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Abstract—Motion planning for autonomous robots and vehicles
in presence of uncontrolled agents remains a challenging prob-
lem as the reactive behaviors of the uncontrolled agents must
be considered. Since the uncontrolled agents usually demonstrate
multimodal reactive behavior, the motion planner needs to solve
a continuous motion planning problem under these behaviors,
which contains a discrete element. We propose a branch Model
Predictive Control (MPC) framework that plans over feedback
policies to leverage the reactive behavior of the uncontrolled agent.
In particular, a scenario tree is constructed from a finite set of
policies of the uncontrolled agent, and the branch MPC solves for
a feedback policy in the form of a trajectory tree, which shares
the same topology as the scenario tree. Moreover, coherent risk
measures such as the Conditional Value at Risk (CVaR) are used
as a tuning knob to adjust the tradeoff between performance and
robustness. The proposed branch MPC framework is tested on an
autonomous vehicle planning problem in simulation, and on an au-
tonomous quadruped robot alongside an uncontrolled quadruped
in experiments. The result demonstrates interesting human-like
behaviors, achieving a balance between safety and performance.

Index Terms—Human-aware motion planning, path planning
for multiple mobile robots or agents, autonomous agents.

I. INTRODUCTION

MOTION planning is one of the central modules of
autonomous robots and vehicles. In particular, as the

autonomous agent shares the environment with uncontrolled
agents, the reactive behaviors of the uncontrolled agents need to
be taken into account in the motion planning. Take autonomous
vehicles as an example: as they share the road with uncontrolled
vehicles, pedestrians, and cyclists, and all of whom would adjust
their behaviors based on other agents around them, the motion
planner for the autonomous vehicle then needs to plan trajecto-
ries that are safe yet not overly conservative in presence of other
road users. The challenges of achieving safe interactive motion
planning in presence of uncontrolled agents are twofold: (i) the
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reactive behavior of the uncontrolled agents need to be properly
modelled (ii) the reactive behaviors need to be leveraged in the
motion planning.

The modelling of reactive behaviors is a challenging problem
that has attracted increasing attention recently. Many uncon-
trolled agents encountered by autonomous agents exhibit highly
nondeterministic and multimodal behaviors. For instance, a
human driver may choose totally different behaviors under the
same situation at different times (swerve left or right, yield or not
yield). Therefore, accurately modeling these nondeterministic
behaviors is almost impossible. Stochastic models, naturally,
have been proposed to model the nondeterministic reactive be-
havior, such as Markovian models [1]–[3], and generative mod-
els [4], [5]. Another class of approaches is the set-based method
that models the set of possible behaviors, including the GAN-
based prediction [6], and classifier-based approaches [7]–[10].

Once a predictive model is obtained, in most cases, the motion
planner is at the downstream of the predictive model. The typical
strategy is to use some form of robust motion planning algorithm
to let the autonomous agent avoid the reachable set of the
uncontrolled agent [11] or the set of all possible trajectories [8].
Obviously, the robust formulations lead to conservative motion
plans and compromised performance as it ignores the reactivity
of the uncontrolled agent within the prediction horizon. In par-
ticular, a typical predictive model takes the scenario description
as input and outputs the prediction of the uncontrolled agent’s
behavior, and these behaviors are assumed to be fixed by the
motion planner under the robust planning setup. This is not a
deliberate choice, but rather a compromise due to the difficulty
of reasoning about future reactive behaviors. Since the future
scenario is nondeterministic as the behavior of the uncontrolled
agent is nondeterministic, the reasoning of the behavior of the
uncontrolled agent in future prediction steps is usually convo-
luted and intractable. On the other hand, when the input and state
spaces are discrete, as in Markov decision processes (MDPs)
and Partially Observed Markov Decision Processes (POMDPs),
future scenarios can be enumerated and the planning can be
solved with dynamic programming [12].

Inspired by policy planning and disturbance feedback tech-
niques in the MPC literature [13], [14], we propose a branching
Model Predictive Control (MPC) framework that combines the
continuous motion planning with discrete modes representing
the multimodal reactive behaviors of the uncontrolled agent.
To obtain tractability, the continuous spectrum of possible be-
haviors of the uncontrolled agent is simplified with a finite set
of policies, which are feedback control laws that represent the
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multimodality of the reactive behavior. On top of this finite set
of policies, we assume that a predictive model is given that
outputs the probability of each policy given the scenario. We then
construct a scenario tree by forward propagating the policies
of the uncontrolled agent and solve for a trajectory tree with
the same topology. Furthermore, we use coherent risk measures
such as the Conditional Value at Risk (CVaR) in presence of the
possibly inaccurate predictive model to improve the robustness
of the policy. The branching idea for MPC can date back to [14].
In [14], the authors showed that optimizing over a tree of trajec-
tories is equivalent to optimizing over feedback policies, when
the goal is to minimize the worst case cost and the uncertainties
acting on the system are uni-modal.

The multi-modal case was studied in [15]–[18], where the
authors leveraged the optimization over a tree of trajectories to
optimize over a set of feedback policies. However in these works
the interaction between the controlled agent and the environment
was not considered, meaning that the probability associated with
the uncertainty modes determining the different tree branches is
fixed. The advantage of the proposed branch MPC framework
are (i) the reactive behavior of the uncontrolled agent in future
steps is leveraged via the branching structure (ii) the MPC
formulation can handle highly dynamic systems and generate
high-quality motion plans (iii) the risk level acts as a convenient
tuning knob reflecting the confidence of the reactive model and
enables tradeoff between robustness and performance.

II. PRELIMINARIES

We first review the major tools used in our framework.

A. Model Predictive Control

Model Predictive Control (MPC) is a well-established control
methodology that leverages forecast to compute actions [19],
[20]. While MPC has been used for servo-level control in
robotics [21], [22], we use MPC for the trajectory-level planning.
In MPC, at each time t the controller plans a sequence of
open-loop actions to minimize an objective function, and then
the first predicted action is applied to the system. More formally,
at each time t given the state of the system x(t) the action is
computed solving the following Finite Time Optimal Control
Problem (FTOCP):

min
u0,...,uN−1

N−1∑
k=0

h(xk, uk) + V (xN )

s.t. xk+1 = f(xk, uk), ∀k ∈ {0, . . . , N − 1},
xk ∈ X , uk ∈ U , ∀k ∈ {0, . . . , N − 1},
x0 = x(t), xN ∈ XN ,

where the discrete time update xk+1 = f(xk, uk) describes
the evolution of the state xk ∈ Rn when the input uk ∈ Rd

is applied to the system. The stage cost h : Rn × Rd → R
and the terminal cost V : Rn → R are defined by the control
designer, X ⊂ Rn, U ⊂ Rd, and XN ⊂ Rn are the state, in-
put, and terminal constraint sets, respectively. At time t, let
[u∗0(x(t)), . . . , u

∗
N−1(x(t))] be the optimal input sequence to

the above FTOCP under the current systems’s state x(t). Then,

the first optimal action is applied, resulting in the MPC policy:
πMPC(x(t)) = u∗0(x(t)).

B. Risk-Aware Decision Making

Risk-aware decision making concerns an optimization prob-
lem with stochastic outcomes [23]. Rather than optimizing over
the expectation of the cost function, risk-aware optimization
optimizes over a risk measure, which is a functional of the prob-
ability distributions over the cost function. Formally, consider
a probability space (Ω,F , P ) where Ω is a Borel measurable
space with a σ-algebra F and probability function P . The cost
function then can be understood as a functionX : Ω → R. We let
X denote the linear space of all F -measurable functions. A risk
measure ρ(·) is a functional that maps from X to the extended
real line {−∞} ∪ R ∪ {+∞}. In particular, one useful class of
risk measures are the coherent risk measures, defined below.

Definition 1: A risk measure ρ is a coherent risk measure if
it satisfies the following properties
� Convexity: ∀X,Y ∈ X , ∀λ ∈ [0, 1], ρ(λX + (1− λ)Y )
≤ λρ(X) + (1− λ)ρ(Y )

� Monotonicity: ∀X,Y ∈ X with Y ≥ X , ρ(Y ) ≥ ρ(X).
� Translation equivariance: For all c ∈ R and X ∈ X ,
ρ(X + c) = ρ(X) + c

� Positive homogeneity: For all t > 0, X ∈ X , ρ(tX) =
tρ(X).

As a counterexample, value at risk (VaR), which is defined
as VaR1−α(X) := minz∈R:P (X≥z)≤α z is not a coherent risk
measure as it is not convex. Examples of coherent risk measures
include the conditional value at risk (CVaR), entropic value at
risk (EVaR) [24], [25], and expectation.

Definition 2: For a random variable X : Ω → R, the condi-
tional value at risk is defined as

CVaR1−α(X) :=
1

α

∫ α

0

VaR1−γ(X)dγ

= inf
z∈R

{z + 1

α

∫ ∞

−∞
[x− z]+dP (x)}, (1)

where dP (x) is the probability density function of X .
CVaR is the expectation of the α percent worst outcomes

of X , α ∈ [0, 1] is a parameter that determines how risk-
averse the CVaR is and CVaR is monotonically decreas-
ing w.r.t. α. Moreover, limα→0 CVaR1−α(X) = ess supX and
CVaR0(X) = E[X]. We chose to use CVaR due to its nice
interpretability and computation properties.

It is shown in [26], [27] that any coherent risk measure has
a dual representation as the maximization of expectation over a
probability ambiguity set, which often turns out more convenient
in computation, i.e., ρ(X) = maxQ∈A EQ[X].

A is the ambiguity set, which is a set of probability distribu-
tions. For CVaR, the ambiguity set is

A =

{
Q

∣∣∣∣∀x ∈ R, dQ(x) ≥ 0,∫
dQ(x)dx = 1, dQ(x) ≤ 1

αdP (x)

}
. (2)

When the distribution is discrete, the ambiguity set reduces to
A = {Q|Q(xi) ≥ 0,

∑
Q(xi) = 1, Q(xi) ≤ 1

αP (xi)}. Risk-
aware decision making then looks for the decision variable
that minimizes some risk measure. The typical solution is via
dualization, which we present in detail in Section IV.
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Fig. 1. Branch MPC on quadrupeds.

III. BRANCH MPC

To fully utilize the reactivity of the uncontrolled agent, the
control strategy needs to adapt to the behavior of the uncontrolled
agent and reason about its future reaction to the environment.
The classic model predictive control formulation optimizes over
a single trajectory with a finite horizon, which is not able to
leverage the reactivity. [14] proposed a min-max model predic-
tive control which, instead of optimizing over a single trajectory,
searches for a policy that reacts to different disturbance signals
via enumerating the extreme cases of the disturbance signal.
The enumeration generates a branching tree structure that grows
exponentially with the planning horizon, and a min-max prob-
lem is solved to obtain the robust MPC policy. The branching
enumeration bears some similarity to the forward dynamic pro-
gramming method used in many decision-making problems such
as the Markov decision processes and Partially observed Markov
decision processes. The difference is that in Markov models, a
transition probability is associated with each branch, and the
goal is the expectation of the reward instead of the worst-case
performance.

The branch MPC Fig. 1 proposed in this paper extends the
branch enumeration strategy proposed in [14] and associates
it with a probabilistic characterization of the branches via a
predictive model. To be specific, a finite set of policies are
propagated forward to generate a scenario tree representing
possible future behaviors of the uncontrolled agent. The branch
MPC then optimizes over feedback policies in the form of a
trajectory tree, which shares the same topology as the scenario
tree. Each branch in the trajectory tree is the instantiation of
the feedback policy under the uncontrolled agent’s behavior
characterized by the corresponding branch in the scenario tree.

We consider the scenario with one ego agent under control
and one uncontrolled agent. A scenario tree is constructed by
enumerating the behavior of the uncontrolled agent, and the
branching probability is a function of the state of the ego agent
and the uncontrolled agent.

Remark 1: When there are multiple uncontrolled agents, one
needs to consider the product space of their behaviors. Due to
the exponential complexity, some pruning protocol is needed,
which is beyond the scope of this paper. We plan to tackle the
case with multiple uncontrolled agents in future works.

We let x ∈ X ⊆ Rnx denote the state of the ego agent and z ∈
Z ⊆ Rnz denote the state of the uncontrolled agent, following
known dynamics:

x+ = f(x, u), z+ = g(z, d), (3)

where u ∈ U is the ego agent input, d ∈ D is the uncontrolled
agent input.

Fig. 2. Example scenario tree with two policies, branching nodes are in red
and non-branching nodes are in blue.

Policies for the uncontrolled agent. In order to enable
branching within the prediction horizon, the behavior of the
uncontrolled agent needs to be enumerable. However, using
discrete actions, even motion primitives, can cause the behavior
of the uncontrolled agent to be stiff and unnatural. Motivated
by the fact that human driving behaviors demonstrate strong
multimodality, a finite set of policies Π = {πi}mi=1 is used to
represent the possible behaviors of the uncontrolled agent, which
consists of feedback policiesπi : Z → D. Take highway driving
as an example: the set of policies can include maintain fixed
speed, slow down, left lane change and right lane change. Note
that the feedback policies only depend on z, making it possible
to be propagated forward independently of other agents in the
scene.

Predictive model and scenario tree. Given a policy set, z
can be propagated forward with a selected policy. A scenario
tree is constructed by enumerating the policies. To be specific,
a scenario tree starts at the root, which is the current state of
the uncontrolled agent z and propagates forward. Certain nodes
in the tree are selected as branching nodes, which would have
m children, each following one of the policies in Π. A non-
branching node only has one child, following its current policy.
In particular, the root is always a branching node, and we use a
simple strategy where branching happens everyM steps. Ideally,
one wants all the nodes in the scenario tree to be branching
nodes. However, this naive choice may lead to an unnecessarily
large number of nodes, causing computation issues. A subset of
consecutive nodes following the same policy is called a branch.
A branch in the scenario tree ends at a branching node or a leaf
node (nodes with no children) and contains all its non-branching
predecessors up to its first predecessor that is a branching node.

The top figure of Fig. 2 shows an example of a scenario
tree with m = 2,M = 3 (each branching node has 2 children,
branching happens every 3 time steps), the dashed squares show
the branches in the tree. The branch MPC would construct
another tree, denoted as the trajectory tree, of the ego agent
trajectory whose topology is similar to the scenario tree, each
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node contains the planned future state of the ego agent, which
are variables of the MPC FTOCP, as shown in the bottom figure
of Fig. 2. b0 is the root branch with children b1 and b2, and b1 has
two children, b3 and b4, and so on. I denotes the set of indices
of all the branches in the scenario tree. For the one in Fig. 2,
I = {0, 1, 2, 3, 4, 5, 6}.

Remark 2: Due to the causality constraint, before the uncon-
trolled agent demonstrate which policy it executes, the MPC
shall not take different actions. Therefore, the node directly
following a branching node in the trajectory tree is shared by
multiple branches.

For a branch bi, wi denotes its weight, the root always has
weightw0 = 1, and at every branching point, a predictive model
then assigns weight to the children of the branching node based
on the x and z predictions. Take the branching from b1 to b3 and
b4 as an example,

w3 = w1P (π1|xt+3|b1 , zt+1|b1),

w4 = w1P (π2|xt+3|b1 , zt+1|b1), (4)

where xt+3|b1 is the state prediction at t+ 3 in branch b1,
P (π|x, z) is the probability of the uncontrolled agent taking
π under the scenario described by x and z, which is given by the
predictive model, and

∑m
i=1 P (πi, x, z) = 1 always holds. An

evaluation of the scenario tree refers to a path from the root to one
of the leaf nodes. For example, b0 → b1 → b3 is an evaluation
of the scenario tree shown in Fig. 2.

Branch MPC setup. For notational clarity, we let t0i and
tfi denote the time instances of the first and last node in bi,
and let xi = [xt0i |bi , . . ., xtfi |bi ], zi = [zt0i |bi , . . ., ztfi |bi ], ui =

[ut0i |bi , . . ., utfi |bi ] be the ego agent trajectory, uncontrolled agent

trajectory, and ego agent control input sequence of bi. Pre(·) de-
notes the parent of a branch and Ch(·) denote the set of children
of a branch, e.g., Pre(b1) = b0, Ch(b1) = {b3, b4}. Sometimes
with a slight abuse of notation, we use Ch(·) to denote the set of
indices of the children branches. When the context is clear, we
also useP (bi|xPre(i), zPre(i)) to denote the branching probability
of bi given thex andzof its parent branch. For each branch, a cost
function Ji(xi, zi,ui) and a set of constraints Ci(xi, zi,ui) ≤ 0
are considered. With slack variables, the extended local cost
function is:

J̄i(xi, zi,ui) = Ji(xi, zi,ui) + β1ᵀ[Ci(xi, zi,ui)]+,

where [·]+ = max{0, ·}, β is the slack penalty. Given the ego
agent state xt and the predicted trajectory z for all i ∈ I, the
overall branch MPC FTOCP is then:

min
{xi,ui}I

∑
i∈I

wi(x, z)J̄i(xi, zi,ui)

s.t. xt|bi = f(xt−1|bi , ut−1|bi), ∀i ∈ I, ∀t = t0i + 1, . . .tfi ,

(5a)

xt0k |bk = f(xt0k−1| Pre(bk), ut0k−1| Pre(bk)), ∀k ∈ I\{0},
(5b)

w0 = 1, wi = wPre(i)P (bi|xPre(i), zPre(i)) (5c)

xt00 = xt, zt00 = zt, xi ∈ X ,ui ∈ U (5d)

where (5a) enforces the dynamics within the branches, (5b)
enforces the dynamics on the connection between any branch

and its parent. We usewi(x, z) to indicate that the branch weight
depends on the planned trajectory x and the predicted z. (5c)
encodes the weights of the branches with the predictive model,
(5d) is the constraint on the initial condition, state and input
bounds. As noted in Remark 1, for causality, since all children
share the same input at every branching point, the first node of
all children branches must share the same state.

The optimization in (5) tries to minimize the expected total
cost over the prediction horizon, which is the weighted sum of
the cost over all branches in the scenario tree. In general, (5)
is nonconvex, and we use Sequential Quadratic Program (SQP)
to solve it by linearizing the dynamics, the constraints, and the
weights of the branches. To be specific, at every iteration, the
solution from the last iteration is used as the linearization point.
The dynamics after linearization is simply

xt+1|bi = At|bixt|bi +Bt|biut|bi + Ct|bi ,

where At|bi =
∂f(x,u)

∂x |x̂t|bi ,ût|bi
, Bt|bi =

∂f(x,u)
∂u |x̂t|bi ,ût|bi

,
Ct|bi = f(x̂t|bi , ût|bi)−At|bi x̂t|bi −Bt|bi ût|bi . State and input
values shifted backwards from the last iteration are given by
x̂t|bi , ût|bi , i.e., x̂t|bi is the solution of the state associated with
its children in the scenario tree from the last iteration. The
constraints are linearized and enforced as linear inequality
constraints (with slack). The cost function follows a Linear
Quadratic format as (x− xref )

ᵀQ(x− xref ) + uᵀRu with
PSD matrices Q and R. Although the quadratic cost does not
need not to be linearized, the product of the cost and the weight
wi on every branch needs to be linearized:

wi(xi, zi)J̄i(xi, zi,ui)

≈ ∂wi

∂ x
|x̂i
J̄i(x̂i, zi, ûi) + wi(x̂i, zi)J̄i(xi, zi,ui), (6)

where x̂i and ûi are the solution from the last iteration shifted
backwards. The first term on the RHS of (6) represents the
change of the weighted cost function achieved by changing
wi, and the second term represents the cost with the weight
calculated with the motion plan from the last iteration. This
decomposition of cost encourages the ego agent to not only
minimize the weighted cost by minimizing J̄ , but also put
more weight on branches with smaller costs via influencing
the weights given by the predictive model. This phenomenon
is shown later in the vehicle highway simulation where the ego
vehicle would ‘nudge’ forward before an overtaking to reduce
the probability that the uncontrolled vehicle changes lane and
blocks the overtaking.

The SQP after linearization for branch MPC is then

min
xi∈X ,ui∈U

∑
i∈I

∂wi

∂ x
|x̂i
J̄i(x̂i, zi, ûi) + wi(x̂i, zi)J̄i(xi, zi,ui)

s.t. xt|bk = At−1|bkxt−1|bk +Bt−1|bkut−1|bk + Ct−1|bk ,

∀i ∈ I, ∀t = t0i + 1, . . .tfi ,

xt0k |bk = At′ |bjxt′|bj +Bt′|bjut′|bj + Ct′ |bj ,

∀k ∈ I\{0}, bj = Pre(bk), t
′ = t0k − 1,

(7)
After each iteration, only the first input is used as control com-

mand and the MPC solver replans at every iteration. However,
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note that the root is the ancestor of the whole scenario tree and
the first input influences all the subsequent branches, indicating
that the branch MPC policy takes all the subsequent branches in
the scenario tree into account and leverages the reactive behavior
in future predictions steps.

IV. BRANCH MPC WITH RISK MEASURE OBJECTIVES

The previous setup of branch MPC is essentially minimizing
the expectation of the cost over the scenario tree, which is risk-
neutral. Suppose one is not very confident about the predictive
model, or one is more cautious, i.e., cares more about the bad out-
come of the scenario tree; then, a risk-averse policy is preferred.
By optimizing over a risk measure of the cost function, more
focus is put on the worse outcomes. We use CVaR, which is the
mean of theα-percentile worst outcomes. The risk-averseness is
conveniently tuned by the parameterα, which is used as a tuning
knob for the tradeoff between performance and robustness in our
MPC setup.

As mentioned in Section II-B, the dual representation of the
risk measure gives another interpretation of the CVaR opti-
mization. Take a discrete random variable X as an example,
and suppose there are N outcomes ξ1, . . .ξN with probabilities
p1, . . .pN and

∑
pi = 1. The expectation is E[X] =

∑
i piξi,

and using the dual representation, the CVaR of X is

CVaR1−α(X) = max
P∈A

EP [X],

A =

{
q ∈ RN |qi ≥ 0,

N∑
i

qi = 1, qi ≤ 1

α
pi

}
.

The ambiguity set A can be viewed as a set of probability
distributions similar to the assumed distribution of X , and α
determines the maximum allowed difference. From this view
point, the CVaR optimization is a robust optimization over
distributions close to the one given by the predictive model.

The stochasticity of the branch MPC comes from the pre-
dictive model, which determines the weights of the branches.
Since we work with a scenario tree with multiple stages of
branching, we adopt the nested risk measure discussed in [15],
[28]. In particular, let φi denote the cost incurred by all the
subsequent branches of bi, which is a random variable whose
value depends on the evaluation of the scenario tree, i.e., which
policy the uncontrolled agent choose in reality. For example, for
b0 in Fig. 2, φ0 = J̄1 + J̄3 if the evaluation is b0 → b1 → b3,
and the probability associated with this evaluation is w3. The
risk measure is then defined in a nested way. Let ρi be the risk
measure ofφi and let Ai denote the ambiguity set corresponding
to the risk measure, then

ρi(φi) = max
Q∈Ai

EQ[J̄Succ(i) + ρSucc(i)(φSucc(i))], (8)

where Succ(i) is the succeeding branch of bi, which is a random
variable, and Ai is a set of probability distributions over Succ(i),
determined by the risk measure. Take the scenario tree in Fig. 2
as an example: it contains 3 layers, each branching node has two

possible successors. Then

J = J̄0 + ρ0(φ0)

ρ0(φ0) = max
Q∈A0

Q(b1)(J̄1 + ρ1(φ1)) +Q(b2)(J̄2 + ρ2(φ2))

ρ1(φ1) = max
Q∈A1

Q(b3)J̄3 +Q(b4)J̄4

ρ2(φ2) = max
q∈A2

Q(b5)J̄5 +Q(b6)J̄6.

(9)
If ρi is taken to be CVaRα(·), the ambiguity set

is simply Ai = {Q|∀j ∈ Ch(bi), Q(bj) ≥ 0,
∑

j∈Ch(i)Q(bj) =

1, Q(bj) ≤ 1
αP (bj |xi, zi)}, where P (bj |xi, zi) is the branch-

ing probability at bi. Note that ρ1 and ρ2 are nested in the
definition of ρ0.

Under the dual formulation, the optimization over risk mea-
sures is essentially minimizing the worst-case expectation over
distributions in the ambiguity set, which is a distributionally
robust optimization (DRO) [29]. It turns out that CVaR has a
convenient conic representation [15] and with Lagrange duality,
one can enforce the nested risk measure as convex constraints
via the epigraph representation.

Theorem 1: The risk-averse branch MPC with a CVaR cost
function can be solved with the following optimization.

min
xi,ui,γi,μ

+
i ,μ−

i ,σi

J̄0(x0, z0,u0) + γ0

s.t. ∀i ∈ I, ∀t = t0i + 1, . . .tfi , xt|bi = f(xt−1|bi , ut−1|bi)

∀i ∈ I\{0}, xt0i |bi = f(xt0i−1| Pre(bi), ut0i−1| Pre(bi)),

∀i ∈ I, γi = −σi + 1

α
pᵀπj |biμ

−
i , μ

+
i ≥ 0, μ−

i ≥ 0, (10a)

∀j ∈ Ch(bi), J̄j(xj , zj ,uj) ≤ −σi − μ+
i,j + μ−

i,j − γj .

(10b)

The proof can be found in the extended version at arXiv:
2109.05128. We omit the linearized branch MPC with risk
measure cost as the derivation follows exactly as (7). When J̄
is quadratic, (10) is solved as a second order cone programming
after linearization.

V. BRANCH MPC FOR HIGHWAY DRIVING

This section presents some implementation details of the
branch MPC on the highway driving example.

Predictive model. We use a simple predictive model inspired
by the backup control barrier function work in [30] where the
idea is to forward integrate the dynamics following a policy,
and check collision along the trajectory. To be specific, for
every branching node in the scenario tree, let x and z denote
the ego agent and the uncontrolled agent states, respectively.
Given a fixed horizon T and a set of policies Π = {πi}mi=1,
we propagate the uncontrolled agent state z under all policies
in Π, and let zπi

be the trajectory propagated under πi for the
uncontrolled agent. Let xπi

denote the planned trajectory in the
branch MPC corresponding to the child branch under πi, both
xπi

and zπi
last for T steps. Then given safety constraints C

including collision avoidance and lane boundary constraints for
the uncontrolled agent, a safety function h : X T ×ZT → R is
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defined. h is defined such that h(x, z) ≥ 0 indicates that the
uncontrolled agent satisfies C, otherwise it violates C, and the
smallerh is, the more z violates C. the predictive model is simply
defined with a softmax function:

P (πi|x, z) = exp(min{(h(xπi
, zπi

), η})∑
j exp(min{h(xπj

, zπj
), η}) . (11)

where η is a parameter that saturatesh such that all safe scenarios
would have similar probability.

Implementation with automatic differentiation. To speed
up the computation, our implementation heavily relies on au-
tomatic differentiation to obtain the gradient. In particular, we
use CasADi [31] as the computation engine for differentiating
the dynamics, the constraints, and the branching probability.
In particular, to obtain the branching probability, the scenario
tree is propagated forward under Π in closed-form and the
safety function h is defined with the softmin function instead
of the min function over multiple constraints so that CasADi
can perform automatic differentiation. Since we wrote all these
functions as compositions of basic functions and lookup tables
(which can also be handled by CasADi), the computation for
the values and gradients is negligible comparing to the solving
time of the SQP. For the branch MPC with expectation cost
function in (5), OSQP [32] is used to solve the SQP after
linearization; for the branch MPC using CVaR cost function
in (10), ECOS [33] is called to solve the SOCP. The code can
be found on https://github.com/chenyx09/belief-planning.

Overtaking and lane change. Overtaking and lane change is
a common task for autonomous vehicles where the ego vehicle
needs to overtake the uncontrolled vehicle and perform a lane
change to cut in front. A unicycle model is used as the dynamic
model for both the ego vehicle and the uncontrolled vehicle:

x =
[
X, Y, v, ψ

]ᵀ
, ẋ =

[
v cos(ψ), v sin(ψ), a, r

]ᵀ
(12)

where X , Y are the longitudinal and lateral coordinates, v is
the velocity, ψ is the heading angle. a and r are the acceleration
and yaw rate, which are the control input. The dynamics for
the uncontrolled vehicle is exactly the same. The continuous-
time dynamics is discretized to obtain the discrete-time model
x+ = f(x, u). The cost function is a typical LQR type quadratic
cost, i.e.,

J = (x− xref )
ᵀQ(x− xref ) + uᵀu,

where no penalty is put on X . The state constraints are

Ymin ≤ Y ≤ Ymax, ψmin ≤ ψ ≤ ψmax,

ΔXeκΔX +ΔY eκΔY

eκΔX + eκΔY
≥ 1, (13)

where κ > 0 is a constant, ΔX = |X−Xz |
ΔXmax

, ΔY = |Y −Yz |
ΔYmax

,
Xz, Yz are the coordinates of the uncontrolled vehicle, ΔXmax

and ΔYmax are the longitudinal and lateral clearance. We use
the softmax function instead of the max function so that the
expression can be differentiated by automatic differentiation.

The uncontrolled vehicle has three policies, maintain fixed
speed, slow down, and lane change, where the direction of lane
change is towards the ego vehicle as lane change towards the
other direction is of no danger to the ego vehicle. During the
simulation, the uncontrolled vehicle would update its policy with
a fixed frequency, and we tested two update rules: (i) the policy is

Fig. 3. Simulation of the overtaking and lane change under branch MPC.

Fig. 4. Weights of b1, b2, and b3 over time.

sampled according to the predictive model in (4) (ii) the policy
is fixed to the most likely one, and the simulation results are
similar.

Fig. 3 shows the snapshots from the simulation of the overtak-
ing and lane change task under the branch MPC controller with
the CVaR objective function.α is chosen to be 0.9 (CVaR0.1(·)),
which is relatively risk-neutral. As shown in the snapshots, the
branch MPC plans a tree of trajectories, corresponding to the
multiple possible behaviors in the scenario tree. Fig. 4 shows
the weight changing of b1, b2, and b3 changing over time, which
corresponds to the maintain fixed speed, slow down, and lane
change policies, respectively (they all have children branches,
but their children branches’ weights are omitted in the plot).
The ego vehicle demonstrates an interesting ‘nudging’ behavior
at the beginning since there is a substantial probability that
the uncontrolled vehicle may change to the left lane. Since the
branch corresponding to the left lane change has a high cost, the
gradient of the branching probability in (7) motivates the ego
vehicle to nudge forward so that the weight on b3 reduces. After
2.5 seconds, by nudging forward, the branch MPC determines
that the probability of a lane change from the uncontrolled
vehicle is very low and eventually it performs the overtaking and
cut in front of the uncontrolled vehicle. After the overtaking,
the different branches in the trajectory tree converge since all
branches of the scenario tree pose little to no danger of collision.

As a benchmark, we tested the same task under a robust MPC
controller, which only optimizes over one trajectory and tries to
avoid all possible trajectories of the uncontrolled vehicle. Due
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Fig. 5. Simulation of overtaking under robust MPC.

Fig. 6. Simulation of overtaking under CVaR with α = 0.1.

to this limitation, the vehicle is stuck behind the uncontrolled
vehicle and is afraid to perform the overtake, as shown in Fig. 5.

To demonstrate the influence ofα, we run the same simulation
with α = 0.1, which is very risk-averse, and the result is similar
to that under the robust MPC, shown in Fig. 6. Since the
ambiguity set is much larger under the small α, the worst-case
(maximum) probability of the uncontrolled vehicle performing
a lane change to the left is larger, preventing the branch MPC
from performing the overtake.

Another task we tested the branch MPC on was merging.
However, due to the page limit, the results are omitted here.
Interested readers please check out the full version at arXiv:
2109.05128.

Computation. In the overtaking and lane change exam-
ple, m = 3,M = 8, i.e., every branching node has 3 children,
branching happens every 8 time steps. The full scenario tree
contains 3 layers, with1, 3 and 9 branches, respectively. The
ECOS solver is able to solve the branch MPC within 100 ms on
an Intel Xeon CPU @ 2.4 GHz.

VI. BRANCH MPC FOR QUADRUPED MOTION PLANNING

The branch MPC controller is also tested on a quadruped
platform with hardware experiments. In particular, we consider
two quadruped robots, one remotely controlled (uncontrolled
robot), the other under the branch MPC controller (ego robot).
the operator would give waypoints for the ego robot to reach,
and the ego robot would navigate itself to the waypoints while
interacting with the uncontrolled robot.

Platform setup. A Unitree A1 quadruped was used as the
ego robot, with locomotion performed via an inverse dynamics-
based trotting controller built off the work in [34]. The trot con-
troller tracked body-frame forward, lateral, and angular velocity
commands from the branch MPC controller using the motion
primitive framework in [35].

To get global location of the two quadrupeds, an OptiTrack
motion capture system was used with 6 cameras and 5 markers
per robot. The position and orientation data was streamed over
a ROS node at 125 Hz to the branch MPC controller on the
off-board computer.

Dynamic model and setup for branch MPC. The actual
quadruped model is a 36 dimensional hybrid highly nonlinear
model, which is not suitable for the interactive motion planning.

Fig. 7. Snapshots of the quadruped experiment.

Fig. 8. Top-down view of the motion plan.

We use a modified unicycle model on the high-level planning
layer and sends command to the low-level controller which
tracks the desired motion. In particular, the following unicycle
model is used:

x =

⎡
⎢⎣XY
ψ

⎤
⎥⎦ ẋ =

⎡
⎢⎣vx cos(ψ)− vy sin(ψ)

vx sin(ψ) + vy cos(ψ)

r

⎤
⎥⎦ , (14)

where X,Y, ψ are the global coordinates and heading angle of
the robot, vx, vy , and r are the longitudinal velocity, lateral ve-
locity, and yaw rate, which are the inputs of the high-level branch
MPC controller. Compared to the vehicle case, the quadruped
robots have much smaller masses and thus can accelerate and
decelerate much faster. Therefore, we directly use velocity as
input and rely on the low-level controller to track the desired ve-
locity. Lateral velocity is added as an input since the quadruped
has the ability to sidestep, yet it incurs a much larger cost as it
is not the desired motion.

The uncontrolled quadruped is remotely controlled by a hu-
man operator. The branch MPC equips the uncontrolled robot
with two policies: moving forward with constant speed and
stopping, corresponding to the two operation modes, not yield-
ing and yielding. The video of the experiment can be found at
https://youtu.be/W3jzoMjAZsQ. Fig. 7 shows two snapshots of
the experiment where the star shows the position of the waypoint,
and the trajectory tree is plotted with one color for each branch.
In both snapshots, the ego robot plans different trajectories in
preparation for the uncontrolled robot to either keep moving
forward, or to stop. In the top figure, the ego robot would keep
moving straight to the goal should the uncontrolled robot stop,
and side step to the right should the uncontrolled robot move
forward. In the bottom figure, the ego robot would wait until the
uncontrolled robot moves away and cross from behind should
the uncontrolled robot move forward, and cross in front of the
uncontrolled robot should the uncontrolled robot stop.

Fig. 8 shows the same two moments in Fig. 7 from top down.
The dashed lines represent the branches corresponding to the
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assumed motion of the uncontrolled vehicle. For instance, in the
first plot, the blue dashed line shows the branch in the trajectory
tree corresponding to the uncontrolled agent moving forward, in
which case the ego robot would move back to avoid collision;
the orange branch shows the plan should the uncontrolled robot
stop, and the ego robot would move past the uncontrolled robot
towards the waypoint. Both branches have two children branches
corresponding to the subsequent motion of the uncontrolled
robot.

Proximal stabilization of the SQP. The nonlinear, noncon-
vex MPC was solved by linearizing around the solution from
the last time step and formulate a quadratic approximation of
the problem. The SQP strategy may cause stability issues as the
linearization point may change drastically between time steps.
Instability was not observed in the highway example due to
the lane boundary. In the quadruped example, we were able to
maintain stability with a proximal cost, i.e., Jprox = ||x−x̂||,
which penalizes the deviation from the linearization point.

VII. CONCLUSION

We present a branch Model Predictive Control framework for
reactive motion planning for autonomous agents in the presence
of uncontrolled agents. The reactive behavior of the uncontrolled
agent is approximated with a finite set of policies to build a
scenario tree, and a feedback policy is then solved in the form
of a trajectory tree that shares the same topology as the scenario
tree. Furthermore, risk measures such as the Conditional Value at
Risk (CVaR) are used to tune the tradeoff between performance
and robustness. The simulation and experiments results on a
highway example and a quadruped example show that the branch
MPC is able to capture the reactivity of the uncontrolled agent
in future prediction steps and plan human-like behaviors for
the autonomous agent that balances liveness and safety. Several
limitations of the current algorithm are (i) the reactive model
is assumed given, which is critical to the performance (ii)
the timing of branching is chosen heuristically, which can be
improved. We plan to improve these limitations in future works.
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