
Self-Supervised Online Learning for Safety-Critical
Control using Stereo Vision

Ryan K. Cosner∗, Ivan D. Jimenez Rodriguez∗, Tamas G. Molnar, Wyatt Ubellacker,
Yisong Yue, Aaron D. Ames, and Katherine L. Bouman

Abstract— With the increasing prevalence of complex vision-
based sensing methods for use in obstacle identification and
state estimation, characterizing environment-dependent mea-
surement errors has become a difficult and essential part of
modern robotics. This paper presents a self-supervised learning
approach to safety-critical control. In particular, the uncer-
tainty associated with stereo vision is estimated, and adapted
online to new visual environments, wherein this estimate is
leveraged in a safety-critical controller in a robust fashion. To
this end, we propose an algorithm that exploits the structure
of stereo-vision to learn an uncertainty estimate without the
need for ground-truth data. We then robustify existing Control
Barrier Function-based controllers to provide safety in the
presence of this uncertainty estimate. We demonstrate the
efficacy of our method on a quadrupedal robot in a variety of
environments. When not using our method safety is violated.
With offline training alone we observe the robot is safe, but
overly-conservative. With our online method the quadruped
remains safe and conservatism is reduced.

I. INTRODUCTION

Accounting for vision-based uncertainty is particularly
important for modern safety-critical robotic applications such
as autonomous vehicles, health care, and manufacturing [1].
Such safety-critical systems require controllers that provide
robust safety in the presence uncertainty. Control Barrier
Functions (CBFs) [2], [3] are a popular tool which can
be used to guarantee safety through the satisfaction of a
Lyapunov-like inequality. CBFs have been used to achieve
several safety-critical robotic tasks such as obstacle avoid-
ance [4], multi-agent navigation [5], and safe walking [6].
However, standard CBF theory requires accurate state esti-
mation. This motivates the need for a method that provides
safety in the presence of noisy sensor measurements.

Computer vision has become an important tool in robotics
for sensing environments and identifying obstacles. It is
often an integral component of robotics applications such as
simultaneous localization and mapping (SLAM [7]). Despite
the utility and ubiquity of computer vision, using vision
sensors to achieve robust safety is difficult due to the
complex environment-dependent error that they generate.
For example, error patterns are highly correlated with the
textures and appearance of a scene. Supervised methods
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Fig. 1. These space-time images display our quadrupedal robot throughout
the course of an experiment. The robot is considered safe if it remains left of
the yellow line. The standard control barrier function (CBF) condition fails
to keep the robot safe due to errors in stereo vision; the robust CBF condition
keeps the robot safe, but is conservative; and our proposed method, Robust
CBFs with Online Uncertainty Estimation, keeps the robot safe without
remaining overly conservative.

can identify and model error as it affects the CBF [8],
[9], [6], [10], [11]; however, supervised approaches require
ground-truth training data that may be difficult or impossible
to obtain. Additionally, such frameworks often inaccurately
estimate errors in regions of the state space that were under-
sampled in the training set; training on indoor environments
or synthetic data with easy-to-access ground-truth data often
does not translate well to outdoor environments.

In this paper, we focus on two main challenges related to
automatic vision-based safety critical control: (i) accounting
for the effect of perception uncertainty on the controller,
and (ii) estimating that uncertainty while operating in novel
environments. We tackle these issues in the context of stereo
vision-based obstacle avoidance on a quadrupedal robot.

Namely, our goal is to avoid obstacles seen in stereo
cameras mounted on the robot, while accounting for the
uncertainty of vision-based measurements. To do that we use
a multibaseline stereo vision system on the robot to record
stereo images. We then determine the position of the objects
associated with each image pixel, and subsequently infer
the uncertainty of these positions through a self-supervised
error estimation algorithm that frames the problem as on-
line learning [12]. Online learning frameworks have shown
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Fig. 2. The overarching structure of our approach. It begins on the bottom
right by capturing three time-synchronized images that are then fed into an
uncertainty estimation pipeline and also used to generate a 3D point cloud.
There are three possible CBF filters that result in the three robot realizations
shown. From top to bottom, the standard filter only takes into account the
noisy point-cloud in avoiding obstacles. The robust CBF safety filters use
the estimate of the uncertainty P to compensate for noise in the point cloud.
Finally, the “Robust with Retraining” filter refines the model of uncertainty
to the current environment in real-time.

success in a variety of robotic applications [13], [14], [15]
Finally, we use the position and uncertainty estimates for
safety critical control, wherein we achieve robust safety via
CBFs. A visualization of this method can be found in Fig. 2.

The contributions of this work are three-fold. First, we
present and evaluate an online, self-supervised method for
characterizing the uncertainty of disparity errors generated by
stereo vision algorithms in novel environments (Section II).
Second, we develop a robustified CBF-based control method
which utilizes this error estimate for obstacle avoidance (Sec-
tion III). And third, we demonstrate the proposed methods
of error estimation and obstacle avoidance on a quadrupedal
robot operating in real time (Section IV).

II. STEREO VISION UNCERTAINTY
QUANTIFICATION

We begin by revisiting stereo vision-based depth esti-
mation. We then propose an approach for learning the
uncertainty of a black box stereo-matching algorithm. The
proposed self-supervised learning approach can be trained
online and takes advantage of geometric structure in stereo
disparity maps so as not to require ground truth data.

A. Background in Stereo Vision

Stereo vision is a popular tool for determining depth
from images. These methods compute a disparity: the shift
observed in an object’s projection onto two camera planes.
Using a geometric understanding of the camera setup, pixel-
based disparity maps can be converted to depth maps. Errors
in the final depth-map result from a combination of pixel-
mismatch in disparity estimation and error in the camera
parameters used to convert from disparity to depth. The
errors in the intrinsic and extrinsic parameters of the camera
are usually small and their effect on the resulting depth
distribution is easy to compute. On the other hand, pixel
matching errors are much larger and are the result of a

much more complicated stereo matching procedure whose
effect on the resulting disparity is difficult to quantify and
environment-dependent.

For standard stereo vision we adopt the model of [16]
for two cameras (left and right) and assume that they are
perfectly rectified, vertically aligned and evenly spaced with
known distance b ∈ R>0 between each camera. Pixel coordi-
nates within an image are given by the tuple p , (u, v) ∈ K,
where K , {0, . . . ,W} × {0, . . . ,H} for image width
W ∈ N>0 and image height H ∈ N>0.

Stereo algorithms such as Block Matching, Semi-Global
Block Matching, and Efficient Large-Scale Stereo [17] com-
pute disparities by determining the discrete pixel distance
between matching regions of two images. Since the disparity
represents a shift between pixels of two images, the measured
disparity d̂ must be a finite integer value. Assuming that
the true disparity d is a finite integer implies that the error
e , d̂ − d must also be a finite integer. Prior work has
been done to interpolate disparities for non-integer subpixel
accuracy [18]; however, we restrict our attention to integer
disparity values to highlight the error in pixel-matching.

B. Self-supervised Error Estimation

To learn the error in disparity, we introduce a three-camera
multibaseline stereo system which produces multiple dispar-
ity maps that are related through simple functions; deviations
from the ideal relationship indicate error in the estimated
disparities. By analyzing the correlation of image appearance
with these errors, a function that estimates disparity error
from appearance is learned and used to specify state error-
bounds in real-time for use in a robustified CBF.

We introduce a three-element camera system, whose cen-
tral camera is assumed to be perfectly rectified and vertically
aligned with the other two cameras as shown in Fig. 2. This
third camera is placed between the left and right cameras
such that it has a baseline of b/2 with both. The three
cameras produce a time-synchronized grayscale image triple
(I1, I2, I3) where Ii ∈ NW×H for i ∈ 1, 2, 3 and 1, 2, 3
correspond with left, center, and right, respectively. The
disparity between any image pair (Ii, Ij) for i < j is
obtained using the stereo-vision algorithm D : NW×H ×
NW×H → ΓW×H , so that d̂i,j = D(Ii, Ij). Here, Γ ⊂ N≥0

is the set of possible disparity values.
Given the measurement d̂i,j , the error appears as d̂i,j =

di,j + ei,j with error distribution ei,j ∼ P(Ii, Ij) and
ground truth disparity di,j ∈ ΓW×H . We model this error
as a discrete random variable with probability P(Ii, Ij) on
ΓW×H . This model of disparity errors contrasts sharply with
other common error models, such as punctual observation,
uniform observation, and Gaussian observation [16], in that
it accounts for the discrete nature of stereo-pixel matching
algorithms. If ground-truth knowledge of di,j is obtainable,
then supervised learning methods can be implemented to
directly estimate this error term. However, it is often the
case that ground-truth knowledge is unavailable; particularly
when a domain transfer must occur during operation. Thus



we seek a general method to estimate ei,j for any black-box
disparity algorithm without the need for ground-truth data.

We leverage the known geometric relationships between
the three cameras to learn a mapping between image appear-
ance and disparity error distribution that can adapt during
operation in new environments. Given a multibaseline stereo
system, if one ignores occlusions, it is possible to completely
reconstruct each disparity map from the other two maps.
The relationship to reconstruct d̂1,3 from d̂1,2 and d̂2,3 is
shown in Algorithm 1; we denote this reconstruction as
d1,3 , d̂1,2 ⊕ d̂2,3.

Algorithm 1 Disparity Reconstruction: d1,3 = d̂1,2 ⊕ d̂2,3

1: d1,3 ← 0H×W
2: for v ∈ [1, ...,H] do
3: for u ∈ [1, ...,W ] do
4: û← n+ d̂1,2(u, v)

5: d1,3(u, v)← d̂1,2(u, v) + d̂2,3(u, v̂)
6: end for
7: end for

We use the reconstructed disparity d1,3 to learn the param-
eters θ of a function Pθ that approximates error distribution
P (refer to Algorithm 2). Since this method does not require
ground truth information, Algorithm 2 can be run online dur-
ing operation to adapt Pθ to new visual environments. Recall
that the disparity error, e1,3 is discrete in nature. Therefore,
the pixel-wise reconstruction error re(p) , ‖d̂p1,3 − d

p

1,3‖1
will also be discrete. For this reason, optimizing the loss
L reduces to a pixel-wise classification problem similar to
image segmentation. Thus, as is done in image segmentation,
we use pixel-wise cross entropy as the loss function L. This
method is shown in Algorithm 2. In Line 8, for each pixel p

Algorithm 2 Self-Supervised Stereo Error Estimation Adap-
tation

1: L← 0
2: while robot is running do
3: (I1, I2, I3)← Capture Current Frame
4: d̂1,2 ← D(I1, I2)

5: d̂2,3 ← D(I2, I3)

6: d̂1,3 ← D(I1, I3)

7: d1,3 ← d̂1,2 ⊕ d̂2,3

8: re(p)←
∣∣∣d̂p1,3 − dp1,3∣∣∣

9: L← − 1
H×W

∑
p E1(re(p))[logPθ(Ii, Ik)]

10: θt+1 ← θt − η ∂L∂θ
11: end while

of the disparity d̂1,3 the corresponding reconstruction error
is computed. The loss function in Line 9 is then equivalent
to the expected negative log likelihood of each pixel under
the proposed model Pθ. An example visualization of lines
3−8 can be found in Fig. 3. Although this algorithm focuses
on the reconstructed disparity d1,3, it can be easily extended
to similar reconstructions of d1,2 and d2,3.

Fig. 3. Lines 3-8 of Algorithm 2 illustrated from left to right. Starting from
three time-synchronized images three pairwise disparities are computed as
shown in the middle column. Two of these disparities are used to build a
reconstruction of the third disparity shown in the top right which can then
be used to estimate the pixel-wise error of the stereo algorithm shown in the
bottom right image. These steps of the algorithm correctly identify that the
back of the closest chair is a high-error region without using ground truth
information. This information is used to learn a correspondence between
visual features and error distributions.

Supervised methods have been used in the past to estimate
uncertainty in robotic applications by computing the covari-
ance of state estimates [19]. Our approach differs in that we
do not require ground truth and we take advantage of the
discrete structure of images to learn a discrete, rather than a
Gaussian, distribution, which is better suited to the disparity
measurements of stereo vision.

III. SAFE VISION-BASED CONTROL

In this section we review Control Barrier Functions (CBFs)
[20] as a tool for guaranteeing the safety of dynamical
systems. We then propose CBFs that rely on the position
of pixels provided by stereoscopic sensing. Finally, we
incorporate the proposed self-supervised error estimates of
Section II to enforce robust safety.

A. Control Barrier Functions

First we give a brief introduction to CBFs which follows
our description in [21], where additional technical details
can be found. In this work we consider the safety of robotic
systems with control affine dynamics

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm, (1)

where x is the state of the system, u is the input,
f : Rn → Rn is the drift dynamics, and g : Rn → Rn×m is
the input matrix. We assume that f and g are locally Lips-
chitz continuous. Given a locally Lipschitz continuous state-
feedback controller k : Rn → Rm, the closed-loop dynamics
are governed by:

ẋ = f(x) + g(x)k(x). (2)

For any initial condition x(0) = x0 ∈ Rn there exists a
unique solution x(t) to (2), which we assume to exist
∀t ∈ [0,∞).

The notion of safety is formalized by defining a safe set
C ⊂ Rn in the state space that the system must remain within.
In particular, consider the set C as the 0-superlevel set of a
continuously differentiable function h : Rn → R:

C , {x ∈ Rn | h(x) ≥ 0}, (3)



where h(x) = 0 =⇒ ∂h
∂x (x) 6= 0 and C is non-empty

and has no isolated points. Safety is defined as the forward
invariance of C, i.e., if x0 ∈ C, then x(t) ∈ C for all t ≥ 0.

To synthesize controllers that ensure safety, we use Control
Barrier Functions (CBFs) [2] defined as follows:

Definition 1 (Control Barrier Function (CBF)). Let C ⊂ Rn
be a safe set given by (3). The function h is a Control Barrier
Function (CBF) for (1) on C if there exists γ ∈ K∞,e1 such
that for all x ∈ C:

sup
u∈Rm

ḣ(x,u) ,
∂h

∂x
(x)f(x)︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

u ≥ −γ(h(x)),

(4)
where Lfh : Rn → R and Lgh : Rn → Rm are the Lie
derivatives of h with respect to f and g respectively.

A main result in [20], [22] relates CBFs to the safety of
the closed-loop system (2) with respect to C:

Theorem 1. Given a safe set C ⊂ Rn, if h is a CBF for
(1) on C, then any locally Lipschitz continuous controller
k : Rn → Rm satisfying

Lfh(x) + Lgh(x)k(x) ≥ −γ(h(x)) (5)

for all x ∈ C, renders the system (2) safe w.r.t. C.

Given a nominal (but not necessarily safe) locally Lips-
chitz continuous controller kd : Rn → Rm and a CBF h,
the CBF-Quadratic Program (CBF-QP) [2] is a controller
that guarantees the system’s safety:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (CBF-QP)

s.t. Lfh(x) + Lgh(x)u ≥ −γ(h(x)).

B. Control Barrier Functions for Safe Vision-Based Control

Next we apply CBFs to achieve safe obstacle avoidance
for robotic systems based on stereo vision. First we construct
CBFs for safe vision-based control. Let ρp ∈ R3 represent
the true three-dimensional position of the portion of the scene
which generated pixel p. Using this, we can define a CBF
h : Rn × R3 → R that relies on both the state x and three
dimensional pixel position ρp. The pixel position is a geo-
metric function of the true disparity, ρp = T (x, r(p, dp1,3))
where r : N2 × N is the stereo reprojection function and
T : Rn × R3 → R3 is the transformation mapping from the
robot’s state and relative pixel position to pixel position.

In order to relate the output of the stereoscopic sensor with
safety, we make the following assumptions:

Assumption 1. The environment is static, so the time
derivative of the pixelized environment is zero: dρp

dt = 0
for all p ∈ K.

Assumption 2. Ensuring safety with respect to the true three
dimensional pixel locations is sufficient to ensure safety with
respect to the environment. That is, the safe set for the system
is given by:

CK = {x ∈ Rn | h(x, ρp) ≥ 0, ∀p ∈ K} (6)

1K∞,e denotes the set of extended class-K infinity functions, wherein
γ ∈ K∞,e satisfies γ : R → R is strictly increasing, γ(0) = 0, and
limr→∞ γ(r) =∞, limr→−∞ γ(r) = −∞.

where h : Rn × R3 → R is the CBF for pixel p.

Although it is not outlined in this work, Assumption 1 can
be relaxed to include moving environments by calculating
ḣ accordingly and estimating the motion of obstacles in
the environment. Assumption 2 simplifies the surrounding
environment from infinite- to finite-dimensional by assuming
that the environment is smooth between a sufficiently dense
coverage of pixels. It also implies that the system only has
to stay safe with respect to objects that can be seen in the
cameras’ field of view.2

Given Assumptions 1 and 2 and Theorem 1, synthesizing
the control input u such that

Lfh(x, ρp) + Lgh(x, ρp)u ≥ −γ(h(x, ρp)), (7)

∀p ∈ K, is sufficient to guarantee safety. Considering each
pixel p ∈ K, however, may be computationally intractible,
therefore we seek a condition with fewer required constraints.

To combine the constraints, we apply Boolean composition
to each CBF h to produce a single nonsmooth CBF hns,

hns(x) , min
p∈K

h(x, ρp), (8)

and simply enforce the CBF constraint associated with the
pixels whose CBFs have the smallest value [23]. In particular,
to achieve safety it is sufficient to enforce only the constraints
whose indices appear in the locally-encapsulating index set:

Λ = {p ∈ K : h(x, ρp) ≤ hns(x) + δ}, (9)

for some δ > 0, as stated formally below.

Theorem 2 ([23], Prop III.6). Let h : Rn × R3 → R3 be
a locally Lipschitz function and hns be as in (8). If there
exists a locally Lipschitz extended class K function γ and a
measurable and locally bounded controller k : Rn → Rm
that satisfies:

min
p∈Λ
{Lfh(x, ρp) + Lgh(x, ρp)k(x)} ≥ −γ(hns(x)). (10)

Then hns is a valid nonsmooth CBF and the closed loop
dynamics (2) with controller k are safe with respect to CK .

This theorem indicates that enforcing the CBF condition only
for the “least safe” pixel is sufficient to guarantee the safety
of the system.

C. Robustness to Uncertainty

Error in the disparity propagates to the controller in the
form of the measured 3D pixel position ρ̂p. The measured
value ρ̂p lies in a neighborhood Ep of the true value ρp,
which is characterized by the error distribution P(Ii, Ij). We
assume that the distribution P(Ii, Ij) is symmetric about the
measured value and define the pixel-wise uncertainty set:

Ep ,
{
ρ ∈ R3

∣∣∣∣ ρ = T (x, r(p, ξ)), ξ ∈ Γ

Pθ(e1,3(p) < |ξ − d̂(p)|; I1, I3) ≥ σ

}
(11)

2The field of view aspect of Assumption 2 can be overcome by tracking
features that leave the frame as done in Simultaneous Localization and
Mapping (SLAM) algorithms [7].



where σ > 0 is a parameter defining the desired uncertainty
robustness.

To achieve safety, one must determine which pixels are
safety-critical given Ep and then enforce robust safety with
respect to those pixels. The safety-critical pixels can be de-
termined by expanding the index set Λ using the uncertainty:

Λ ⊆
{
p ∈ K

∣∣∣∣h(x, ρp) ≤ max
ρp∈Ep

min
p∈K

h(x, ρp) + δ

}
. (12)

This can further be expanded to an easily calculable index
set Λ̂ ⊇ Λ by minimizing the left-hand-side of the inequality
condition and using the max-min inequality [24]:

Λ̂ =

{
p ∈ K

∣∣∣∣ min
ρp∈Ep

h(x, ρp) ≤ min
p∈K

max
ρp∈Ep

h(x, ρp) + δ

}
.

(13)

This expanded index set Λ̂ accounts for uncertainty and in-
dicates which pixels are safety-critical and which constraints
must be enforced to achieve safety given the pixel-wise
uncertainty sets Ep.

Measurement-Robust Control Barrier Functions (MR-
CBFs) as outlined in [25] are a general method for account-
ing for state uncertainty in CBFs. We can use this method
for each pixel p ∈ Λ̂ to ensure that the safety constraint is
satisfied despite the uncertainty. The resulting constraint is:

Lfh(x, ρ̂p) + Lgh(x, ρ̂p)u

−
(
LLfh + Lγ◦hns

+ LLgh‖u‖2
)
εp

≥ −γ(hns(x)), ∀p ∈ Λ̂ (14)

where L is the Lipschitz constant of the subscript and

εp ≥ max
ρp∈Ep

‖ρp − ρ̂p‖2 (15)

is a bound on the uncertainty. Since Λ ⊆ Λ̂ and the MR-CBF
condition implies the CBF condition (5), satisfying (14) also
satisfies (10) providing safety of the system if σ = 1 and
Pθ = P .

IV. APPLICATION: OBSTACLE AVOIDANCE ON A
QUADRUPEDAL ROBOT

In this section, we evaluate our approach on a quadrupedal
robotic platform. With these experiments we aim to demon-
strate: 1) Our method is capable of keeping the system safe
in a simple do-not-collide task, and 2) Our method can adapt
online to measurement uncertainty in different environments
without ground-truth data.

A. Hardware System

For the hardware experiments we designed a custom
camera array with three equally spaced inexpensive CMOS,
global shutter, time-synchronized Arducam cameras. An
Nvidia Jetson Nano is used to capture, downsize, and
greyscale the stereo images. The images are then sent to
an external computer that receives the images and outputs
the filtered control input at a frequency of at least 10
Hz. The robot used in this experiment is a Unitree A1

quadrupedal robot that receives inputs of velocity and angle
rate, u =

[
v ω

]ᵀ
. A 1 kHz Inverse Dynamics Quadratic

Program (ID-QP) walking controller designed using the
concepts in [26], is used to track these inputs. Stereo pixel-
matching calculations were performed using Efficient LArge-
scale Stereo (ELAS) [17].

B. Learning Method and Model

The architecture of the model used to estimate Pθ is a
modified version of the Hierarchical Multi-Scale Attention
for Semantic Segmentation introduced in [27]; this model
is relatively lightweight, consisting of only 196 thousand
parameters (e.g., network weights). The robustness threshold
used was σ = 0.99 and the online learning rate was 0.001.
We pretrain the model until convergence on a dataset of
6000 stereo image triples collected by manually moving the
camera array through a variety of environments.

C. Dynamics Model and Control

In order to control the system we consider a reduced order
model of the system dynamics given by the standard unicycle
model. The specific form of (2) for this system is:ẋẏ

θ̇


︸︷︷︸

ẋ

=

0
0
0


︸︷︷︸
f(x)

+

cos θ 0
sin θ 0

0 1


︸ ︷︷ ︸

g(x)

[
v
ω

]
︸︷︷︸
k(x)

(16)

A formal analysis of CBFs which utilize reduced-order
velocity input models is described in [28].

For this system we consider the pixel-wise CBFs,

h(x, ρp) =
1

2

(∥∥∥∥[xy
]
−
[
ρp,x
ρp,y

]∥∥∥∥2

2

− c2
)

(17)

where ρp,x and ρp,y indicate the global real-world x and
y positions of pixel p. This function characterizes safety as
remaining a planar distance c > 0 from ρp. This can be
thought of as buffering surfaces in the environment by a
radius c.

D. Robustness to Uncertainty

To illustrate the efficacy of our method we use two
controllers in our experiments. A standard, unrobustified
controller:

kcbf = argmin
u∈R2

1

2
‖kdes(x)− u‖22 (18)

s.t. −
[
1 0 0

]ᵀ
r(p, d̂p)v︸ ︷︷ ︸

ḣ

≥ −γ(min
p∈K

h(x, ρ̂p)),

∀p ∈ Λ

and a robustified controller:

k∗cbf = argmin
u∈R2

1

2
‖kdes(x)− u‖22 (19)

s.t. − v ≥
−γ(minp∈K h(x, ρ∗p))[

1 0 0
]ᵀ
r(p, d∗p)

, ∀p ∈ Λ̂.



Fig. 4. Demonstration of our method in a variety of environments. From left to right the goal is to maintain a safe distance from (A) a tree, (B) a backpack,
(C) a chair, (D) and a glass window. The distance to the barrier is measured and marked on the floor with a yellow tape for visualization purposes – we
emphasize this tape is not used for depth estimation. Notice that the barrier is assumed to be a sphere around an obstacle but in the case on the glass, this
sphere degenerates into a plane. The quadrupedal robot is given a desired control input of 0.2 m/s. In all cases, a naive barrier implementation that simply
takes the noisy measurements from a stereo vision system fails to keep the system safe. The robustified controller (19) with a pretrained model consistently
shows overly conservative behavior. Finally, with online learning, the robot converges to the barrier without exhibiting conservative behavior, except for
the glass environment where the robot is overly conservative and walks away from the barrier due to the perceived uncertainty. The (A-D) corresponding
plots below show the control input filtered by the barrier in each of the three robustification cases.

where kdes : Rm → Rn is a desired controller, d∗ is the
maximum disparity for any ρp ∈ Ep, and ρ∗p is pixel location
associated with d∗p.

Controller (19) is obtained by first replacing the index
set Λ with the Λ̂. Next we note that

[
1 0 0

]ᵀ
r(p, d̂p) is

strictly positive. After dividing by this quantity, the constraint
in (18) is robustified to account for the worst-case error as
is done with MR-CBFs. Experimentally, this controller was
implemented with δ = 0 and a maximum of 4000 constraints.

E. Experimental Results

The system was run in 4 different environments (see
Fig. 4). The CBF (17) was used with a safe radius of c = 0.33
m. The intended obstacle in the 4 different environments
were (A) a tree, (B) a backpack, (C) a chair, (D) and a
glass window. A desired constant forward velocity v = 0.2
m/s was used in each experiment and the robot was started
approximately 1.3 m away from the obstacle. Since ground-
truth measurements were unavailable, we use a yellow line
on the ground to indicate the true location of the barrier.

For each environment three different tests were performed.
First, controller (18) was used. Since this did not consider
measurement uncertainty it failed to achieve safety in every
environment; in all experiments the stereo vision overesti-
mated the distance to objects at some point during the run
and the quadruped ran directly into the obstacles. Second,
the controller (19) was used with an error estimate computed
through a pretrained function Pθ; this succeeded in providing

safety, but was found to be overly conservative and did not
allow the quadruped to approach the obstacle as desired.
Third, the controller (19) was used with a Pθ that adapted
to the environment according to Algorithm 2. In this case,
safety of the system was generally maintained and over
time the system was able to approach the boundary of the
safe set. Even when small safety violations occurred, the
system eventually corrected and came to rest at a safe steady-
state. These results can be seen in Figure 4. A video of the
experiments can be found at [29].

V. CONCLUSION AND FUTURE WORK

We presented a framework for achieving safety of a stereo
vision-based system using self-supervised online uncertainty
estimation and robustified CBFs. Refining the uncertainty es-
timate model online was shown to achieve significantly better
performance. We validated our online learning approach
across several environments and successfully achieved robust
safety with minimal violations and conservatism.

Future work involves providing mathematical guarantees
for our method and extending this theory and application
to dynamic environments. We also note that our online
uncertainty estimation method, as outlined in Algorithm 2,
is a general method that can be coupled with other control
or state estimation techniques. Finally, implementing a high-
performance on-board version of our hardware system would
remove the need for a remote computer.
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