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Abstract— Experimental demonstration of complex robotic
behaviors relies heavily on finding the correct controller gains.
This painstaking process is often completed by a domain
expert, requiring deep knowledge of the relationship between
parameter values and the resulting behavior of the system. Even
when such knowledge is possessed, it can take significant effort
to navigate the nonintuitive landscape of possible parameter
combinations. In this work, we explore the extent to which
preference-based learning can be used to optimize controller
gains online by repeatedly querying the user for their prefer-
ences. This general methodology is applied to two variants of
control Lyapunov function based nonlinear controllers framed
as quadratic programs, which have nice theoretic properties
but are challenging to realize in practice. These controllers are
successfully demonstrated both on the planar underactuated
biped, AMBER, and on the 3D underactuated biped, Cassie.
We experimentally evaluate the performance of the learned
controllers and show that the proposed method is repeatably
able to learn gains that yield stable and robust locomotion.

I. INTRODUCTION

Achieving robust and stable performance for physical
robotic systems relies heavily on careful gain tuning, re-
gardless of the implemented controller. Navigating the space
of possible parameter combinations is a challenging en-
deavor, even for domain experts. To combat this challenge,
researchers have developed systematic ways to tune gains
for specific controller types [1]–[5]. For controllers where
the input/output relationship between parameters and the
resulting behavior is less clear, this can be prohibitively
difficult. These difficulties are especially prevalent in the
setting of bipedal locomotion, due to the extreme sensitivity
of the stability of the system with respect to controller gains.

It was shown in [6] that control Lyapunov functions
(CLFs) are capable of stabilizing locomotion through the
hybrid zero dynamics (HZD) framework, with [7] demon-
strating how this can be implemented as a quadratic program
(QP), allowing the problem to be solved in a pointwise-
optimal fashion even in the face of feasibility constraints.
However, achieving robust walking behavior on physical
bipeds can be difficult due to complexities such as com-
pliance, under-actuation, and narrow domains of attraction.
One such controller that has recently demonstrated stable
locomotion on the 22 degree of freedom (DOF) Cassie biped,
as shown in Figure 1, is the ID-CLF-QP+ [8].
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Fig. 1: The two experimental platforms investigated in this
work: the planar AMBER-3M point-foot [9] robot (left), and
the 3D Cassie robot [10] (right).

Synthesizing a controller capable of accounting for the
complexities of underactuated locomotion, such as the ID-
CLF-QP+, necessitates the addition of numerous control
parameters, exacerbating the issue of gain tuning. The re-
lationship between the control parameters and the resulting
behavior of the robot is extremely nonintuitive and results in
a landscape that requires dedicated time to navigate, even for
domain experts. For example, the implementation of the ID-
CLF-QP+ in [8] entailed 2 dedicated months of hand-tuning
around 60 control parameters.

Recently, machine learning techniques have been imple-
mented to alleviate the process of hand-tuning gains in
a controller agnostic way by systematically navigating the
entire parameter space [11]–[13]. However, these techniques
rely on a carefully constructed predefined reward function.
Moreover, it is often the case where different desired prop-
erties of the robotic behavior are conflicting such that they
both can’t be optimized simultaneously.

To alleviate the gain tuning process and enable the use
of complicated controllers for naı̈ve users, we propose a
preference-based learning framework that only relies on
subjective user feedback, mainly pairwise preferences, to
systematically search the parameter space and realize stable
and robust experimental walking. Preferences are a par-
ticularly useful feedback mechanism for parameter tuning
because they are able to capture the notion of “general
goodness” without a predefined reward function. Preference-
based learning has been previously used towards selecting
essential constraints of an HZD gait generation framework
which resulted in stable and robust experimental walking on
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Fig. 2: Configuration of the 22 DOF (floating base) Cassie
robot [10] (left) and configuration of the 5 DOF (pinned
model) planar robot AMBER-3M [9] (right).

a planar biped with unmodeled compliance at the ankle [14].
In this work, we apply a similar preference-based learning

framework as [14] towards learning gains of a CLF-QP+

controller on the AMBER bipedal robot, as well as an ID-
CLF-QP+ controller on the Cassie bipedal robot. This appli-
cation requires extending the learning framework to a much
higher-dimensional space which led to unique challenges.
First, more user feedback was required to navigate the larger
action space. This was accomplished by sampling actions
continuously on hardware which led to more efficient feed-
back collection. Second, to increase the speed of the learning,
ordinal labels were also added as a feedback mechanism.

II. PRELIMINARIES ON DYNAMICS AND CONTROL

A. Modeling and Gait Generation

Following a floating-base convention [15], we begin with
a general definition of a bipedal robot as a branched-chain
collection of rigid linkages subjected to intermittent contact
with the environment. We define the configuration space as
Q ⊂ Rn, where n is the unconstrained DOF (degrees of
freedom). Let q = (pb, φb, ql) ∈ Q := R3 × SO(3) × Ql,
where pb is the global Cartesian position of the body fixed
frame attached to the base linkage (the pelvis), φb is its global
orientation, and ql ∈ Ql ∈ Rnl are the local coordinates
representing rotational joint angles. Further, the state space
X = TQ ⊂ R2n has coordinates x = (q>, q̇>)>. The robot
is subject to various holonomic constraints, which can be
summarized by an equality constraint h(q) ≡ 0 where h(q) ∈
Rh. Differentiating h(q) twice and applying D’Alembert’s
principle to the Euler-Lagrange equations for the constrained
system, the dynamics can be written as:

D(q)q̈ +H(q, q̇) = Bu+ J(q)>λ (1)

J(q)q̈ + J̇(q, q̇)q̇ = 0 (2)

where D(q) ∈ Rn×n is the mass-inertia matrix, H(q, q̇) con-
tains the Coriolis, gravity, and additional non-conservative
forces, B ∈ Rn×m is the actuation matrix, J(q) ∈ Rh×n is
the Jacobian matrix of the holonomic constraint, and λ ∈ Rh
is the constraint wrench. The system of equations (1) for the

dynamics can also be written in the control-affine form:

ẋ =

[
q̇

−D(q)−1(H(q, q̇)− J(q)>λ)

]
︸ ︷︷ ︸

f(x)

+

[
0

D(q)−1B

]
︸ ︷︷ ︸

g(x)

u.

The mappings f : TQ → Rn and g : TQ → Rn×m are
assumed to be locally Lipschitz continuous.

Dynamic and underactuated walking consists of periods of
continuous motion followed by discrete impacts, which can
be accurately modeled within a hybrid framework [16]. If we
consider a bipedal robot undergoing domains of motion with
only one foot in contact (either the left (L) or right (R)), and
domain transition triggered at footstrike, then we can define:

D{L,R}SS = {(q, q̇) : pzswf (q) ≥ 0},
SL→R,R→L = {(q, q̇) : pzswf (q) = 0, ṗzswf (q, q̇) < 0},

where pzswf : Q → R is the vertical position of the
swing foot, D{L,R}SS is the continuous domain on which our
dynamics (1) evolve, with a transition from one stance leg
to the next triggered by the switching surface SL→R,R→L.
When this domain transition is triggered, the robot undergoes
an impact with the ground, yielding a hybrid model:

HC =

{
ẋ = f(x) + g(x)u x 6∈ SL→R,R→L
ẋ+ = ∆(x−) x ∈ SL→R,R→L

(3)

where ∆ is a plastic impact model [15] applied to the
pre-impact states, x−, such that the post-impact states, x+,
respect the holonomic constraints of the subsequent domain.

B. Hybrid Zero Dynamics

In this work, we design locomotion using the hybrid zero
dynamics (HZD) framework [16], in order to design stable
periodic walking for underactuated bipeds. At the core of this
method is the regulation of virtual constraints, or outputs:

y(x) = ya(x)− yd(τ, α), (4)

with the goal of driving y → 0 where ya : TQ → Rp and
yd : TQ × R × Ra → Rp are smooth functions, and α
represents a set of Bezièr polynomial coefficients that can
be shaped to encode stable locomotion.

If we assume the existence of a feedback controller u∗(x)
that can effectively stabilize this output tracking problem,
then we can write the close-loop dynamics:

ẋ = fcl(x) = f(x) + g(x)u∗(x). (5)

Additionally, by driving the outputs to zero this controller
renders the zero dynamics manifold:

Z = {(q, q̇) ∈ D | y(x, τ) = 0, Lfcly(x, τ) = 0}. (6)

forward invariant and attractive. However, because our sys-
tem is represented as a hybrid system (3) we must also
ensure that (6) is shaped such that the walking is stable
through impact. We thus wish to enforce an impact invariance
condition when we intersect with the switching surface:

∆(Z ∩ S) ⊂ Z. (7)



In order to enforce this condition, the Bézier polynomials for
the desired outputs can be shaped through the parameters α.

In order to generate walking behaviors using the HZD
approach, we utilize the optimization library FROST [17] to
transcribe the walking problem into an NLP:

(α,X)∗ = argmin
α,X

J (X) (8)

s.t. Closed loop dynamics (5)
HZD condition (7)
Physical feasibility

where X = (x0, ..., xN , T ) is the collection of all decision
variables with xi the state at the ith discretization and T the
duration. The NLP (8) was solved with the optimizer IPOPT.
This was done first for AMBER, in which one walking gait
was designed using a pinned model of the robot [9], and then
on Cassie for 3D locomotion using the motion library found
in [18] consisting of 171 walking gaits for speeds in 0.1 m/s
intervals on a grid for sagittal speeds of vx ∈ [−0.6, 1.2] m/s
and coronal speeds of vy ∈ [−0.4, 0.4] m/s.

C. Control Lyapunov Functions
Control Lyapunov functions (CLFs), and specifically

rapidly exponentially stabilizing control Lyapunov functions
(RES-CLFs), were introduced as methods for achieving
(rapidly) exponential stability on walking robots [19]. This
control approach has the benefit of yielding a control frame-
work that can provably stabilize periodic orbits for hybrid
system models of walking robots, and can be realized in a
pointwise optimal fashion. In this work, we consider only
outputs which are vector relative degree 2. Thus, differenti-
ating (4) twice with respect to the dynamics results in:

ÿ(x) = L2
fy(x) + LgLfy(x)u.

Assuming that the system is feedback linearizeable, we
can invert the decoupling matrix, LgLfy(x), to construct a
preliminary control input:

u = (LgLfy(x))
−1 (

ν − L2
fy(x)

)
, (9)

which renders the output dynamics to be ÿ = ν. With the
auxiliary input ν appropriately chosen, the nonlinear system
can be made exponentially stable. Assuming the preliminary
controller (9) has been applied to our system, and defining
η = [y2, ẏ2]> we have the following output dynamics [20]:

η̇ =

[
0 I
0 0

]
︸ ︷︷ ︸

F

η +

[
0
I

]
︸︷︷︸
G

v. (10)

With the goal of constructing a CLF using (10), we evaluate
the continuous time algebraic Ricatti equation (CARE):

F>P + PF + PGR−1G>P +Q = 0, (CARE)

which has a solution P � 0 for any Q = Q> � 0 and R =
R> � 0. From the solution of (CARE), we can construct a
rapidly exponentially stabilizing CLF (RES-CLF) [19]:

V (η) = η> IεPIε︸ ︷︷ ︸
Pε

η, Iε =

[
1
εI 0
0 I

]
, (11)

which, for 0 < ε < 1, is a tunable parameter that drives the
(rapidly) exponential convergence. Any feedback controller,
u, which can satisfy the convergence condition:

V̇ (η) = LFV (η) + LGV (η)ν

= LFV (η) + LGV (η)
(
LgLfy(x)u+ L2

fy(x)
)

= LfV (η) + LgV (η)u ≤ −1

ε

λmin(Q)

λmax(P )︸ ︷︷ ︸
γ

V (η), (12)

will then render rapidly exponential stability for the output
dynamics (4). In the context of RES-CLF, we can then define:

Kε(x) = {uε ∈ U : LfV (x) + LgV (x)u+
γ

ε
V (x) ≤ 0},

describing an entire class of the controllers which result in
(rapidly) exponential convergence. This leads naturally to the
consideration of an optimization-based approach to enforcing
(12). One such approach is to pose the CLF problem within
a quadratic program (CLF-QP), with (12) as an inequality
constraint [7]. When implementing this controller on physical
systems, which are often subject to additional constraints
such as torque limits or friction limits, a weighted relaxation
term, δ, is added (12) in order to maintain feasibility.

CLF-QP-δ:
u∗ = argmin

u∈Rm
‖L2

fy(x) + LgLfy(x)u‖2 + wV̇ δ
2 (13)

s.t. V̇ (x) = LfV (x) + LgV (x)u ≤ −γ
ε
V + δ

umin � u � umax

Because this relaxation term is penalized in the cost, we
could also move the inequality constraint completely into
the cost as an exact penalty function [8]:

Jδ = ‖L2
fy(x) + LgLfy(x)u‖2 + wV̇ ||g

+(x, u)||

where:

g(x, u) := LfV (x) + LgV (x)u+
γ

ε
V (x),

g+(x, u) , max(g, 0),

One of the downsides to using this approach is that the
cost term ||g+(x, u)|| will intermittently trigger and cause
a jump to occur in the commanded torque. Instead, we can
allow g(x, u) to go negative, meaning that the controller will
always drive convergence even when the inequality (12) is
not triggered [21]. This leads to the following relaxed (CLF-
QP) with incentivized convergence in the cost:

CLF-QP+:
u∗ = argmin

u∈Rm
‖L2

fy(x) + LgLfy(x)u‖2 + wV̇ V̇ (x, u) (14)

s.t. umin � u � umax

In order to avoid computationally expensive inversions of
the model sensitive mass-inertia matrix, and to allow for a



variety of costs and constraints to be implemented, a variant
of the (CLF-QP) termed the (ID-CLF-QP) was introduced in
[21]. This controller is used on the Cassie biped, with the
decision variables X = [q̈>, u>, λ>]> ∈ R39:

ID-CLF-QP+:
X ∗ = argmin

X∈Xext

‖A(x)X − b(x)‖2 + V̇ (q, q̇, q̈) (15)

s.t. D(q)q̈ +H(q, q̇) = Bu+ J(q)>λ

umin � u � umax

λ ∈ AC(X ) (16)

where (2) has been moved into the cost terms A(x) and
b(x) as a weighted soft constraint, in addition to a feedback
linearizing cost, and a regularization for the nominal X ∗(τ)
from the HZD optimization. Interested readers are referred
to [8], [21] for the full (ID-CLF-QP+) formulation.

D. Parameterization of CLF-QP

For the following discussion, let a = [a1, ..., av] ∈ A ⊂
Rv be an element of a v−dimensional parameter space,
termed an action. We let Q = Q(a), ε = ε(a), and
wV̇ = wV̇ (a) denote a parameterization of our control tuning
variables, which will subsequently be learned. Each gain ai
for i = 1, . . . , v is discretized into di values, leading to
an overall search space of actions given by the set A with
cardinality |A| =

∏v
i=1 di. In this work, experiments are

conducted on two separate experimental platforms: the planar
biped AMBER, and the 3D biped Cassie. For AMBER, v
is taken to be 6 with discretizations d = [4, 4, 5, 5, 4, 5],
resulting in the following parameterization:

Q(a) =

[
Q1 0
0 Q2

]
,

Q1 = diag([a1, a2, a2, a1]),
Q2 = diag([a3, a4, a4, a3]),

ε(a) = a5, wV̇ (a) = a6,

which satisfies Q(a) � 0, 0 < ε(a) < 1, and wV̇ (a) > 0 for
the choice of bounds, as summarized in Table I. Because of
the simplicity of AMBER, we were able to tune all associated
gains for the CLF-QP+ controller. For Cassie, however, the
complexity of the ID-CLF-QP+ controller warranted only a
subset of parameters to be selected. Namely, v is taken to be

TABLE I: Learned Parameters

CASSIE
Pos. Bounds Vel. Bounds

Q Pelvis Roll (φx) a1:[2000, 12000] a7:[5, 200]
Q Pelvis Pitch (φy) a2:[2000, 12000] a8:[5, 200]
Q Stance Leg Length (‖φst‖2) a3:[4000, 15000] a9:[50, 500]
Q Swing Leg Length (‖φsw‖2) a4:[4000, 20000] a10:[50, 500]
Q Swing Leg Angle (θswhp ) a5:[1000, 10000] a11:[10, 200]
Q Swing Leg Roll (θswhr ) a6:[1000, 8000] a12:[5, 150]

AMBER
Pos. Bounds Vel. Bounds Bounds

Q Knees a1:[100, 1500] a3:[10, 300] ε a5:[0.08, 0.2]
Q Hips a2:[100, 1500] a4:[10, 300] wV̇ a6:[1, 5]

Fig. 3: The experimental procedure, notably the communica-
tion between the controller, physical robot, human operator,
and learning framework.

12 and di to be 8, resulting in:

Q =

[
Q1 0
0 Q2

]
,

Q1 = diag([a1, . . . , a12]),
Q2 = Q̄,

with Q̄, ε, and wV̇ remaining fixed and predetermined by a
domain expert. From this definition of Q, we can split our
output coordinates η = (ηt, ηnt) into tuned and not-tuned
components, where ηt ∈ R12 and ηnt ∈ R6 correspond to
the Q1 and Q2 blocks in in Q.

III. LEARNING FRAMEWORK

In this section we will present this preference-based learn-
ing framework used in this work, specifically aimed at tuning
controller gains. We assume that the user has some unknown
underlying utility function U : A→ R, which maps actions
to a personal rating of how good of the experimental walking
seems to them. The goal of the framework is to identify
the user preferred action, a∗ = argmaxa U(a), in as few
iterations as possible.

In general, Bayesian optimization is a probabilistic ap-
proach towards identifying a∗ by selecting â∗, the action
believed to be optimal, which minimizes ||â∗ − a∗||2. Typ-
ically, Bayesian optimization is used on problems where
the underlying function is difficult to evaluate but can be
obtained. Recent work extended Bayesian optimization to
the preference setting [22], where the action maximizing
the users underlying utility function U(a) is obtained using
only pairwise preferences between sampled actions. We refer
to this setting as “preference-based learning”. In this work,
we utilize a more recent preference-based learning algo-
rithm, LineCoSpar [23] with the addition of ordinal labels
inspired from [24], which maintains the posterior only over
a subset of the entire actions space to increase computation
tractability – more details can be found in [14]. The resulting
learning framework iteratively applies Thompson sampling
to navigate a high-dimensional Bayesian landscape of user
preferences.



A. Summary of Learning Method
A summary of the learning method is as follows. At each

iteration, the user is queried for their preference between the
most recently sampled action, ai, and the previous action,
ai−1. We define a likelihood function based on preferences:

P(ai � ai−1|U(ai), U(ai−1)) =

{
1 if U(ai) ≥ U(ai−1)

0 otherwise,

where ai � ai−1 denotes a preference of action ai over
action ai−1. In other words, the likelihood function states
that the user has utility U(ai) ≥ U(ai−1) with probability
1 given that they return a preference ai � ai−1. This is a
strong assumption on the ability of the user to give noise-free
feedback; to account for noisy preferences we instead use:

P(ai � ai−1|U(ai), U(ai−1)) = φ

(
U(ai)− U(ai−1)

cp

)
,

where φ : R → (0, 1) is a monotonically-increasing link
function, and cp > 0 represents the amount of noise expected
in the preferences. In this work, we select the heavy-tailed
sigmoid distribution φ(x) := 1

1+e−x .
Inspired by [24], we supplement preference feedback with

ordinal labels. Because ordinal labels are expected to be
noisy, the ordinal categories are limited to only “very bad”,
“neutral”, and “very good”. Ordinal labels are obtained each
iteration for the corresponding action ai and are assumed
to be assigned based on U(ai). Just as with preferences, a
likelihood function is created for ordinal labels:

P(o = r|U(ai)) =

{
1 if br−1 < U(ai) < br

0 otherwise

where {b0, . . . , bN} are arbitrary thresholds that dictate
which latent utility ranges correspond to which ordinal
label assuming ideal noise-free feedback. In our work, these
thresholds were selected to be {− inf,−1, 1, inf}. Again, the
likelihood function is modified to account for noise by a link
function φ and expected noise in the ordinal labels co > 0:

P(o = r|U(a)) = φ

(
br − U(am)

co

)
− φ

(
br−1 − U(a)

co

)
.

After every sampled action ai, the human operator is
queried for both a pairwise preference between ai−1 and ai
as well as an ordinal label for ai. This user feedback is added
to respective datasets Dp = {ak1(i) � ak2(i), i = 1, . . . , n},
and Do = {oi, i = 1, . . . , n}, with the total dataset of user
feedback denoted as D = Dp ∪Do.

To infer the latent utilities of the sampled actions U =
[U(a1), . . . , U(aN )]> using D, we apply the preference-
based Gaussian process model to the posterior distribution
P(U |D) as in [25]. First, we model the posterior distribution
as proportional to the likelihoods multiplied by the Gaussian
prior using Bayes rule,

P(U |Dp,Do) ∝ P(Do,Dp|U)P(U), (17)

where the Gaussian prior over U is given by:

P(U) =
1

(2π)|V|/2|Σ|1/2
exp

(
−1

2
U>Σ−1U

)
.

Fig. 4: Simulated learning results averaged over 10 runs,
demonstrating the capability of preference-based learning to
optimize over large action spaces, specifically the one used
for experiments with Cassie. Standard error is shown by the
shaded region.

with Σ ∈ R|V|×|V|, Σij = K(ai, aj), and K is a kernel.
Assuming conditional independence of queries, we can split
P(Do,Dp|U) = P(Do|U)P(Dp|U) wherse

P(Dp|U) =

K∏
i=1

P(a1 � a2|U(a1), U(a2)),

P(Do|U) =

M∏
i=1

P(a1 = r1|U(a1)).

The posterior (17) is then estimated via the Laplace ap-
proximation as in [25], which yields a multivaraite Gaussian
N (µ, σ). The mean µ can be interpreted as our estimate of
the latent utilities U with uncertainty

√
diag(σ−1).

To select new actions to query in each iteration, we apply a
Thomposon sampling approach. Specifically, at each iteration
we draw a random sample from U ∼ N (µ,Σ) and select the
action which maximizes U as:

a = argmax
a

U(a). (18)

This action is then given an ordinal label, and a preference
is collected between it and the previous action. This process
is completed for as many iterations as is desired. The best
action after the iterations have been completed is

â∗ = argmax
a

µ(a)

where µ is the mean function of the multivariate Gaussian.

B. Expected Learning Behavior

To demonstrate the expected behavior of the learning
algorithm, a toy example was constructed of the same dimen-
sionality as the controller parameter space being investigated
on Cassie (v = 12, d = 8), where the utility was modeled as
U(a) = ‖a−a∗‖2 for some a∗. Feedback was automatically
generated for both ideal noise-free feedback as well as for
noisy feedback (correct feedback given with probability 0.9).

The results of the simulated algorithm, illustrated in Fig.
4, show that the learning framework is capable of decreasing



(a) The behavior corresponding to a very low utility (top) and to the
maximum posterior utility (bottom).

(b) The robustness (top) and and tracking (bottom) of the walking
with the learned optimal gains is demonstrated through gait tiles.

Fig. 5: Gait tiles for AMBER (left) and Cassie (right).

(a) Phase portraits for AMBER experiments. (b) Output Error of ηt (left) and ηnt (right) for Cassie experiment.

Fig. 6: Experimental walking behavior of the CLF-QP+ (left) and the ID-CLF-QP+ (right) with the learned gains.

the error in the believed optimal action â∗ even for an action
space as large as the one used in the experiments with Cassie.
The simulated results also show that ordinal labels allow
for faster convergence to the optimal action, even in the
case of noise, motivating their use in the final experiment.
Lastly, the preference-based learning framework was also
compared to random sampling, where the only difference
in the algorithm was that actions were selected randomly. In
comparison, the random sampling method leads to minimal
improvement when compared to preference-based learning.
From these simulation results, it can clearly be seen that the
proposed method is an effective mechanism for exploring
high-dimensional parameter spaces.

IV. LEARNING TO WALK IN EXPERIMENTS

Preference-based learning applied to tuning control pa-
rameters was experimentally implemented on two separate
robotic platforms: the 5 DOF planar biped AMBER, and
the 22 DOF 3D biped Cassie, as can be seen in the video
[26]. A visualization of the experimental procedure is given
in Figure 3. The experiments had four main components:
the physical robot (either AMBER or Cassie), the controller
running on a real-time PC, a human operating the robot
who gave their preferences, and a secondary PC running
the learning algorithm. The user feedback provided to the
learning algorithm included pairwise preferences and ordinal
labels. For the pairwise preferences, the human operator was
asked “Do you prefer this behavior more or less than the
last behavior”. For the ordinal labels, the human was asked
to provide a label of either “very bad, neutral, or very good”.

User feedback was obtained after each sampled action
was experimentally deployed on the robot. Each action was
tested for approximately 30 seconds to 1 minute, during
which the behavior of the robot was evaluated in terms of
both performance and robustness. After user feedback was
collected for the sampled controller gains, the posterior was
inferred over all of the uniquely sampled actions, which
took up to 0.5 seconds. The experiment with AMBER was
conducted for 50 iterations, lasing approximately one hour,
and the experiment with Cassie was conducted for 100
iterations, lasting one hour for the domain expert and roughly
two hours for the naı̈ve user.

A. Results with AMBER

The preference-based learning framework is first demon-
strated on tuning the gains associated with the CLF-QP+ for
the AMBER bipedal robot. The CLF-QP+ controller was
implemented on an off-board i7-6700HQ CPU @ 2.6GHz
with 16 GB RAM, which solved for desired torques and
communicated them with the ELMO motor drivers on the
AMBER robot. The motor driver communication and CLF-
QP+ controller ran at 2kHz. During the first half of the
experiment, the algorithm sampled a variety of gains caus-
ing behavior ranging from instantaneous torque chatter to
induced tripping due to inferior output tracking. By the end
of the experiment, the algorithm had sampled 3 gains which
were deemed ”very good”, and which resulted in stable
walking behavior. Gait tiles for an action deemed “very bad”,
as well as the learned best action are shown in Figure 5a.
Additionally, tracking performance for the two sets of gains



Fig. 7: Phase plots and torques commanded by the ID-CLF-QP+ in the naı̈ve user experiments with Cassie. For torques,
each colored line corresponds to a different joint, with the black dotted lines being the feedforward torque. The gains
corresponding to a “very bad” action (top) yield torques that exhibit poor tracking on joints and torque chatter. On the other
hand, the gains corresponding to the learned optimal action (bottom) exhibit much better tracking and no torque chatter.

is seen in Figure 6a, where the learned best action tracks the
desired behavior to a better degree.

The importance of the relative weight of the parameters
can be seen by looking at the learned best action:

â∗ = [750, 100, 300, 100, 0.125, 2].

Interestingly, the knees are weighted higher than the hips in
the Q matrix, which is reflected in the desired convergence of
these outputs when constructing the the Lyapunov function.
Also, the values of ε and wV̇ are in the middle of the given
range, suggesting that undesirable behavior results from these
values being too high or too low. In the end, applying
preference-based learning to tuning the gains of the CLF-
QP+ on AMBER resulted in stable walking and in one of
the few instantiations of a CLF-QP running on hardware.

B. Results with Cassie

To test the capability of the learning method towards tun-
ing more complex controllers, the preference-based learning
method was applied for tuning the gains of the ID-CLF-
QP+ controller for the Cassie bipedal robot. To demonstrate
repeatability, the experiment was conducted twice: once with
a domain expert, and once with a naı̈ve user. In both exper-
iments, a subset of the Q matrix from (CARE) was tuned
with coarse bounds given by a domain export, as reported
in Table I. These specific outputs were chosen because they
were deemed to have a large impact on the performance of
the controller. Additionally, the regularization terms in (15)
were lowered when compared to the baseline controller for
both experiments so that the effect of the outputs would
be more noticeable. Although lower regularization terms
encourage faster convergence of the outputs to the zero
dynamics surface, they induce increased torque chatter and
lead to a more challenging gain tuning process.

The controller was implemented on the on-board Intel
NUC computer, which was running a PREEMPT RT kernel.
The software runs on two ROS nodes, one of which commu-
nicate state information and joint torques over UDP to the
Simulink Real-Time xPC, and one of which runs the con-
troller. Each node is given a separate core on the CPU, and is
elevated to real-time priority. Preference-based learning was
run on an external computer and was connected to the ROS
master over wifi. Actions were updated continuously with
no break in between each walking motion. To accomplish
this real-time update, once an action was selected it was
sent to Cassie via a rosservice call, where, upon receipt, the
robot immediately updated the corresponding gains. Because
rosservice calls are blocking, multithreading their receipt
and parsing was necessary in order to maintain real-time
performance.

For both experiments, preferences were dictated by the
following criteria (ordered by importance): no torque chatter,
no drift in the floating base frame, responsiveness to desired
directional input, and no violent impacts. At the start of
the experiments, there was significant torque chatter and
wandering, with the user having to regularly intervene to
recenter the global frame. As the experiments continued,
the walking generally improved, but not strictly. At the
conclusion of 100 iterations, the posterior was inferred over
all uniquely visited actions. The action corresponding with
the maximum utility – believed by the algorithm to result
in the most user preferred walking behavior – was further
evaluated for tracking and robustness. In the end, this learned
best action coincided with the walking behavior that the user
preferred the most, and the domain expert found the learned
gains to be “objectively good”. The optimal gains identified
by the framework are:



â∗ =[2400, 1700, 4200, 5600,

1700, 1200, 27, 40, 120, 56, 17, 7].

Features of this optimal action, compared to a worse action
sampled in the beginning of the experiments, are outlined
in Figure 6. In terms of quantifiable improvement, the
difference in tracking performance is shown in Figure 6b.
For the sake of presentation, the outputs are split into η =
(ηt, ηnt) where ηt are the 12 outputs whose parameters were
tuned by the learning algorithm and ηnt are the remaining 6
outputs. The magnitude of ηt illustrates the improvement that
preference-based learning attained in tracking the outputs it
intended to. At the same time, the tracking error of ηnt shows
that the outputs that were not tuned remained unaffected
by the learning process. This quantifiable improvement is
further illustrated by the commanded torques in Figure 7,
which show that the optimal gains result in much less torque
chatter and better tracking as compared to the other gains.

Limitations. The main limitation of the current formulation
of preference-based learning towards tuning controller gains
is that the action space bounds must be predefined, and
these bounds are often difficult to know a priori. Future
work to address this problem involves modifications to the
learning framework to shift action space based on the user’s
preferences. Furthermore, the current framework limits the
set of potential new actions to the set of actions discretized by
di for each dimension i. As such, future work also includes
adapting the granularity of the action space based on the
uncertainty in specific regions.

V. CONCLUSION

Navigating the complex landscape of controller gains is a
challenging process that often requires significant knowledge
and expertise. In this work, we demonstrated that preference-
based learning is an effective mechanism towards system-
atically exploring a high-dimensional controller parameter
space. Furthermore, we experimentally demonstrated the
power of this method on two different platforms with two
different controllers, showing the application agnostic nature
of framework. In all experiments, the robots went from
stumbling to walking in a matter of hours. Additionally, the
learned best gains in both experiments corresponded with
the walking trials most preferred by the human operator. In
the end, the robots had improved tracking performance, and
were robust to external disturbance. Future work includes
addressing the aforementioned limitations, extending this
methodology to other robotic platforms, coupling preference-
based learning with metric-based optimization techniques,
and addressing multi-layered parameter tuning tasks.
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