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Abstract—This letter develops, theoretically justifies,
and experimentally implements an optimization-based non-
linear control methodology for stabilizing quadrupedal
locomotion. This framework utilizes virtual constraints
and control Lyapunov functions (CLFs) in the context of
quadratic programs (QPs) to robustly stabilize periodic
orbits for hybrid models of quadrupedal robots. Properties
of the proposed QP are studied wherein sufficient condi-
tions for the continuous differentiability of the controller
are presented. Additionally, this letter addresses the robust
stabilization problem of the orbits based on the Poincaré
sections analysis and input-to-state stability (ISS). The
proposed controller is numerically and experimentally val-
idated on the A1 quadrupedal robot with 18 degrees of
freedom to demonstrate the robust stability of trotting gaits
against external disturbances and unknown payloads.

Index Terms—Stability of hybrid systems, robotics, sta-
bility of nonlinear systems.

I. INTRODUCTION

LEGGED locomotion can be described by hybrid systems
consisting of continuous-time domains representing the

Lagrangian dynamics and discrete-time transitions represent-
ing the change of contact points with the environment [1]–[5].
Nonlinear controllers that address hybrid models of loco-
motion have been developed based on controlled symme-
tries [6], hybrid reduction [7], transverse linearization [8], and
hybrid zero dynamics (HZD) [5], [9]. The HZD approach
considers a set of output functions, referred to as virtual
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constraints, for continuous-time domains of locomotion and
asymptotically regulates them using an input-output (I-O)
linearizing controller [10]. HZD controllers have been vali-
dated for whole-body motion control of underactuated bipedal
robots [5], [11]–[13] and powered prosthetic legs [14], [15].

The extension of nonlinear HZD-based controllers to
quadrupedal locomotion is a challenge due to its multi-contact
nature. In particular, the nonlinear controllers must satisfy the
feasibility of the ground reaction forces (GRFs) during differ-
ent domains of locomotion. This motivates the integration of
optimization-based methods with nonlinear controllers (e.g.,
quadratic programming (QP)-based nonlinear controllers and
model predictive control (MPC)) to address the feasibility con-
straints. Many MPC approaches are tailored to the real-time
planning of reduced-order models of locomotion, but not full-
order models, see, e.g., [16]–[19]. In addition, one drawback
of QP-based nonlinear control approaches is the possible lack
of continuous differentiability (i.e., C1) of the feedback laws
with respect to the system’s state [20]. Practically, the stabil-
ity analysis of periodic locomotion can be checked via the
eigenvalues of the Poincaré map [2], [21] which requires C1

continuity of the feedback laws. Hence, lack of smoothness of
the feedback laws prohibits the use of the powerful Poincaré
sections analysis tools to study the stability of gaits.

The overarching goal of this letter is to present a continu-
ously differentiable and QP-based nonlinear controller, based
on virtual constraints and control Lyapunov functions (CLFs),
to robustly stabilize hybrid periodic orbits for quadrupedal
locomotion. The objectives and contributions of this work are
as follows. We study the properties of the proposed QP-based
nonlinear controller and present sufficient conditions under
which the feedback laws become C1. We investigate condi-
tions under which the orbit is invariant for the closed-loop
hybrid system. The robust stability properties of the periodic
orbit under the proposed nonlinear controller are studied via
the Poincaré sections analysis and input-to-state stability (ISS).
We numerically and experimentally validate the proposed non-
linear controller on the advanced A1 quadrupedal robot with
18 degrees of freedom (DOFs) to demonstrate the stability
and robustness of trotting gaits against unknown payloads and
external disturbances. To the best of the authors’ knowledge,
this is the first time a full-order HZD controller with exact
feedback linearization has been implemented on quadrupedal
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robots. The use of a model-based CLF for locomotion has only
been validated on bipedal platforms [5], making this the first
application of a model-based CLF to quadrupedal locomotion.

Our previous work [22] has used QP-based nonlinear con-
trollers for numerical simulations of quadrupedal locomotion
without studying the C1 continuity, invariance of the orbit, and
robust stability. The current work technically addresses these
properties while experimentally evaluating the control frame-
work on hardware. This work also differs from [20] and [23] in
that the proposed control framework satisfies the C1 continuity
whereas the controller in [20] only meets the continuity condi-
tions but not the C1 continuity, and [23] uses the CLF condition
to parameterize the rigid coupling between two subsystems for
distributed control of a quadruped.

II. HYBRID MODEL OF LOCOMOTION

The objective of this section is to address hybrid dynamical
models of quadrupedal locomotion. We consider floating-
based models for general quadrupedal robots whose legs end
at point feet. The generalized coordinates of the robot are
assumed to be denoted by q ∈ Q ⊂ R

nq , where Q represents
the configuration space for some positive integer nq. The state
vector can be taken as x := col(q, q̇) ∈ X ⊂ R

n, in which
X := TQ denotes the state space with n = 2nq. In addition,
the joint-level torque inputs are shown by u ∈ U ⊂ R

m, where
U is a closed and convex admissible set of inputs for some
m < nq. The equations of motion can be described by the
following ordinary differential equations (ODEs)

D(q) q̈ + H(q, q̇) = B u +
∑

�∈G
J�
� (q) λ�, (1)

where D(q) ∈ R
nq×nq denotes the positive definite mass-inertia

matrix, H(q, q̇) ∈ R
nq represents the Coriolis, centrifugal, and

gravitational terms, and B ∈ R
nq×m denotes the input matrix.

In addition, G represents the index set of ground contact points,
J�(q) := ∂p�

∂q (q) ∈ R
3×nq denotes the Jacobian matrix at the

contact point � ∈ G, p�(q) ∈ R
3 represents the Cartesian coor-

dinates of the contact point, and λ� ∈ R
3 is the corresponding

GRF. By defining λ := col{λ� | � ∈ G}, the state equation can
be expressed as

ẋ = f (x)+ g(x) u + w(x) λ (2)

subject to the holonomic constraints p̈ = 0, where p :=
col{p� | � ∈ G} represents the Cartesian coordinates of all con-
tact points, which implies rigid contact and no foot slippage.
More formally, we have p̈� = J�(q) q̈ + ∂

∂q (J�(q) q̇)q̇ = 0 for
all � ∈ G. We remark that this model is valid if λ� ∈ FC
for all � ∈ G, where FC := {col(λx, λy, λz) | λz > 0, |λx| ≤
μ√

2
λz, |λy| ≤ μ√

2
λz} denotes the friction cone for some friction

coefficient μ.
Quadrupedal locomotion can be expressed by multi-domain

hybrid systems. Using [2, Th. 4.3], the stability analysis of
periodic orbits for multi-domain hybrid models can be reduced
to that of single-domain hybrid models. In this approach,
the reset map for the equivalent single-domain hybrid system
can be expressed as the composition of the flows of the
remaining continuous-time domains and discrete-time tran-
sitions in the order they are executed in the multi-domain
hybrid systems’ cycle. In particular, assuming domain 1 is the

main continuous-time domain, the equivalent reset law can be
expressed as � := �N→1 ◦FN ◦· · ·◦�2→3 ◦F2 ◦�1→2, where
N denotes the number of domains and Fi and �i→j represent
the flow of the continuous-time domain i and the reset law
during the discrete-time transition i → j [24], respectively,
for all i, j ∈ {1, . . . ,N} [25, Sec. IV]. In this letter, we study
periodic orbits corresponding to double-domain trotting gaits,
which have left-right symmetry. Using [26, Remark 11], one
can apply symmetry to the controller of domain 1 to construct
the controller for domain 2. Hence, without loss of generality,
we will focus on single-domain hybrid models of locomotion
as follows:

� :

⎧
⎨

⎩

ẋ = f (x)+ g(x) u + w(x) λ, x ∈ X
p̈ = 0
x+ = �(x−), x− ∈ X ∩ S,

(3)

where S represents the guard of the hybrid system, referred to
as the switching manifold. The state solutions of � undergo
an abrupt change according to the C1 reset law x+ = �(x−)
when they hit the guard S .

Assumption 1 (Periodic Orbit): There exists a period-one
orbit O for the system � that is transversal to the switching
manifold S . In particular, O := {ϕ�(t) | 0 ≤ t < T} for some
periodic state solution ϕ�(t) and some fundamental period T >
0. Furthermore, the orbit intersects the switching manifold in
exactly one point, i.e., {x�} := O ∩ S is a singleton, where
O denotes the set closure of O.

III. QP-BASED NONLINEAR CONTROLLER

This section presents a nonlinear control scheme, based on
QP, virtual constraints, and CLFs, for whole-body motion con-
trol and robust stabilization of the orbit O. The properties of
the QP-based nonlinear controller are studied to show that it
becomes C1 on an open neighborhood of the orbit.

A. Formulation of the QP-Based Nonlinear Controller

We consider a set of holonomic virtual constraints as output
functions y := h(x) ∈ R

m to be imposed by the action of a
feedback controller.

Assumption 2 (Output Properties): The output function
y(x) is assumed to be smooth (i.e., C∞) with uniform rela-
tive degree 2 [10] with respect to the control input u in (3)
on an open neighborhood of the orbit O. In addition, y(x)
vanishes on O, that is, y(x) = 0 for all x ∈ O.

Differentiating the output function y(x) along the
continuous-time dynamics (2) and setting the result equal to
the desired output dynamics to solve for u yields

ÿ = LgLf y u + LwLf y λ+ L2
f y = −KP y − KD ẏ + v, (4)

where “L” represents the Lie derivative, KP and KD are pos-
itive definite matrices, and v ∈ R

m is an auxiliary input.
We remark that in (4), ÿ is an affine function of both the
inputs u and the GRFs λ, and LgLf y and LwLf y denote the
corresponding decoupling matrices. The right-hand side term
−KP y − KD ẏ + v represents the desired output dynamics that
we ultimately want to achieve by solving for (u, λ). By defin-
ing η := col(y, ẏ) ∈ R

2m, the output dynamics (4) can be
written in a compact form as follows:

η̇ = f̄ (η)+ ḡ(η) v := F η + G v, (5)
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where

F :=
[

0 I
−KP −KD

]
∈ R

2m×2m, G :=
[

0
I

]
∈ R

2m×m.

Since F is Hurwitz, for every positive definite Q = Q�,
there exists a unique and positive definite P = P� such that
F�P + P F = −Q. A function Vε(η) is said to be a rapidly
exponentially stabilizing CLF (RES-CLF) for (5) if there are
positive scalars c1, c2, c3 > 0 such that for all 0 < ε < 1 and
η ∈ R

2m, the following conditions are met

c1‖η‖2 ≤ Vε(η) ≤ c2

ε2
‖η‖2

inf
v

{
Lf̄ Vε(η)+ LḡVε(η) v + c3

ε
Vε(η)

}
≤ 0. (6)

Following [5], Vε(η) := η�Pε η is an RES-CLF for (5)
with Pε := diag( 1

ε
I, I)P diag( 1

ε
I, I). More specifically, we can

show that the CLF condition can be expressed as the following
affine inequality in terms of v

V̇ε + c3

ε
Vε = ψ0(x)+ ψ1(x) v ≤ 0, (7)

where c3 := λmin(Q)
λmax(P)

, ψ0(x) := η�(F�Pε+Pε F+ c3
ε

Pε) η, and

ψ1(x) := 2η�Pε G. From Assumption 2, η = 0 for all x ∈ O,
and hence, the inequality (7) is reduced to the trivial case of
0 v ≤ 0 on the orbit.

Analogous to (4), the algebraic holonomic constraints aris-
ing from the stationary contacts of the stance leg ends with
the ground can be expressed as

p̈ = LgLf p u + LwLf p λ+ L2
f p = 0. (8)

Assumption 3: The contact constraints are regular in that
the square matrix LwLf p(x) is full-rank for every x ∈ X .

We aim to solve for (u, λ, v) that satisfy the output dynam-
ics (4) and the contact condition (8) while addressing the CLF
condition (7) as well as the feasibility constraints u ∈ U and
λ ∈ FC. For this purpose, we set up the following real-time
strictly convex QP

min
(u,λ,v,δ)

γ1

2
‖u‖2 + γ2

2
‖λ− λd‖2 + γ3

2
‖v‖2 + γ4

2
δ2

s.t. LgLf y u + LwLf y λ+ L2
f y = −KP y − KD ẏ + v

LgLf p u + LwLf p λ+ L2
f p = 0

ψ0 + ψ1 v ≤ δ

u ∈ U , λ ∈ FC, (9)

where γ1, γ2, γ3, γ4 > 0 are weighting factors. The equality
constraints of (9) correspond to the I-O linearization (4) and
rigid contact assumption (8). The CLF condition (7) is then
relaxed by introducing a defect variable δ ∈ R. Theorem 1
will show that this relaxation would allow the C1 continuity
of the optimal solution of the QP with respect to x in an open
neighborhood of the orbit O. The QP considers the feasibility
condition of the torque inputs and GRFs as inequality con-
straints. The cost function finally tries to find the minimum
2-norm (minimum power) torques u that impose the actual
GRFs λ to follow a desired GRF profile λd(x) while reducing
the magnitude of the defect variable δ and the auxiliary input
v. Note that in this work, λd = 0. The existence and unique-
ness of the solution to this strictly convex QP will be shown
via Assumption 4 and Theorem 1.

For future purposes, the optimal solution of the QP (9) is
denoted by (u�(x), λ�(x), v�(x), δ�(x)) and is parameterized by
the state vector x. Furthermore, the closed-loop hybrid system
can be expressed as

�cl :

⎧
⎨

⎩

ẋ = f cl(x), x ∈ X
p̈ = 0
x+ = �(x−), x− ∈ X ∩ S,

(10)

where f cl(x) := f (x)+g(x) u�(x)+w(x) λ(x) is the closed-loop
vector field. We remark that λ(x) = λ�(x) as from (8), λ(x)
can be uniquely computed based on u�(x).

B. Continuous Differentiability of the Feedback Controller

The QP in (9) can be expressed in a compact form as the
following parameterized optimization problem

P(x) :

⎧
⎨

⎩

minξ J(ξ, x)
s.t. ρi(ξ, x) = 0, i ∈ Ieq := {1, . . . , neq}

ωj(ξ, x) ≤ 0, j ∈ Iineq := {1, . . . , nineq},
where ξ := col(u, λ, v, δ) represents the decision variables to
be determined. The Lagrangian for P(x) is defined as

L(ξ, α, β, x) := J(ξ, x)+
∑

i∈Ieq

αi ρi(ξ, x)+
∑

j∈Iineq

βj ωj(ξ, x),

where α and β are the Lagrange multipliers corresponding to
the equality and inequality constraints, respectively. A point
(ξ�, α�, β�) satisfies the Karush-Kuhn-Tucker (KKT) condi-
tions for P(x0) if 1) ∂L

∂ξ
(ξ�, α�, β�, x0) = 0, 2) all equality

constraints are met at (ξ, x) = (ξ�, x0), 3) all inequality con-
straints are satisfied at (ξ, x) = (ξ�, x0), and 4) βj ωj(ξ

�, x0) =
0 with βj ≥ 0 for all j ∈ Iineq (complementary slackness).
A point (ξ�, α�, β�) satisfies strict complementary slackness
if there is not any j ∈ Iineq for which both βj = 0 and
ωj(ξ

�, x0) = 0. A point (ξ�, α�, β�) is said to be regular if
the gradients of the active constraints of P(x0) are linearly
independent.

The point (ξ�, α�, β�) satisfies the second-order sufficient
conditions (SOSC) of the QP P(x0) if a) the KKT condi-
tions are met, and b) the Hessian matrix meets the condition
z� ∂2L

∂ξ2 (ξ
�, α�, β�, x0) z > 0 for all z �= 0 such that

1) z� ∂ρi
∂ξ
(ξ�, x0) = 0 for all i ∈ Ieq,

2) z� ∂ωj
∂ξ
(ξ�, x0) = 0 for all j ∈ Iineq where β�j > 0,

3) z� ∂ωj
∂ξ
(ξ�, x0) ≤ 0 for all j ∈ Iineq where β�j = 0.

Assumption 4 (Optimality on the Periodic Orbit): We sup-
pose that, for all x0 on the orbit O, the QP P(x0) is feasible
and there exists a point (ξ�(x0), α

�(x0), β
�(x0)) that satisfies

the SOSC. The point (ξ�(x0), α
�(x0), β

�(x0)) also satisfies the
strict complementary slackness for P(x0). We further sup-
pose that the optimal control and GRFs take values in the
interior of the sets U and FC, that is, u�(x0) ∈ int(U) and
λ�(x0) ∈ int(FC), where “int” represents the interior of a set.

Remark 1: Assumption 4 is not restrictive and states that
the QP has a feasible solution that satisfies the SOSC and
complementary slackness for every point on the desired orbit,
which follows simply from the strict convexity of the problem.
It also states that the torques and GRFs corresponding to the
desired trajectory remain in the interior of the feasible sets,
which can be met during trajectory optimization of the desired
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periodic orbit O. In particular, the trajectory optimization
problem for generating O can be constrained by a conserva-
tive subset of the feasible sets U and FC such that the desired
orbit remains in the interior of the actual feasible sets U and
FC at all times during locomotion.

Theorem 1 (Existence, Uniqueness, and C1 Continuity of
the Optimal Solution): Under Assumptions 1-4, there exist
an open neighborhood of the periodic orbit O, denoted by
N (O), and a continuously-differentiable function ξ�(x) :=
col(u�(x), λ�(x), v�(x), δ�(x)), such that for all x ∈ N (O),
ξ�(x) is an isolated optimal solution of the QP P(x).

Proof: Since f (x), g(x), w(x), and y(x) are smooth (i.e., C∞),
the cost function J(ξ, x) and constraints ρ(ξ, x) and ω(ξ, x)
are smooth in x on an open neighborhood of the orbit. In addi-
tion, J(ξ, x) and constraints ρ(ξ, x) and ω(ξ, x) are smooth in
ξ . We next show that for all x0 ∈ O, the optimal solution of
P(x0), denoted by (ξ�, α�, β�), satisfies the regularity condi-
tion. From Assumption 2, ÿ = 0 on the orbit. Hence, according
to the output dynamics (4), the optimal v value must be zero,
i.e., v� = 0. Since ψ0 = 0 and ψ1 = 0 on the orbit, the
relaxed-CLF condition in (9) is reduced to 0 ≤ δ. According
to the positive term γ4

2 δ
2 in the cost function, we can con-

clude that δ� = 0. Hence, the relaxed CLF condition, which
is expressed as an inequality constraint, is indeed active on
the orbit. From Assumption 4, u� ∈ int(U) and λ� ∈ int(FC).
Consequently, the feasibility constraints u ∈ U and λ ∈ FC
of the QP (9) are inactive on the orbit. We now study the
rank of the gradients of the active constraints with respect to
ξ = col(u, λ, v, δ) that is reduced to the following matrix on
the orbit

⎡

⎣
LgLf y(x0) LwLf y(x0) −I 0
LgLf p(x0) LwLf p(x0) 0 0

0 0 0 −1

⎤

⎦. (11)

By Assumption 3, LwLf p(x0) is full-rank, and hence,
the gradient matrix in (11) has full row rank for every
x0 ∈ O. Thus, all sufficient conditions of Fiacco’s Theorem
(see [27, Th. 2.1] or [20, Th. 1]) are met, resulting in the
existence, uniqueness, and C1 continuity of optimal solutions
of the QP on an open neighborhood of the orbit O.

IV. ROBUST STABILITY

The objective of this section is to address the robust sta-
bilization problem of the periodic orbit O based on the
Poincaré sections analysis and ISS. We consider the closed-
loop hybrid model (10) subject to external disturbances during
the continuous-time domain as follows:

ẋ = f cl(x)+ a(x) d, (12)

where a(x) is a smooth function and d is an external wrench
(i.e., disturbance) defined by a finite-dimensional set of param-
eters [21, Sec. II.C]. Typical examples include constant dis-
turbance inputs or splines whose parameters change from one
domain to another. We suppose that dk ∈ D represents the
parameterization of the disturbance during the k-th continuous-
time domain, where D is a domain containing the origin. The
evolution of the perturbed hybrid system on the Poincaré sec-
tion S can then be described by the following discrete-time

dynamics

xk+1 = R(xk, dk), k = 0, 1, . . . , (13)

where R : S × D → S represents the Poincaré return map
parameterized by the disturbance dk. To study the properties
of the Poincaré map, we make the following assumption.

Assumption 5: We suppose that for all x ∈ O, the matrix

T(x) := LgLf y − LwLf y
(
LwLf p

)−1LgLf p ∈ R
m×m

is full-rank.
Remark 2: Assumption 5 is not restrictive and is met

inherently if the system is not overactuated. In this work,
we consider a trot gait that does not have an overactuated
continuous-time domain, so this assumption is satisfied. In
the proof of Theorem 2, we will show that this ensures the
uniqueness of the torques corresponding to the periodic gait.

Definition 1: A fixed point x� is said to be locally ISS
(LISS) for (13), if there exists ε > 0, a class KL function
�, and a class K function � such that

‖xk − x�‖ ≤ �(‖x0 − x�‖, k)+�
(‖d‖l∞

)
, ∀k = 0, 1, . . . ,

for all x0 ∈ S ∩ Bε(x�) and d ∈ Bε(0), where Bε(x�)
and Bε(0) are open ε-neighborhood balls around x� and 0,
respectively, and ‖d‖l∞ represents the l∞-norm.

We are now in a position to present the following theorem to
investigate the existence of a fixed point and its LISS property
for the Poincaré return map.

Theorem 2 (Invariance and Robust Stability): Under
Assumptions 1-5, the following statements hold.

1) The orbit O is invariant under the flow of the closed-
loop hybrid system in the absence of the disturbance d.
In particular, x� is a fixed point for the Poincaré map in
the absence of d, that is R(x�, 0) = x�.

2) If the eigenvalues of �0 := ∂R
∂x (x

�, 0) are strictly inside
the unit circle, then x� is LISS for (13).

Proof Part (1): From Assumptions 2 and 4 and the proof
of Theorem 1, for every x ∈ O, the QP P(x) is feasible and
the optimal v value is zero (i.e., v� = 0). Hence, the equality
constraints are reduced to LgLf y u + LwLf y λ + L2

f y = 0 and
LgLf p u + LwLf p λ + L2

f p = 0. Eliminating the GRFs from
these equations, we can conclude that

T(x) u + L2
f y − LwLf y

(
LwLf p

)−1L2
f p = 0. (14)

This, together with Assumption 5, implies that u is a unique
solution for this set of equations which coincides with the
open-loop control input that generates the orbit. Hence, O is
invariant under the flow of the closed-loop hybrid dynamics.

Part (2): Unlike [21], the closed-loop vector field is C1,
but not twice continuously differentiable (i.e., C2). Theorem 1
together with the transversality condition in Assumption 1
implies that R(x, d) is C1 with respect to (x, d) on an open
neighborhood of (x�, 0). Since �0 is a Hurwitz matrix, for
every Q0 = Q�

0 > 0, there is a unique P0 = P�
0 > 0 such that

the discrete-time Lyapunov equation ��
0 P0�0 − P0 = −Q0

is satisfied. This shows zero-input exponential stability and
thereby zero-input asymptotic stability of the fixed point x�

for the Poincaré return map. We can then conclude the desired
local ISS property holds by invoking [29]. More formally, we
can choose the Lyapunov function W(x) := δx�P0 δx, where
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Fig. 1. Simulated and experimental data for a forward trot subject to a payload of 4.54 (kg). The joint phase plots are shown for the front right leg.

Fig. 2. This experiment displays A1 trotting under the influence of both a 4.54 (kg) payload (36% of the robot’s weight) and push disturbances. The
quadruped was able to resist these uncertainties and continue trotting. Videos of the experiments are available online [28].

δx := x − x�. From [30, Lemma 2], there are ε, ζ0, σ0 > 0
such that for all x ∈ S ∩ Bε(x�) and all d ∈ Bε(0) ⊂ D,
�W := W(R(x, d)) − W(x) ≤ −ζ0‖δx‖2 + σ0‖d‖2. Since
λmin(P0) ‖δx‖2 ≤ W(x) ≤ λmax(P0) ‖δx‖2, we can conclude
that Wk+1 ≤ νWk +σ0‖dk‖2, where ν := 1− ζ0

λmax(P0)
< 1. For

d = 0, this inequality is reduced to Wk+1 ≤ νWk, and hence,
ν ∈ [0, 1). We can show that

Wk ≤ νk W0 + σ0

k−1∑

j=0

νk−1−j‖dj‖2 ≤ νk W0 + σ0

1 − ν
d2

max,

where dmax := supk≥0 ‖dk‖. This latter inequality together
with the property

√
a + b ≤ √

a + √
b results in ‖δxk‖ ≤√

λmax(P0)
λmin(P0)

‖δx0‖ (√ν)k +
√

σ0
λmin(P0) (1−ν) dmax for all k =

0, 1, . . . , which completes the proof.

V. NUMERICAL AND EXPERIMENTAL RESULTS

This section aims to numerically and experimentally evalu-
ate the effectiveness of the proposed nonlinear control scheme.
We consider a full-order dynamical model of the quadrupedal
robot A1 made by Unitree. The floating-based model of
the mechanical system consists of 18 DOFs. Six DOFs are
unactuated and describe the absolute position and orientation
of the robot. The remaining 12 DOFs are the actuated joints
of the legs. More specifically, each leg has a 2 DOF hip joint
plus a 1 DOF knee joint. The robot weighs approximately
12.45 (kg) and stands up to 0.28 (m) off the ground. In this
letter, we consider a heuristic and symmetric periodic orbit O
for trotting at 0.1 (m/s). We remark that the orbit can also
be designed via trajectory optimization techniques. The orbit
satisfies Assumptions 4 and 5. We then consider 12 virtual
constraints to stabilize the orbit according to Assumption 2.
The first three components are defined in the Cartesian space
to track the desired trajectories for the geometric center of
the robot. The next three components are defined to regulate
the orientation of the torso. The remaining components are
defined in the Cartesian space to impose the swing leg ends

to follow the desired trajectories starting from the previous
footholds and ending at the upcoming ones.

The proposed QP-based controller in (9) is solved using
qpSWIFT [31] at 1kHz on an off-board laptop with an i7-
1185G7 running at 3.00 GHz and 16 GB of RAM. Under
nominal conditions, the computation time is 0.22 (ms) on
average over the course of one domain. The QP uses γn =
{1, 0.1, 1e6, 1e8} for the weights, and assumes a coefficient
of friction of μ = 0.7, which results in stable locomotion.

The proposed controller was first simulated in RaiSim [32],
which assumes a rigid contact model. Under nominal condi-
tions, the controller results in stable trotting. This is further
examined by subjecting the robot to push and payload distur-
bances that are unknown to the controller. Similarly, hardware
experiments were performed under several disturbance con-
ditions. The phase plots in Fig. 1 display the simulated and
experimental results of a trot gait subject to a constant pay-
load with a mass of 4.54 (kg), which is 36% of the total body
mass. The gap between simulated and experimental results can
be attributed to poorly modeled system dynamics, compliant
feet, lack of rigorous contact and state estimation, and differ-
ences in the position of the payload. In light of these potential
shortcomings, the robot is able to remain stable without knowl-
edge of the payload. In addition to adequately handling this
unmodeled payload, the robot was further able to robustly
resist push disturbances during experiments without becom-
ing unstable. Snapshots of the experiment involving both a
payload and push disturbances can be found in Fig. 2 and
the corresponding CLF may be found in Fig. 3. Even under
these disturbances, the derivative of the CLF remains nega-
tive for nearly the entire trial, and becomes positive for only
brief moments (e.g., δ remains small). It can be observed that
the CLF spikes during the pushes and slowly decreases as
the robot continues to step forward. Due to the hybrid nature
of locomotion, convergence back to the orbit is subject to
constantly changing contact domains, leading to slow recovery.
Experiment videos are available online [28].
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Fig. 3. CLF corresponding to the experiment in Fig. 2. The highlighted
portions indicate the pushes and corresponding recovery of the robot.

VI. CONCLUSION

This letter presented a nonlinear control scheme, based
on virtual constraints, CLFs, and QPs, to robustly stabilize
periodic orbits for hybrid dynamical models of quadrupedal
locomotion. The first theoretical contribution of this letter
established sufficient conditions such that this QP-based con-
troller is continuously differentiable on an open neighborhood
of the orbit. We subsequently showed the invariance of the
orbit and its robust stability via the Poincaré sections anal-
ysis and ISS. The effectiveness of the proposed controller
was verified both numerically and experimentally on the A1
quadrupedal robot. The full-order and nonlinear controller was
implemented on the robot as a model-based CLF-QP in real-
time. The robust stability of trotting gaits against external
disturbances and uncertainties arising from unknown payloads
was demonstrated in practice. Future research will investigate
the robustness of the gaits on rough terrains. We will also
explore the integration of this control scheme with higher-level
and MPC-based planning algorithms.
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