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Abstract— Dynamic humanoid locomotion is a challenging
controls problem, and running is especially difficult to achieve,
given the underactuation inherent to aerial domains. Previous
work developed a gait-generating optimization framework for
dynamic locomotion in the context of hybrid zero dynamics,
producing stable 3D walking on the humanoid hardware
platform, DURUS. Here, we demonstrate that this optimization
method also extends to stable 3D running, despite the exacer-
bated underactuation. Gaits generated from the optimization,
which optimizes the dynamics of all 23 degrees of freedom
to maximize energy economy, result in stable running in a
DURUS simulation model. Notably, the presented running is
underactuated in all domains, due to DURUS’ spring-legged
design. Further, we generated 25 different running gaits, over
a range of speeds (1.5-3.0 m/s), to demonstrate the reliability of
solving the large-scale nonlinear program. We report statistical
performance of the optimization in successfully generating
stable running (average computation time: 323 seconds) in an
effort to establish a benchmark for large-scale gait generation.
We inspected this array of gaits across speeds, noting recog-
nizable trends in optimized strategies from prior studies on
lower-order models, (e.g. both increased step frequency and
step length with speed), along with the first reported cost-of-
transport curve for a 3D humanoid running model. We consider
this result an important step toward humanoid running on the
DURUS hardware platform.

I. INTRODUCTION

In 1989, in Marc Raibert’s technical report ”Dynamically
Stable Legged Locomotion”[22], it was summarized that
”The running speed of a legged system depends upon the
frequency and length of its steps” based on the study of
the legendary hopper. To better understand this phenomenon
in 3D bipedal legged systems, this paper shows a statistical
result based on all the stable running gaits obtained from
the optimization based gait generation framework, i.e. how
should the optimizer respond when asked to generate faster
gait with the goal of minimizing the cost of transport. Bipedal
running is an important benchmark for humanoid control
for a number of mathematical and practical reasons. Un-
like walking, running is an inherently underactuated control
problem [27]. Whenever the robot leaves the ground, it
fundamentally loses its ability actuate all of its degrees of
freedom, and is at the mercy of its ballistic trajectory. It is
also a multi-domain hybrid control problem [36], since both
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Fig. 1: The humanoid robot, DURUS, running stably in 3D
in a simulation environment as a result of a large-scale hybrid
zero dynamics optimization. This study presents the result of
25 gait optimizations achieving a range of running speeds.

walking and running should be modeled with continuous
dynamics. Further, the higher forces and power demands
push the practical limits of humanoid actuators. Here, we
present 3D running via hybrid zero dynamics (HZD) [33]
on a simulated underactuated model of the humanoid robot,
DURUS [24]. The running gaits emerge directly from a large-
scale gait optimization of the full-order system dynamics, a
tool which was previously developed for 3D walking with
the DURUS hardware [13]. We report the success of this
toolset as a milestone toward running control on the DURUS
humanoid.

The earliest example of running controllers were devel-
oped using set of highly successful heuristics. Examples
include the the Raibert hoppers [21] and the ARL-Monopod
II [1]. Decades later, Honda’s humanoid robot, ASIMO
[26], claims running speeds up to 2.5 m/s although its
control methods are not reported. Other methods have been
employed which achieve stable running in simulation by
constraining the robot’s dynamics to a reduced-order model
[16] and even achieving simulated high-speed turning [32].
We seek a method which generates stable gaits as a result
of optimizing the full dynamical equations of the multibody
humanoid.

Researchers have also generated simulated running gaits
for simulated robots with various degress of freedom. from
simple point-mass models [30] to planar hopping models [34]



to planar humanoid models [17] (in the case of [17], even
certifying stability inside the optimization). Recent work
optimized an ATLAS model for 3D locomotion by reasoning
about the centroidal dynamics [6]. Graphics researchers even
successfully created 3D running controllers after running
an extensive evolutionary algorithm [7]. Here, we generate
gaits within the hybrid zero dynamics framework in order to
leverage its formal guarantees regarding stability.

In an effort to embrace underactuation in locomotion with
formal control methods, hybrid zero dynamics (HZD) [8] was
developed and used on multiple successful robotic walking
implementations [19], [2], [15]. HZD was ultimately imple-
mented to produce planar running on the spring-legged robot,
MABEL [29], and is being extended to non-planar cases
[11]. While there are formal mathematical underpinnings to
HZD, practical implementation requires a gait optimization
which considers the full-order dynamics of the system.
Traditionally, these gait optimizations become increasingly
unreliable with robots as complex as humanoids.

In prior work, the authors’ presented an HZD optimization
formulation designed to produce stable walking with the
degrees of freedom present in 3D humanoids [13]. Here, we
show that this approach also produces stable running gaits
in simulations of the DURUS humanoid. Specfically, we use
a direct collocation approach to optimization which we use
to minimize the energy cost of locomotion (mechanical cost
of transport [5]). Further, we show that the optimization is
sufficiently reliable that we generated 25 gaits at various
running speeds.

This library of 3D gaits allows us, for the first time, to
observe trends in energy costs and running strategies in
humanoid running. Prior work has given physical insight
into mechanisms of speed adjustment, such as step length
and step frequency [21]. Here, we can assess whether these
strategies manifest when optimizing 3D running with hu-
manoid complexity. We further present a cost-of-transport vs.
speed curve for 3D humanoid running, commonly reported
in animal locomotion studies, which we can now tractably
generate for stable humanoid running in 3D.

II. 3D RUNNING MODEL OF DURUS

This section emphasizes on the multi-domain hybrid sys-
tem model of 3D running robot and the hybrid zero dynamics
(HZD) based feedback control framework that we utilize to
achieve stable 3D dynamic running on DURUS.

A. Robot Model of 3D Humanoid – DURUS

A popular approach for robotic running is to utilize the
Spring-Loaded Inverted Pendulum (SLIP) model [4], [5],
[25], since the springs can be of assistance to improve
energy efficiency and absorb the high speed plastic impacts to
protect the hardware. Therefore inspired by the SLIP model,
the three-dimensional DURUS robot (see Fig. 2) is designed
and built by SRI International for the study of high efficiency
multi-domain bipedal locomotion [13], [24]. DURUS is a
80 kg, 23 degrees of freedom (DoF) underactuated humanoid
robot with 15 actuated joints and two passive linear springs
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Fig. 2: The coordinate of DURUS robot. The red arrow of
each joint represents the positive rotation (or translation) axis
of the corresponding joint using the right hand rule.

Fig. 3: The directed cycle structure of the multi-domain
hybrid system model for flat-foot humanoid running.

attached to the end of each ankle joint that are rigidly
perpendicular to the foot. The upper body of the robot, which
is used to balance the dynamics and better resemble human
locomotion, is controlled by three orthogonal waist joints.

To model the running behavior of DURUS, we use the
generalized floating-base coodinates, qe = [pb, φb, q]

T ∈
Qe = R3 × SO(3) × Q , of the robot, where pb ∈ R3

is the Cartesian position and φb ∈ SO(3) is the orientation
of the body base frame Rb–which is attached to the center of
the pelvis link–with respect to the world frame, and q ∈ Q
is the joint coordiantes of DURUS, as shown in Fig. 2 (see
[24] for more details.)

B. Hybrid System Model for Bipedal Running

Due to the existence of both continuous and discrete
dynamics, bipedal robot running is naturally modeled as a
hybrid control system [10], [37]. The flat-foot running of
DURUS is composed of two continuous domains: a stance
domain, where the non-stance foot swings in the air while
the stance foot stays on the ground, and a flight domain,
where both feet are in the air, as shown in Fig. 3. Therefore,
the multi-domain hybrid control system of DURUS running



is defined as a tuple [2]:

H C = (Γ,D,U , S,∆,FG), (1)

where
• Γ = {V,E} is a directed cycle with vertices V = {s, f},

where s represents the stance domain and f represents
the flight domain, and the edges E = {s→ f, f → s},

• D = {Ds,Df} is a set of admissible domains of
continuous dynamics,

• U = {Us,Uf} is a set of admissible controls,
• S = {Ss ⊂ Ds, Sf ⊂ Df} is a set of guards,
• ∆ = {∆s→f ,∆f→s} is a set of smooth reset maps

represents the discrete dynamics,
• FG = {(fs, gs), (ff , gf)} is a set of affine control

systems, ẋ = fv(x) + gv(x)u, defined on Dv for all
v ∈ V , with x = (qe, q̇e) be the system states.

The directed cycle Γ is depicted in the Fig. 3. The construc-
tion of individual elements of (1) will be presented in the
remainder of this section.
Stance Domain. During the stance domain, the stance foot
remains flat on the ground. Often we use holonomic con-
straints to model the foot contact with the ground [9]. In
particular, we define the holonomic constraints of the stance
domain as

ηs(qe) := (psf (qe), φsf (qe)) ∈ R6 (2)

where psf the Cartisan position and φsf the orientation of
the stance foot. Given the mass, inertia, length and the center
of mass position of each link, the unconstrained dynamical
equation of the stance domain Ds is given by

D(qe)q̈e +H(qe, q̇e) = Bu+ JT
s (qe)Fe, (3)

where, D(qe) is the inertia matrix, H(qe, q̇e) contains the
Coriolis, gravity and spring forces terms, Js(qe) is the
Jacobian of the holonomic constraints, and Fe is a wrench
containing the ground constraint forces and moments. The
holonomic constraints are guaranteed via enforcing the sec-
ond order derivative of ηs to be zero:

Js(qe)q̈e + J̇s(qe, q̇e)q̇e = 0, (4)

Thus the affine control system {fs, gs} can be determined by
combining (3) and (4).

The manifold of the stance domain is determined by
unilateral constraints, which could be formulated as a vector
of admissible conditions, As(qe, q̇e, u). These conditions
includes positive non-stance foot height, positive normal
ground force, etc. In other words, we have

Ds = {(qe, q̇e, u) ∈ TQe × Us : As(qe, q̇e, u) ≥ 0}. (5)

Further the guard condition of the stance domain is defined
as the normal ground force crosses zero, i.e.,

Ss→f = {(qe, q̇e, u) ∈ TQe × Us : F z
e (qe, q̇e, u) = 0}. (6)

The reset map from the stance domain to flight domain is an
identity map, i.e., ∆s→f = I, considering the fact that there
is no impact involved during the transition.

Flight Domain. There is no ground contact during the flight
domain, therefore, the continuous dynamics of the domain
is determined simply by the unconstrained Euler-Lagrangian
equation:

D(qe)q̈e +H(qe, q̇e) = Bu. (7)

The admissible conditions of the flight domain are defined
so that both feet are above the ground, i.e., Af(qe) =
(hsf (qe), hnsf (qe)). Therefore, we have

Df = {(qe, q̇e, u) ∈ TQe × Uf : Af(qe) ≥ 0}. (8)

Accordingly, the transition from the flight to stance domain
occurs when the non-stance foot strikes the ground, i.e.,

Sf→s = {(qe, q̇e, u) ∈ TQe × Uf :hnsf (qe) = 0,

ḣnsf (qe) < 0}. (9)

The reset map from the flight to stance domain incorpo-
rates the impact dynamics when the non-stance foot hits the
ground, during which the joint velocities undergo discrete
changes due to the introduction of new contact constraints.
Given the pre-impact states (q−e , q̇

−
e ), the post impact states

(q+e , q̇
+
e ) = ∆f→s(q

−
e , q̇

−
e ) are determined by assuming a

perfectly plastic impact of the rigid body model [9], [14].
Let R be the coordinates relabeling matrix due to the change
of the stance and non-stance legs, we have q+e = Rq−e , and
the plastic impact equation which determines the discrete
changes of velocities, given as[

D(q−e ) −JT
s (q−e )

Js(q
−
e ) 0

] [
q̇+e
δFe

]
=

[
D(q−e )q̇−e

0

]
, (10)

where δFe is a vector of impulsive contact wrenches.

C. Hybrid Zero Dynamics (HZD) Control Framework

Given the hybrid control system model, we now present
the hybrid zero dynamics framework in which virtual con-
straints are employed as a method to synthesis feedback
controller to render stable running behavior of DURUS.
Virtual Constraints. Any admissible state-based feedback
controller that has been applied to the control system, FG,
yield closed-loop hybrid system [2]. This can be done by
defining a set of virtual constraints–also referred as outputs,
which is the difference between actual and desired outputs–
and applying feedback controllers to drive them to zero [33].

Actual outputs ya(qe, q̇e) are defined as functions of
system states. For the stance domain Ds, the forward
velocity of the center of mass (CoM) is chosen as the
relative degree one output ya1,s = vxcom(qe, q̇e) to regulate
the forward velocity of the robot, and the (vector) relative
degree two outputs are defined as ya2,s(qe) = (θsk, φslr, θsh,
ψsh, φsa, φw, θw, ψw, θnsk, φnsh, θnsh, φnsf , θnsf , ψnsf ).
For the flight domain Df , actual outputs consist of only the
relative degree two outputs, given as ya2,f(qe) = (θsk, φslr,
θsh, φsf , θsf , ψsf , φw, θw, ψw, θnsk, φnsh, θnsh, φnsf , θnsf ,
ψnsf ). In particular, φslr = φsh − φnsh is the stance
leg roll, (φsf , θsf , ψsf ) and (φnsf , θnsf , ψnsf ) are the
3-dimensional orientations (Euler angles) of the stance and



non-stance foot link, respectively. Other outputs are joint
angles as shown in Fig. 2.

We define that the desired velocity of CoM is parameter-
ized by a constant vd, i.e., y1,s(qe, q̇e, vd) = ya1,s(qe, q̇e)−vd.
Desired relative degree two outputs yd2,v(τ(qe), αv) repre-
sented by 7th order Bézier polynomials [33] parameterized
by a set of parameters αv with v ∈ {s, f}. The virtual
constraints on Dv then can be defined as:

y2,v(qe, αv) = ya2,v(qe)− yd2,v(τ(qe), αv), (11)

where τ(qe) is a monotonic state-based parameterization of
time, defined as τ(qe) =

px
b−(p

x
b )

+

(px
b )

−−(px
b )

+ ∈ [0, 1], where pxb is
the x−position of the frame Rb, and (pxb )+ and (pxb )− are
the value of pxb at the beginning and the end of one step. In
particular, the desired outputs of the stance and non-stance
foot orientations are set to be zero respectively to keep the
feet being flat throughout the step. If a output is defined
on both stance and flight domains, the coefficients of the
corresponding desired Bézier polynomials must be the same.
Feedback Controller. To drive the virtual constraints yv =
(y1,v, y2,v)→ 0 exponentially for each v ∈ {s, f}, we utilize
the feedback linearization control law

uεv = −A−1v

(
(L2

f )v + µε
v

)
(12)

where Av is the decoupling matrix, given by

As = [Lgsy1,s(qe, q̇e);LgsLfsy2,s(qe)],

Af = [LgfLffy2,f(qe)]

respectively, and

(L2
f )s = [0;LfsLfsy2,s(qe)], (L2

f )f = [LffLffy2,f(qe)],

with L is the Lie derivative. With the given control law, we
have the output dynamics (ẏ1,s, ÿ2,s)) = −µε

s and ÿ2,f =
−µε

f for the stance and flight domain respectively, where
µε
v can be chosen so that the outputs converge to zero

exponentially at a rate of ε > 0. In particular, we define

µε
s =

[
εy1,s(qe, q̇e, vd)

2εẏ2,s(qe, q̇e, αs) + ε2y2,s(qe, αs)

]
, (13)

µε
f = 2εẏ2,f(qe, q̇e, αf) + ε2y2,f(qe, αf)). (14)

Partial Hybrid Zero Dynamics. Moreover, the control law
in (12) renders the full zero dynamics surface exponentially
stable and invariant over both continuous domain [2]. Due to
the impact dynamics of the non-stance foot, the invariance
of the full zero dynamics surface is no longer guaranteed.
Particularly, it would be infeasible to enforce the relative
degree one output to be invariant through impact due to the
changes in the velocity. It motivates us to consider the partial
hybrid zero dynamics for the running of DURUS specifically.
Therefore, the goal of designing a periodic and dynamic
running gait is to find a set of parameters α = {vd, αs, αf}
that ensures there exists a periodic orbit for the system in
(1) and the partial zero dynamics surface,

PZv ={(qe, q̇e) ∈ Dv : y2,v(qe) = 0, ẏ2,v(qe, q̇e) = 0},

Fig. 4: Illustration of defect constraints and node distribution
of the direct collocation method.

is invariant through impact, where v ∈ {s, f}. The process of
finding α is often formulated as a nonlinear constrained opti-
mization problem subject to the multi-domain hybrid system
model and HZD control framework of bipedal running.

III. RUNNING GAIT OPTIMIZATION

This section will emphasize the optimization method we
utilized to design periodic running gaits for the 3D humanoid
robot DURUS. One popular approach to generate locomotion
gaits that satisfy hybrid zero dynamics conditions, direct
single shooting method [23] based nonlinear programming
(NLP), has been widely utilized on the subjects including
2D walking [2], [28], multi-domain walking [36] and 2D
running [37], [29]. In special cases such as fully actuated
robotic walking[20], and planar point feet robot [35], the
closed form solution of zero dynamics can be computed
analytically. This makes the single shooting problem trivial
to solve in the optimization algorithm.

However, for bipedal running, due to the multiple degrees
of underactuation involved in the multi-domain hybrid sys-
tem, it is computational expensive and time consuming to
forward integrate on the zero dynamics surface to find the
time solution to use the direct method inside the NLP. Thus
a direct collocation method based NLP algorithm is used
to solve a periodic running gait satisfies the equality and
inequality constraints. This methodology has been applied
successfully on the DURUS 3D walking biped [13] and this
section will present this framework with an emphasis on
running.

A. Formulation of Direct Collocation Optimization

Direct collocation method has been widely employed by
trajectory optimization problems due to its effectiveness and
robustness. Instead of explicitly integrating the dynamical
system, the direct collocation method uses implicit Runge-
Kutta methods to approximately determine the solution of
the system. In the direct collocation method, the solution of
a continuous domain, Dv ∈ {Ds,Df}, is discretized based
on the time discretization

0 = t0 < t1 < t2 < · · · < tNv = TI,v, (15)

assuming TI,v > 0 is the time at which the system reaches
the guard associated with a given domain. In this paper, we
utilize the Hermite-Simpson (Separated) scheme (see [3])
with a novel modification via introducing defect variables.
As illustrated in Fig. 4, we call the even nodes as cardinal



nodes, and the odd nodes as interior nodes. It is required
that the number of cardinal nodes, N c

v , of one domain
has to be greater than 2. For each continuous domain, the
number of segments is determined by Nv = 2(N c

v − 1).
In particular, we place cardinal nodes on Chebyshev-Gauss-
Lobatto (CGL) points, and place interior points at the middle
point of two adjacent cardinal nodes. The solutions between
two neighboring cardinal nodes are approximated by cubic
interpolation polynomials [12], whose coefficients could be
determined by the discrete states and their derivatives of the
associated cardinal nodes. Then the NLP can be formulated
so as to find a set of discrete system states that satisfies defect
constraints of the implicit integration scheme.
Defect Constraints. Before defining defect constraints for
the direct collocation scheme, we introduce another impor-
tant ingredient of the optimization problem formulation–
defect variables. Defect variables are supplementary decision
variables that could be computed in closed-form initially,
e.g., ẋ via FG. The purpose of introducing defect variables
is to simplify the constraint expression, so that determining
the analytical first-order Jacobian of constraints becomes
feasible [13]. In large-scale sparse NLPs, providing analytical
Jacobian of constraints would significantly increase the com-
putation speed and improve the robustness the optimization
convergence. Given the definition of decision variables, two
defect constraints are defined at each interior node i ∈
{1, 3, 5, . . . , Nv − 1} for all v ∈ {s, f}:

ξi = ẋi − ˙̄xi = 0 (16)

δi = xi − x̄i = 0 (17)

where xi = (qie, q̇
i
e) and ẋi = (q̇ie, q̈

i
e), and ˙̄xi = 3(xi+1 −

xi−1)/2∆tiv− (ẋi−1 + ẋi+1)/4 and x̄i = (xi+1 +xi−1)/2+
∆tiv(ẋi−1 − ẋi+1)/8 respectively, with ∆tiv = ti+1 − ti−1
being the time interval [12].
Dynamics Constraints. Here, ẋi, more precisely q̈ie, is
introduced as decision variables of the NLP, which are
determined by the continuous dynamics equations defined in
(3), (4) and (7). In general, we enforce the following equality
constraints at each node i of domain v ∈ {s, f}:

D(qie)q̈
i
e +H(qie, q̇

i
e)−Bui − JT

v (qie)F
i
e = 0, (18)

Jv(qie)q̈
i
e + J̇v(qie, q̇

i
e)q̇

i
e = 0. (19)

It can be noted that the constraint in (19) is only enforced for
the stance domain, and (implicitly) determines the wrenches
F i
e of the ground contact. The main advantage of this formu-

lation over the traditional approach–computing ẋi via FG–is
that it uses simpler but equivalent equality constraints in the
optimization. Because deriving the closed from expression
of FG requires the inversion of inertia matrix D(qe), which
makes symbolically generating the analytical Jacobian of the
defect constraints extremely unlikely for high DoF robots.

Moreover, system states (qe, q̇e) at the first and last node
should be consistent through the corresponding reset maps,
so that the resulting gait is periodic. The consistency con-
straints from the stance domain to flight domain are trivial
due to ∆s→f being an identity matrix, whereas the constraints

from the flight domain to stance domain must satisfy the
coordinates relabeling and the impact equation in (10) that
define the reset map ∆f→s.
Manifold Constraints. As defined in Sect. II-A, system
states and control inputs of each continuous domain must
be in the domain manifold, D. In other words, they must
satisfy the admissible constraints of corresponding domain
given in (5) and (8). For the stance domain, the admissible
constraints also depend on ground contact wrenches. In our
defect variables formulation, we could impose constraints
on them directly due to the fact that these wrenches are
introduced as decision variables.

Further, guard conditions defined in (6) and (9) must
be enforced at the last node of corresponding domain to
guarantee that the resulting gait indeed hits the guard of each
domain at its last node.
HZD Constraints. It can be noted that the feedback con-
trollers ui in (18) are also introduced as decision variables
and determined by the desired output dynamics given in (13)
and (14), i.e.,[

ẏ1,s(q
i
e, q̇

i
e, q̈

i
e, vd)

ÿ2,s(q
i
e, q̇

i
e, q̈

i
e, α

i
s)

]
− µε

s(q
i
e, q̇

i
e, vd

i, αi
s) = 0 (20)

ÿ2,f(q
i
e, q̇

i
e, q̈

i
e, α

i
f)− µε

f (q
i
e, q̇

i
e, α

i
f) = 0 (21)

for all i ∈ {0, 1, 2, . . . , Nv} with v ∈ {s, f}. Unlike tradi-
tional trajectory optimization problems, in which the control
inputs often use open loop control policy, we incorporate
the HZD based feedback control framework in our running
gait optimization. Further, we enforce the desired output
dynamics instead of using the closed form expression of
ui as in (12), resulting in much simpler expression for the
constraints.

More importantly, the hybrid invariance condition of the
resulting periodic gait becomes straightforward with this
formulation. Specifically, the relative degree two outputs y2,v
and their derivatives ẏ2,v should be enforced zero at the
beginning of each domain. In other words, we define

y2,v(q0e , α
0
v) = 0, (22)

ẏ2,v(q0e , q̇
0
e , α

0
v) = 0. (23)

at the first node of each domain v ∈ {s, f}. Additionally, gait
parameters TI,v and α are defined at all nodes albeit being
constants. Therefore, equality constraints between two neigh-
boring nodes must be enforced to ensure the constancy of
parameters. A constancy constraint is also imposed between
the stance and flight domains for any outputs that defined on
both domains. Incorporating all constraints discussed above
along with additional physical constraints, such as joint angle
and velocity limits and torque limits, the goal of generating
energy efficient HZD running gaits for the 3D underactuated
humanoid can be stated as a large-scale sparse NLP [13].

B. Energy Efficient Bipedal Running Optimization

We start by defining the decision variables for the prob-
lem. Let Zv = (z0v , z

1
v , . . . , z

Nv
v ) be a vector of deci-

sion variables for v ∈ {s, f} with ziv given as ziv =
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(T i
I,v, q

i
e, q̇

i
e, q̈

i
e, u

i, F i
e , α

i
v, v

i
d)1, then Z = {Zs,Zf} is the

vector of all decision variables of the NLP. Hence, the HZD
based energy efficient running gait optimization problem for
DURUS is stated as,

Z∗ = argmin
Z

∑
v={s,f}

Jv(Zv) (24)

s.t Zmin ≤ Z ≤ Zmax, (25)
Cmin ≤ C(Z)≤ Cmax, (26)

where Jv(Zv) is the cost function which minimizes the
specific cost of transport of the running gait, given by

Jv(Zv) :=
1

mgd

(
Nv−1∑
i=0

(
‖Pv(ui, q̇ie)‖ ·∆ti

T i
I,v

))
, (27)

where ∆ti = ti+1 − ti, mg is the robot weight, d is the
distance traveled during a gait cycle, and Pv(uiv, q̇

i
e) is the to-

tal power consumed (assuming no power-regeneration) com-
puted at each segment. All constraints defined in Sect. III-
A are formulated in a vector form C(Z), with Cmin and
Cmax are vectors of the minimum and maximum values
of constraints, respectively. For equality constraints, the
corresponding minimum and maximum values are set to
zero. Moreover, Zmin and Zmax are the vectors of the
minimum and maximum values of all decision variables.
Hence, some physical constraints, such as joint angle and
velocity boundaries as well as the maximum torque limits of
the robot hardware can be imposed directly as the boundary
values of the decision variables.

The result is a large-scale NLP problem that generates
energy efficient periodic running gaits for DURUS. With the
defect variables formulation, the analytical Jacobian of the
constraints can be computed by proper symbolic mathematics
toolboxes. Often, the Jacobian matrix of the whole NLP
constraints is very sparse—the density is far less than 1%—
which allows the problem to be solved efficiently using
appropriate large sparse NLP solvers such as IPOPT [31].

IV. OPTIMIZATION & SIMULATION RESULTS

By using the proposed optimization method, we are able
to generate multiple stable 3D running gaits for DURUS
with forward velocity varying from 1.5 m/s to 3.0 m/s. This

1F i
e and vd are only defined at nodes of the stance domain by definition.

section will emphasize one of the simulated running gaits in
detail first, and then a performance report of the optimization
algorithm and an overall statistical analysis of all the running
gaits we have generated.

A. Running at 2.0 m/s

With the constraints configured as explained in Sect. III
and using the large-scale IPOPT NLP solver developed by
“COIN-OR”, a 3D running gait was generated after 722 itera-
tions and 374 seconds of computation, with dual infeasibility
converging to 9.0e−4, and constraints violation 1.8e−7. This
particular gait runs is at 2.0 m/s. Note that we categorize
each running gait based on the COM velocity along the
x direction during the flight domain since it is a constant.
The specific cost of transport (SCOT) [5] is computed in
simulation as 0.90, the maximum angular velocity of all
joints is 4.4 rad/s, peak torque is 446 N m and peak power
is 1.1 kW. A running tile is also shown at Fig. 8, the limit
cycle of each joint is also shown as Fig. 5. Only one leg is
shown because of the symmetric motion. Moreover, as we
have verified the stability of the running gait by numerically
computing the eigenvalues of the linearizion of the Poincaré
map restricted to the zero dynamics about the Poincaré
section where pxb = 0, the magnitude of its eigenvalues are
shown to be [0.4138, 0.0827, 0.0312, 0.0062, 0.0000]. With
all values smaller than 1, this indicates asymptotic stability
can be obtained from this running framework (see [18] for
more detail).

B. Efficient 3D Running Gaits Generation

The main contribution of this paper is to present a working
framework to generate stable running gaits for 3D bipedal
robots not only reliably, but also efficiently. To illustrate the
computational efficiency and reliability of this framework,
the computation time and iteration the optimization required
are shown on Fig. 7 for the 25 gaits the optimization has
found. As a result, it takes 609 iterations and 323 seconds
on average for the optimization to find a feasible solution2.
Note that the threshold of the dual infeasibility of the NLP is
set to be 1e−3, the number of grid is chosen to be 15 for both
the stance and flight domains. All constraints and physical
limitations are configured based on the hardware capability
and the constraint violation converged below 1e−6.

V. DISCUSSION

Due to the high degrees of underactuation and the change
in dimension of the hybrid zero dynamics (2 for stance
domain and 5 for flight domain) through a step, direct
integration over time to find the solution can raise the
computation complexities dramatically, which can make the
optimization infeasible. However, despite the high DOF of
3D running dynamics, by simply modifying the forward
velocity constraint and fine tuning few constraint boundaries
to adjust the running appearance, this gait generation method

2This algorithm is running on a Ubuntu14.04.4 LTS desktop, equipped
with an Intelr Xeonr processor E3-1246 V3 (3.5GHz).
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generated running gaits that satisfy all the physical limita-
tions and constraints, including the HZD condition, fast and
reliably. Furthermore, in real world experiments, because of
the un-modeled dynamics and system uncertainty, the actual
running behavior could show inconsistency with simulation.
A major benefit of the computational efficiency is that it
offers the flexibility to refine the running behavior and adjust
the model practically, paving the way to achieve experimental
running.

The Specific Cost of Transport (SCOT), which quantifies
the energy efficiency of transporting an object from one
location to another, is embedded as the objective by the
optimizer. Therefore, another advantage of this framework
is the capability of generating robotic locomotion with high
energy efficiency. Notably, as shown in Fig. 6a, for a faster
running gait, the optimization generated gaits that have
higher SCOT, which aligns with the sense that for a particular
running pattern, it takes more energy to transport the robot
faster.

Eventually, to take advantage of this efficient running gait
generation method, we purposely tune the forward velocity
constraints to study gaits that runs as different speeds. As
shown in Fig. 6c and Fig. 6b, when the pure goal is to

minimize the energy consumption, the optimizer increases
both the running frequency and step length to achieve a faster
running speed, which agrees with Raibert’s hypothesis and
indicates that both are key factors to fast running.

One limitation of this framework is that because of the
highly underactuated dynamics, including hybrid system
stability constraints in the optimization, i.e., validating the
eigenvalues of the linearizion of the Poincaré map for such a
nonlinear system is not practical (see [11]). Thus, the stability
is not enforced or guaranteed by the optimizer. However, as
we have checked the magnitude of the eigenvalues of all
the gaits afterwards, 24 out of 25 gaits generated from the
optimization are stable. Our hypothesis is that because of
particular mechanical design, that the underactuated spring
is rigidly perpendicular to the foot which stays flat on the
ground during stance domain, all the reaction forces exerts
on the foot result in upright through the spring. And then
the dynamics along x direction resemble single domain fully
actuated walking to some extent.

VI. CONCLUSION

In this paper, we documented and tested a framework,
built upon a foundation of hybrid zero dynamics (HZD),
to generate 3D bipedal running gaits with multiple de-
grees of underactuation. We used a direct collocation based
optimization method to generate HZD motion primitives
(i.e. gaits) to reliably handle the added complexity of the
underactuated optimization problem. With an eye toward
hardware implementation, we incorporated all of the physical
limitations of the physical robot DURUS.

We further generated and analyzed multiple running be-
haviors with different forward speeds from 1.5 m/s to
3.0 m/s. While the optimization and simulation are close to
reality in and of itself, the ability to generate gaits quickly
simply by varying few constraints can serve as a proxy for
more experimental locomotion challenges, such as human-
like multi-contact running with foot roll behavior.

REFERENCES

[1] M. Ahmadi and M. Buehler. Controlled Passive Dynamic Running
Experiments With the ARL-Monopod II. IEEE Trans. on Robotics,
22(5):974–986, 2006.



Fig. 8: Tiled still images the DURUS running at 2.0 m/s.

[2] A. D. Ames. Human-inspired control of bipedal walking robots. IEEE
Transactions on Automatic Control, 59(5):1115–1130, May 2014.

[3] J. T. Betts. Practical methods for optimal control and estimation using
nonlinear programming, volume 19. Siam, 2010.

[4] R. Blickhan. The spring–mass model for running and hopping. Journal
of Biomechanics, 22(11):1217–1227, 1989.

[5] S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal
robots based on passive-dynamic walkers. Science, 307(5712):1082–
1085, 2005.

[6] H. Dai, A. Valenzuela, and R. Tedrake. Whole-body Motion Planning
with Simple Dynamics and Full Kinematics. In 2014 14th IEEE-RAS
International Conference on Humanoid Robots (Humanoids), 2014.

[7] T. Geijtenbeek, M. van de Panne, and a. F. van der Stappen. Flexible
muscle-based locomotion for bipedal creatures. ACM Transactions on
Graphics, 32(6):1–11, nov 2013.

[8] J. W. Grizzle, G. Abba, and F. Plestan. Asymptotically Stable Walking
for Biped Robots: Analysis via Systems with Impulse Effects. IEEE
Trans. on Automatic Control, 46(1):51–64, Jan. 2001.

[9] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames. Models,
feedback control, and open problems of 3D bipedal robotic walking.
Automatica, 50(8):1955 – 1988, 2014.

[10] J. Guckenheimer and S. Johnson. Planar hybrid systems. In Hybrid
Systems II, volume 999 of Lecture Notes in Computer Science, pages
202–225. Springer Berlin Heidelberg, 1995.

[11] K. A. Hamed and J. W. Grizzle. Robust event-based stabilization of
periodic orbits for hybrid systems: Application to an underactuated 3D
bipedal robot. In American Control Conference (ACC), 2013, pages
6206–6212, June 2013.

[12] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using
nonlinear programming and collocation. Journal of Guidance, Control,
and Dynamics, 10(4):338–342, 1987.

[13] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames.
3D dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics. In IEEE
International Conference on Robotics and Automation (ICRA), 2016.

[14] Y. Hurmuzlu and D. B. Marghitu. Rigid body collisions of planar
kinematic chains with multiple contact points. The International
Journal of Robotics Research, 13(1):82–92, 1994.

[15] A. E. Martin, D. C. Post, and J. P. Schmiedeler. Design and experi-
mental implementation of a hybrid zero dynamics-based controller for
planar bipeds with curved feet. The International Journal of Robotics
Research, 33(7):988–1005, 2014.

[16] W. C. Martin, A. Wu, and H. Geyer. Robust spring mass model running
for a physical bipedal robot. International Conference on Robotics and
Automation, pages 6307–6312, 2015.

[17] K. Mombaur. Using optimization to create self-stable human-like
running. Robotica, 27(03):321–330, 2009.

[18] B. Morris and J. W. Grizzle. A restricted Poincaré map for determining
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