Proof. By definition, S0 ⊆ S, and S ∈ C since Φfπ (x, 0) ∈
C. By Definition 1, there exists π0 that keeps S0 invariant.

Define π′(x) =

{
π0(x), x ∈ S0

π(x), x /∈ S0
, it can be verified that π′

keeps S invariant.

Fig. 2 shows theorem 1 pictorially. The yellow square is
the state constraint C, given a small known control invariant
set S0 (the blue ellipse), all states that can be driven to S0

under fπ (the closed-loop dynamics under the backup policy
π) while staying inside C in the meantime forms a larger
control invariant set S shown in brown. Note that the point
on the top right is not inside S because the trajectory under
fπ is not completely contained C.

Assumption 1. For simplicity, we assume that the backup
controller π keeps S0 invariant, and the class-K function α
is selected so that ∀x ∈ S0,∇hSfπ(x) + α(h(x)) ≥ 0.

Regarding the horizon T , the following lemma is true.

Lemma 1. For all T1, T2 > 0, let S = R(S0, C, fπ, T1),
then R(S, C, fπ, T2) = R(S0, C, fπ, T1 + T2).



Proof. By definition, ∀x ∈ R(S, C, fπ, T2), Φfπ (x, T2) ∈
S = R(S0, C, fπ, T2). By (5), Φfπ (x, T1 + T2) =
Φfπ (Φfπ (x, T2), T1) ∈ S0. And by (9), the trajectory within
[0, T1+T2] is contained in C, and the conclusion follows.

Lemma 1 states that R(S0, C, fπ, T ) monotonically in-
creases with T in the set inclusion sense.

With a control invariant set S defined, a control barrier
function h can be defined.

Lemma 2. S is the 0-level set of the following function

h(x) = min{ min
t′∈[0,T ]

hC(Φfπ (x, t′)), hS(Φfπ (x, T ))}. (10)

Proof. First notice that by the continuity of the flow function
Φfπ and the min function, h is continuous. For all x ∈
S, by definition, under the backup strategy π, the state
evolution Φfπ (x, t′) would satisfy the constraint and reach
S0 at time T , therefore h(x) ≥ 0. On the other hand,
for all x /∈ S , under the backup strategy π, the state
evolution either violates the state constraint at some t′, i.e.,
∃t′ ∈ [0, T ], hC(Φfπ (x, t′)) < 0, or does not reach S0

within the horizon T , i.e., hS(Φfπ (x, T )) < 0, indicating
that h(x) < 0. Therefore, S = {x|h(x) ≥ 0}.

To implement the CBF h, ḣ is needed. First h needs to be
written as a function of time:

h(t) = min{ min
τ∈[t,t+T ]

hC(Φfπ (x(t), τ−t)), hS(Φfπ (x(t), T ))}.
(11)

Since h is defined as the minimum of multiple functions, it
may not be differentiable. Even in the differentiable case, the
CBF condition may turn out to be nonconvex in the control
input u. Instead, the CBF condition is enforced on every τ ,
which is a sufficient condition for original CBF condition.

First consider hS(Φfπ (x(t), T )). By the chain rule,

dhS(Φfπ (x(t),T ))
dt = dhS

dx
∂ Φfπ (x(t),T )

∂x (f(x(t)) + g(x(t))u(t)),

where the sensitivity Jacobian ∂ Φfπ (x(t),T )
∂x can be calculated

with (7). The computation of hC(Φfπ (x(t)), τ−t) is slightly
different:

dhC(Φfπ (x(t), τ − t))
dt

=
dhS

dx
(
∂ Φfπ (x(t), τ − t)

∂x
ẋ− ∂ Φfπ (x(t), τ − t)

∂t
)

=
dhS

dx
(
∂ Φfπ (x(t), τ − t)

∂x
ẋ− fπ(Φfπ (x(t), τ − t))),

where ẋ = (f(x(t)) + g(x(t))u(t)). By Proposi-
tion 1, dΦfπ (x(t),τ−t)

dt |u=π(x) = 0, indicating that
dhC(Φfπ (x(t),τ−t))

dt = 0 if u(t) = π(x(t)).

Remark 1. The difference between the derivative of
hS(Φfπ (x(t), T )) and hC(Φfπ (x(t), τ−t)) is that the former
contains two parts, the change of the future state following
the backup strategy due to the change of current state, and
the derivative due to t + T increasing with t; whereas the
latter only contains the first part.

The CBF condition is ḣ+α(h) ≥ 0. We shall impose this
condition on hS(Φfπ fπ

(x, T )) and hC(Φfπ fπ
(x, τ − t)) for

every τ ∈ [t, t + T ] instead of only on the τ minimizing
hC(Φfπ fπ

(x, τ − t)), and the CBF QP is then

min
u∈U
||u− u0||

s.t.∀τ ∈ [t, t+ T ]

dhC(Φfπ (x, τ − t))
dt

(x, u) + α(hC(Φfπ (x(t), τ − t))) ≥ 0

dhS(Φfπ (x(t), T ))

dt
(x, u) + α(hS(Φfπ (x(t), T ))) ≥ 0.

(12)

Proposition 2. The constraint in (12) is a sufficient condition
for ḣ+ α(h) ≥ 0.

Proof. For notational simplicity, let ξ̄C(x, τ)
.
=

hC(Φfπ (x, τ − t)), ξC(x)
.
= min

τ∈[t,t+T ]
ξ̄C(x, τ), and

ξS
.
= hS(Φfπ (x, T )), then h(x) = min{ξC(x), ξS(x)}. First

notice that
dξC(x(t))

dt + α(ξC(x(t))) ≥ min
τ∈[t,t+T ]

[
˙̄ξC(x(t), τ) + α(ξ̄C(x(t), τ))

]
≥ 0,

then

ḣ+ α(h) =
dmin{ξC(x(t)), ξS(x(t))}

dt
+ α(min{ξC(x(t)), ξS(x(t))})

≥min{ξ̇C(x(t)) + α(ξC(x(t))), ξ̇S(x(t)) + α(ξS(x(t)))} ≥ 0.

In practice, min
τ∈[t,t+T ]

hC(Φfπ (x(t)), τ − t) may be difficult

to evaluate, so a finite set of t = τ0 < τ1... < τN = t + T
is used instead of [t, t+T ], and the approximation error can
be bounded given the Lipschitz constants of the flow map.

Theorem 2. Under Assumption 1, the backup CBF QP in
(12) is always feasible for h ≥ 0.

Proof. Since h(x) ≥ 0, ∀τ ∈ [t, t + T ], hC(Φfπ (x(t), τ −
t)) ≥ 0, hS(Φfπ (x(t), T )) ≥ 0. By proposition 1, if
u(t) = π(x(t)), for all τ ∈ [t, t + T ], dhC(Φfπ (x(t),τ−t))

dt =

0, dhS(Φfπ (x(t),T ))
dt = dhS

dx fπ(Φfπ (x(t), T )). Immediately,
the first constraint in (12) is satisfied. By Assumption
1, since Φfπ (x(t), T ) ∈ S0, ∇hSfπ(Φfπ (x(t), T )) +
α(hS(Φfπ (x(t), T ))) ≥ 0, indicating that the second con-
straint in (12) is satisfied. Since π is a feasible control policy,
π(x(t)) ∈ U , thus a feasible solution to (12).

B. Relative degree of backup CBFs

Another benefit of the backup CBF is that it is always
relative degree one given the system is weakly locally
controllable. To show this, we first review some definitions.

Definition 2. A function h : Rn → R is said to have relative
degree r with respect to the dynamic system in (1) at a point
x0 if

LgLkfh(x) = 0, ∀x in a neighborhood of x0, ∀k ≤ r − 2,

LgLr−1
f h(x0) 6= 0



Fig. 3: {x|h(x) ≥ 0} under CBF computed with Hamilton
Jacobi PDE (green), backup CBF (red), and SOS (blue)

Definition 3. [18] Given a dynamic system, x1 is accessible
from x0 via Ω ⊆ Rn if there exists a control input signal
u : [t0, t1]→ U such that the trajectory starting at x0 reaches
x1 at t1 and ∀t ∈ [t0, t1], x(t) ∈ Ω. The accessible set of a
point x0 under Ω is the set of all points accessible from x0

under Ω, denoted as AΩ(x0).

Definition 4. [18] The dynamic system in (1) is locally
weakly controllable if for every x0 ∈ Rn and every neigh-
borhood Ω of x, AΩ(x0) has a non-empty interior.

Theorem 3. If the dynamic system (1) is locally weakly
controllable, then for an h : Rn → R that is not constant for
any subset Ω ⊆ Rn with a non-empty interior, h ◦ Φfπ (x, t)
has relative degree 1 apart from singular points for all t > 0.

Proof. We prove this by contradiction. Suppose there exists
x0 ∈ Rn and a neighborhood Ω where ∀x ∈ Ω,Lg(h ◦
Φfπ )(x) = 0. Then we can find a small t0 > 0 such that
the flow from x0 stays inside Ω within t ∈ [0, t0]. Since the
system is locally weakly controllable, AΩ(x0) is a compact
set with a non-empty interior. With a slight abuse of notation,
let Φfπ (S, t) = {x|x = Φfπ (x0, t), x0 ∈ S} be the image of
the flow map acting on a subset S ⊆ Rn. For any t > 0,
since we only consider regular points, Φfπ (·, t) has rank
n, thus Φfπ (AΩ(x0), t) has non-empty interior. However,
since Lgh(x) = 0 for all x ∈ Ω, h(x) is constant inside
Φfπ (AΩ(x0), t), which contradicts the assumption that h
is not constant in any set with non-empty interior. Thus,
h ◦ Φfπ (x, t + t0) has relative degree 1. Since t0 can be
chosen arbitrarily small, h ◦ Φfπ (x, t) has relative degree 1

Fig. 4: {x|h(x) ≥ 0} with an aggressive backup policy

for all t > 0.

We cannot show that the CBF defined in (10) has relative
degree 1 due to the min function over t ∈ [0, T ], however,
note that the constraints in the CBF QP in (12) are on all
hC ◦ Φfπ (x, τ − t) with τ ∈ [t, t + T ] and hS ◦ Φfπ (x, T ).
Therefore, as long as hS and hC are not constant for any
subset with a non-empty interior, the CBF QP can be solved
as if h has relative degree 1.

Theorem 3 shows that the backup CBF is sufficient with-
out any high order extension or backstepping, it naturally
bridges the potentially high relative degree functions hC and
hS with the input dynamics via the flow map.

IV. COMPARATIVE STUDY

This section presents the comparative study of the backup
CBF against some benchmark methods.

One major concern of the backup CBF is that since the
control invariant set is induced by a fixed backup policy, how
conservative is the resulting CBF? The conservatism of the
CBF can be measured by the size of the set {x|h(x) ≥ 0},
which is the induced control invariant set. We compare the
backup CBF with the Hamilton Jacobi (HJ) PDE result,
which is a close approximation of the maximum control
invariant set, and a Sum-of-Squares (SOS) result. The Hamil-
ton Jacobi formulation follows [9] and is computed with
the level-set toolbox. In particular, the following HJ PDE
is solved:

−∂h
∂t

= H(x, p) = max
u∈U

pᵀf(x, u),



where p = ∂h
∂x is the momentum vector. {x|h(x, t) ≥ 0} is

then the backward reachable set at time t. For a sufficiently
large t, limt→∞ h(x, t) is an inner approximation of the
maximum control invariant set.

The SOS approach follows [19], [20], which computes a
valid CBF under a fixed controller. For fairness, we chose
the same backup controller π for the backup CBF and the
SOS program.

A. Lane keeping with Dubin’s car model

To demonstrate the result, a simple lane keeping problem
under Dubin’s car model is considered:

ẋ =
[
Ẏ v̇ ψ̇

]ᵀ
= f(x, u) =

[
v sin(ψ) a r

]ᵀ
(13)

where the state x consists of lateral position Y , velocity v,
and heading angle ψ, and the input consists of acceleration a
and yaw rate r, The state constraint considered is C = {|Y | ≤
Ymax ∧ |ψ| ≤ ψmax} with Ymax = 1.8m,ψmax = π/3, and
U = {a, r||a| ≤ amax ∧ |r| ≤ rmax}.

The backup policy is chosen as

u(x) =

[
a
r

]
=

[
Satamax(kv(vdes − v))
Satrmax(ky[Y ;ψ]),

]
(14)

where Sat is the saturation function, kv > 0 is a constant
and ky is calculated via LQR. Under the same controller π,
a CBF is synthesized with the following SOS program:

max R

s.t. h(x)− s1(x)(Q(x)−R2) ∈ Σ[x]

− h(x)− s2(x)(W 2 − Y 2) ∈ Σ[x]

∇h · f(x,u(x)) + α(h)− s3(x)(Q(x)−R2
0) ∈ Σ[x]

s1(x), s2(x), s3(x) ∈ Σ[x],
(15)

with Q(x)
.
= x̂ᵀQx̂, and x̂ = [Y, v − vdes, ψ]ᵀ, where Q is

a PSD matrix. Σ[x] is the set of sum-of-squares polynomial
of x, s1, s2, s3 are SOS multipliers for the Positivstellensatz
procedure that enforces positive definiteness of a polynomial
on a semialgebraic set. Due to the cross product term in
line 2, (15) cannot be directly solved via SOS, a line search
is used to find the largest R that renders the SOS program
feasible. R0 is a radius that contains the region of state space
we are interested in, (15) essentially tries to fit the largest ball
of Q(x) inside {h(x) ≥ 0} where h is the CBF that satisfies
(2). For simplicity, sinψ ≈ ψ − ψ3/3, and the saturation is
lifted, which should lead to a larger control invariant set.

Fig. 3 shows the comparison of the CBF computed with
HJ, backup CBF, and SOS where the upper plot shows the
3D surface and the lower plot shows the slicing of the set
at v = 5m/s. As expected, Hamilton Jacobi PDE generates
the largest control invariant set, the one from backup CBF is
smaller, and the SOS one is the smallest since h is restricted
to be a polynomial (4-th order in this case).

Obviously, one can choose a better backup policy and
greatly improve the result. For example, if we change vdes =
0, and switch to a more aggressive LQR design, the control
invariant set computed from backup CBF is almost identical
to the one from Hamilton Jacobi, as shown in Fig. 4.

Fig. 5: Danger set of the aeroplane collision avoidance

B. Aeroplane avoidance

One classic example in safety-critical control is the aero-
plane avoidance with the following dynamics:∆Ẋ

∆Ẏ

∆ψ̇

 =

−va + vb cos(∆Ψ) + u∆Y
vb sin(∆ψ)− u∆X

−u

 , (16)

where ∆X , ∆Y , and ∆ψ are the difference of X,Y coor-
dinates and heading angles plane a and b, u is the turning
rate of plane a, va and vb are their velocities, assumed to be
constant.

The backup CBF approach is not good at handling ma-
licious disturbance, therefore we assume that plane b main-
tains a fixed orientation. The safety constraint is defined as
∆X2 + ∆Y 2 ≥ R2, where R is the minimum distance to
maintain between the two planes. Fig. 5 shows the danger
set ({x|h(x) ≤ 0}) computed with the HJI PDE and the one
computed with a simple backup policy:

u = −umaxsign(∆Y ). (17)

The two danger sets are almost identical.

C. Computation

Technically, it is not fair to compare the computation time
of the backup CBF approach with the benchmarks as the
former does not require any offline computation while the
online computation is more complicated than normal CBF
QP, while CBF based on explicit control invariant set requires
computing the control invariant set offline.

Table I shows the computation time of the CBF QP with
CBF constructed by the HJ PDE, SOS, and the backup CBF
approach. The computation time for backup CBF consists
of two parts, the integration of the backup policy, and the
CBF QP. As shown by the result, the majority of solver
time is spent on the CBF QP, which is 1 magnitude larger
than the time used to solve the CBF QP with explicit form.
This is mainly because (12) enforces the CBF condition
on every τ ∈ [t, t + T ] (replaced with a sequence of τi
in practice), which significantly increases the number of
constraints. The integration time is relatively small compared
to the QP time and can be further reduced. For instance,
[21] uses a Koopman operator approach to further simplify



Dimension HJ Offline HJ online SOS offline SOS online Backup online integration Backup CBF QP
Dubin’s car 3 37.3s 0.5ms 3.6s 0.4ms 1.4ms 3.6ms
Quadrotor 16 NA NA NA NA 4.92ms 28.33ms

TABLE I: Computation time of backup CBF, CBF based on HJ, and CBF based on SOS

the online integration. We also apply the backup CBF on a
16-dimensional quadrotor model, which is way beyond the
limit of HJ (maximum dimension 4-5) and SOS (maximum
dimension around 8-10), and the backup CBF can still be
implemented with a reasonable loop rate.

V. CONCLUSION

We give a tutorial of the backup CBF approach and
compare it to the HJ PDE approach and the SOS approach
as benchmarks. The result shows that the implicit control
invariant set induced by the backup policy is close to the
maximum control invariant set under a properly chosen
backup policy in many practical problems. The backup CBF
is much more scalable than the benchmark methods with
explicitly computed control invariant sets and is applicable to
general nonlinear dynamics. Furthermore, since the backup
CBF has relative degree 1 under mild assumptions, it is
a better choice than the high-order CBFs that bear no
feasibility guarantee.
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