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Abstract— The ability to generate dynamic walking in real-
time for bipedal robots with compliance and underactuation
has the potential to enable locomotion in complex and un-
structured environments. Yet, the high-dimensional nature of
bipedal robots has limited the use of full-order rigid body
dynamics to gaits which are synthesized offline and then tracked
online, e.g., via whole-body controllers. In this work we develop
an online nonlinear model predictive control approach that
leverages the full-order dynamics to realize diverse walking
behaviors. Additionally, this approach can be coupled with gaits
synthesized offline via a terminal cost that enables a shorter
prediction horizon; this makes rapid online re-planning feasible
and bridges the gap between online reactive control and offline
gait planning. We demonstrate the proposed method on the
planar robot AMBER-3M, both in simulation and on hardware.

I. INTRODUCTION

Bipedal robots hold the potential to locomote in environ-
ments not accessible to other wheeled and legged robots:
from diverse terrain types to human-centered infrastructure.
Yet to achieve this potential, it is necessary to demonstrate a
rich set of locomotion behaviors that are dynamically stable.
Bipedal robots capable of demonstrating diverse behaviors,
much like their human counterparts, leverage compliant
elements and phases of underactuation. This underactuation
necessitates the dynamic coordination of the whole-body
dynamics of the robot—planning for the next foot strike must
occur throughout the step—in a manner that accounts for the
inherently nonlinear passive dynamics of the system. Achiev-
ing diverse locomotion behaviors in complex environments,
therefore, requires this be done on the robot in real-time,
thereby going beyond pre-planned periodic walking gaits.

The challenge of underactuation present in bipedal loco-
motion has historically been approached through the syn-
thesis of gaits, i.e. dynamically stable reference trajectories.
Many of these approaches for gait synthesis require stati-
cally stable behavior [1], or rely on simplified models that
neglect elements such as leg mass [2]–[4]. More recently,
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Fig. 1: A depiction of the AMBER-3M platform using the
whole-body nonlinear MPC with an HZD gait as the terminal
reference state. The optimized feet and torso trajectories are
visualized along the prediction horizon.

the method of Hybrid Zero Dynamics (HZD) has presented
a tool for synthesizing periodic gaits that account for the
underactuated and hybrid nature of the full system dynamics
[5]. Not only do gaits synthesized via HZD possess formal
stability guarantees, but they have shown great efficacy when
deployed experimentally [6], [7]. Despite these successes,
ensuring stability guarantees for high-dimensional bipedal
systems often induces computational requirements that limit
gait synthesis via HZD to an offline procedure. Adding a
measure of flexibility to bipedal locomotion is often done by
synthesizing a library of gaits [8]–[10], although this is still
limited to locomotion configurations reflected in the library.

In contrast, Model Predictive Control (MPC) provides
a tool for the online synthesis of reference trajectories,
allowing feedback of environmental parameters to be in-
corporated into dynamic motion planning [11], [12]. In
particular, by optimizing directly over contact forces, these
methods have seen significant use in online motion planning
for quadrupedal robotics, with extensive experimental results
[13]–[15]. In the context of bipedal robotics, online motion
planning has typically required static stability [16]–[18], used
simplified template models for planning and whole-body dy-
namics and contact forces for tracking controllers [19]–[22],
or only used whole-body planning for tasks such as reaching
(without stepping) [23]. Whole-body motion planning results
for bipedal locomotion have been predominantly restricted
to simulation [24]–[27], or relied on cancelling nonlinear
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Fig. 2: Push recovery using the proposed method under a disturbance – notice the aperiodic stepping that was planned online
in order to reject the disturbance, something that is not possible with traditional HZD based methods.

dynamics through control before planning [28]. Notably, the
online motion planning tools that have achieved remarkable
experimental results for quadrupedal locomotion have not yet
achieved commensurate results for bipedal robotics.

One of the key challenges often faced in online whole-
body motion planning is computational limitations, as pro-
ducing stable legged locomotion requires optimizing over
a sufficiently long horizon. The methods for quadrupedal
robotic systems that have yielded experimental results typi-
cally exploit low leg inertia to neglect leg dynamics, thereby
reducing the state dimension in the optimization. Transfer-
ring this reduction to bipedal systems is difficult, as the
legs account for a relatively high fraction of the system’s
total inertia. However, simultaneously considering both leg
and torso dynamics results in a high number of degrees of
freedom, making online motion optimization over long time
horizons computationally intensive. At the same time, the
narrow stance width and high center of mass necessitate a
high planning frequency to counteract disturbances in under-
actuated dimensions. Thus, it is paramount to design whole-
body motion planners that balance the trade-off between
horizon length, model complexity, and planning frequency.

We make three contributions in this work. First, we
propose a nonlinear MPC approach for online whole-body
motion planning of bipedal robotic locomotion, drawing
upon the existing methods used for quadrupedal locomotion
[29]. Second, to reduce the computational burden of online
whole-body planning, we propose incorporating a stable
walking gait synthesized offline via Hybrid Zero Dynamics
(HZD) into the nonlinear optimization problem as a terminal
cost. We explore how incorporating this information permits
optimizing over shorter horizon lengths, thus requiring less
computational effort, while still achieving robust bipedal
locomotion. Lastly, we provide experimental validation of
the proposed approach on the bipedal robot AMBER-3M
[30], demonstrating a range of behaviours including standing,
trotting in place, and walking. To the best of our knowledge,
this is the first experimental demonstration of online whole-
body motion planning for bipedal locomotion.

II. BACKGROUND

A. System Dynamics
As walking consists of phases of intermittent contact

with the world, it is naturally modeled as a hybrid system
consisting of phases of continuous dynamics followed by
discrete transition events. The configuration of the robot may
be described by a set of d (local) generalized coordinates:

q =
[
q>b q>j

]> ∈ Q , SE(3)×Qj , (1)

which include the base coordinates qb and joint coordinates
qj of the robot, respectively. To capture the various contact
modes the robot may evolve under, consider a collection
of domains {Dc} with Dc ⊆ X for c = 1, . . . , p, where
X is the tangent bundle of Q and p denotes the number
of contact modes. Associated with these domains are a
collection of guards {Sc} with Sc ⊆ X and reset maps
{∆c} with ∆c : X → X which are used to define how the
system behaves during transitions between contact modes.
Additionally, in each domain Dc the coordinates of the robot
are subject to a collection of nc holonomic constraints with
associated contact Jacobians Jc : Q → R6nc×d.

Using the Euler-Lagrange method, the system dynamics
in a given domain Dc are given by:

D(q)q̈ + h(q, q̇) = B(q)τ + Jc(q)>λ, (2)

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0, (3)

with symmetric positive definite inertia matrix D : Q →
Sd�0, centrifugal, Coriolis, and gravitational terms h : X →
Rd, actuation matrix B : Q → Rd×m, joint torques τ ∈ Rm,
and constraint forces λ ∈ R6nc . By defining the system state
x ∈ X as:

x =
[
q> q̇>

]>
, (4)

and solving for the constraint forces λ via (2)-(3), the system
dynamics in a given domain Dc can be rewritten as:

ẋ =

[
T q̇

D−1(−h + J>c λ)

]
︸ ︷︷ ︸

fc(x)

+

[
0

D−1B

]
︸ ︷︷ ︸

g(x)

τ , (5)



where the dependence on q and q̇ has been dropped for no-
tational simplicity and T : Q → Rd×d maps angular velocity
to the derivatives of the chosen rotation parametrization . The
resulting functions fc : X → R2d and g : X → R2d×m are
assumed to be continuously differentiable on the domain Dc.

To model a transition from contact mode c to contact
mode c′, consider a state x− , (q−, q̇−) ∈ Sc. The discrete
transition map is given by:

D(q−)(q̇+ − q̇−) = J>c′(q
−)F, (6)

Jc′(q
−)q̇+ = 0, (7)

whereby solving for the impulse force F ∈ Rnc yields:

x+ ,

[
q+

q̇+

]
=

[
q−

q̇− + D(q−)−1J>c′(q
−)F

]
︸ ︷︷ ︸

∆c(x−)

. (8)

B. Nonlinear Model Predictive Control

Nonlinear MPC solves a optimization problem in a re-
ceding horizon manner by solving the following finite time
nonlinear optimal control problem:

minimize
u(·)

φ(x(tH)) +

∫ tH

0

l(x(t),u(t), t)dt, (9a)

subject to: x(0) = x0, (9b)
ẋ = f(x) + g(x)u, (9c)

x(t+i ) = ∆c(x(ti)), (9d)
heq(x,u, t) = 0, (9e)
hin(x,u, t) ≥ 0, (9f)

where tH is the length of the horizon, φ : X → R
is the terminal cost, l : X × Rm × R → R is the
time-varying running state-input cost, and ti are times of
contact mode transitions. The optimal control problem is
solved in real-time by updating the initial conditions (9b)
with the measured state of the system. Eq. (9c) describes
the system dynamics. heq : X × Rm × R → Req and
hin : X × Rm × R → Rin are generalized path equality
and inequality constraints, respectively. There exist various
approaches to solve this problem as outlined in [31]. We
take a direct-multiple shooting transcription of the problem
together with a sequential quadratic programming approach
to handle nonlinearities [32]. Inequality constraints (9f) are
implemented through relaxed-barrier penalty functions [33].

A key component in establishing closed loop stability
and recursive feasibility is the choice of terminal compo-
nents [34], either as terminal cost in (9a) or as constraints
on the terminal state, x(tH), to lie in a control invariant set.
In practice, for nonlinear complex systems, it is challenging
to proof that such conditions hold. Extending the prediction
horizon is a common choice to reduce the relative importance
of the terminal components [35]. However, for systems where
long prediction horizons are not feasible due to computa-
tional limits, careful choice of terminal components directly
translates to the overall performance of the controller, as we
will empirically show in this work.

C. Hybrid Zero Dynamics (HZD)

The HZD framework has been successfully employed to
achieve walking for a variety of robotic systems [5]–[7].
Synthesis of gaits via HZD is centered around defining
outputs y : Rd × Rr → Ro as:

y(q,α) = ya(q)− yd(q,α), (10)

where ya : Rd → Ro and yd : Rd × Rr → Ro are the
actual and desired outputs, respectively, and are assumed
to be continuously differentiable. The actual outputs ya are
chosen to satisfy a controllability property allowing them to
be driven to the desired outputs [5]. The desired outputs yd

depend on the set of parameters α ∈ Rr, which are chosen
to regulate the underactuated coordinates of the system.
More precisely, the zero dynamics manifold is defined as
the subspace of state coordinates for which the outputs and
their derivatives are zero:

Zc = {(q, q̇) ∈ X : y(q,α) = ẏ(q, q̇,α) = 0}. (11)

The parameters are then chosen to satisfy the hybrid invari-
ance condition, ∆c(Zc∩Sc) ⊂ Zc, for each contact mode c,
which ensures that the underactuated coordinates of the sys-
tem remain stable through impacts. Ensuring this condition
is achieved by finding values of α through nonlinear opti-
mization [36]. Given a desired trajectory yd from an HZD
optimization program, a set of desired state-input pairs of the
system (x,u) can be reconstructed. The resulting trajectories
serve as a control invariant that will be incorporated as a
terminal component in our MPC formulation.

III. WHOLE-BODY MOTION PLANNING & CONTROL

Our nonlinear MPC problem will be constructed using the
OCS2 toolbox [37], which provides convenient interfaces
to the Pinocchio [38] rigid body library and CppAd [39]
automatic differentiation tools. Our formulation assumes that
the contact schedule associated with a given locomotion
mode (standing, trotting, walking) is predefined, but the
desired mode may be changed by the user during online
execution. The fixed contact schedule assumption simplifies
the optimization problem as the sequence of domains and
timing of contact mode transitions does not need to be
optimized [11], [29]. Moreover, we assume the user provides
a desired base pose and velocity to the MPC. In this section
we discuss the choices made to formulate bipedal locomotion
planning as an MPC problem as posed in (9).

A. System Dynamics

Due to the affine relationship between generalized acceler-
ations q̈, torques τ , and contact forces λ in (2), and assuming
the torques do not directly impact the floating-base equations
of motion, the system dynamics in (5) may be rewritten
to interpret the joint accelerations q̈j and contact forces λ,
instead of the torques τ , as inputs. The computational benefit
of this reparametrization has been shown for reactive whole-
body control [40] and offline trajectory optimization [41]. To



Fig. 3: Multi-Rate control architecture incorporating whole-body planning via MPC and low-level tracking controller.

see this, we write the dynamics (2) in terms of non-actuated
base coordinates and fully actuated joint coordinates:[

Dbb, Dbj

D>bj Djj

] [
q̈b

q̈j

]
+

[
hb

hj

]
=

[
0
Bj

]
τ +

[
J>c,b
J>c,j

]
λ. (12)

The base acceleration may be expressed as:

q̈b = −D−1
bb

(
hb +

[
Dbj −J>c,b

] [q̈j

λ

])
, (13)

and assuming the legs are fully actuated (Bj is invertible),
the corresponding joint torques may be expressed as:

τ = B−1
j

(
D>bjq̈b + hj +

[
Djj −J>c,j

] [q̈j

λ

])
, (14)

maintaining an affine dependence on q̈j and λ. The base dy-
namics in (13) fully encode the challenge of under-actuation
and encapsulate the core of the floating-base dynamics.
Equation (14) plays a secondary role and is only required
when formulating torques constraints. We may view the
control inputs to optimize over as:

u =
[
q̈>j , λ>

]>
, (15)

with the corresponding system dynamics defined as:

ẋ =

 T q̇

D−1
bb

(
−hb −Dbjq̈j + J>c,bλ

)
q̈j

 . (16)

The contact transition maps in (9d) have been set to
identity maps, with exponential damping of the contact point
velocity after impact being regulated through the stance foot
constraint in (20), defined in section III-E. Inclusion of the
impact dynamics in (8) will be pursued in future work. Due
to the assumption of a fixed contact schedule, inclusion of
the contact transition map does not fundamentally change
the complexity of the optimization problem [11].

B. Cost Functions

The cost function is formulated as a nonlinear least square
cost around a given state and input reference trajectory. To
that end we define the set of tracking errors as follows:

εx = x− xref , εu = u− uref , εi =

pi − pi,ref

vi − vi,ref

ai − ai,ref ,

 ,
where xref is the state reference, uref is the input reference,
and pi,vi,ai ∈ R3 with i ∈ {1, 2} are the Cartesian
position, velocity, and accelerations and references of the
ith foot, and pi,ref ,vi,ref ,ai,ref ∈ R3 are the corresponding
references. The references xref and uref are defined by
a heuristic reference generator (described below) or by a
gait synthesized offline using HZD. We note that when
using references generated by HZD, the foot references are
completely determined by xref and uref . The running state-
input cost l is then given by:

l(x,u, t) =
1

2
ε>x Qεx +

1

2
ε>uRεu +

1

2

∑
i

ε>i Wεi, (17)

where Q,R, and W are positive definite weighting matrices.
To pick an appropriate weighting for the terminal cost,

we approximate the infinite horizon cost by solving an
unconstrained Linear Quadratic Regulator (LQR) problem
using a linear approximation of the dynamics and a quadratic
approximation of the running costs (17) around the nomi-
nal stance configuration of the robot. The positive definite
Riccati matrix SLQR of the cost-to-go is used to define the
quadratic cost around the terminal reference state:

φ(x) =
ρ

2
εx(T )>SLQRεx(T ), (18)

where ρ > 0 is a hyperparameter. Setting ρ = 1.0 would
express approximately equal importance of the integrated
running cost and terminal cost, and ρ → ∞ would make
the terminal cost behave as an equality constraint. We found
good performance for the heuristic reference at ρ = 1.0 and
for the HZD reference at ρ = 10.0.



C. HZD-based References

HZD trajectories are optimized offline for the whole-body
nonlinear dynamics using the FROST toolbox [36] and stored
as Bézier polynomials. This process is completed by first
fixing a target gait sequence and a forward velocity, and
adding various other state and input constraints to a nonlinear
trajectory optimization program. By construction, both the
HZD gaits and the gait sequences defined by MPC have an
associated phasing variable, i.e. a parameter in the interval
[0, 1] which monotonically increases over the step. During
execution, the phasing variable is attained from the current
MPC gait sequence that the robot is in, and is used to
construct xref and uref over the MPC horizon.

D. Heuristic References

To evaluate the relative impact of using a gait synthesized
offline via HZD as a terminal cost, we produce a heuristic
reference trajectory to be compared against. In particular,
the user commanded base pose and velocity, a nominal joint
configuration, and zero joint velocities are used to define the
state reference. The input reference is defined with zero joint
accelerations and contact forces that are evenly distributed
among each foot in contact in the nominal joint configuration
such that the weight of the robot is compensated. For the
foot references, we extract the nominal touchdown and liftoff
locations below the hip at the middle of the contact phase
and fit a smooth swing reference trajectory. The heuristic and
HZD-based terminal state are visualized in Fig. 4.

E. Constraints

a) Gait-Dependant Constraints: These constraints cap-
ture the different modes of each leg at any given point in
time determined by the specified gait sequence. We enforce
the user-defined gait and avoid foot scuffing of a swing leg
by constraining the swing foot motion in the orthogonal
direction to the ground surface, n ∈ R3, to follow the
Cartesian reference trajectory:

n> (ai − ai,ref + kd(vi − vi,ref) + kp(pi − pi,ref)) = 0
(19)

where kd, kp ∈ R≥0 are feedback gains chosen to achieve
asymptotic tracking in the constrained space. Similarly, for
a stance leg we enforce a stationarity constraint in Cartesian
space through:

ai(x) + kdvi(x) = 0 (20)

b) Contact Force Constraints: The following con-
straints require the contact forces at each foot to match the
designation of swing and stance legs:{

λi = 0, i is a swing leg
λi ∈ C(n, µc), i is a stance leg. (21)

The first constraint requires no contact force from a swing
leg, as it does not contact the ground. The second constraint
requires the contact force of a stance leg to lie in the friction
cone C(n, µc) defined by the surface normal n and the

Fig. 4: Visualization of the heuristic terminal state (left) and
the HZD terminal state (right).

friction coefficient µc = 0.6. This is a second-order cone
constraint and is expressed in the local surface aligned frame:

µcλi,3 −
√
λ2
i,1 + λ2

i,2 ≥ 0. (22)

Note that the friction constraint also enforces a unilateral
contact constraint as it requires λi,3 ≥ 0.

c) Joint and Torque Limits: The joint coordinates and
joint coordinate velocities are enforced to lie in the set
of minimum and maximum joint positions and velocities
through state inequality constraints: x ∈ [xmin,xmax]. Simi-
larly, the joint torques for every point along the trajectory can
be computed by Eq. (14) and should lie within joint torque
limits τ ∈ [τmin, τmax].

F. Low-Level Controller

As shown in Fig. 3, the state and input trajectories
generated by MPC are interpolated at a high frequency and
converted to a feed-forward control torques, τMPC, via (14).
As the feed-forward torque is model-based, we compensate
for model errors when executing the controller on hardware
by adding a proportional-derivative torque, τPD, and a friction
compensation torque, τFC, to the feed-forward torque:

τ = τMPC + τPD + τFC. (23)

IV. AMBER IMPLEMENTATION & RESULTS

The AMBER-3M platform is a 5-link planar bipedal robot,
which has four torque controlled BLDC motors connected
via harmonic drives to the hip and knee joints. The total
mass of the robot amounts to 21.6 kg, approximately 40 %
of which is located in the legs. The joint coordinates are
given by qj ∈ Qj ⊂ R4, and, due to the planar nature
of the robot, the base coordinates are given by qb =[
xb, zb, θb

]> ∈ SE(2) resulting in a state vector x ∈ R14.
The input u = (q̈j ,λ) ∈ R8 contains the joint accelerations
and 2D Cartesian contact forces at the point-feet. The time
discretization in the multiple shooting scheme is set to 15 ms
and we allow for a maximum of 10 SQP iterations per MPC
problem. All planning, control, and estimation loops were
done on separate threads on an offboard Ryzen 9 5950x CPU
@ 3.4 GHz, enabling a consistent nonlinear MPC planning
frequency of 100 Hz for all of the experiments. Further



TABLE I: MPC Planning Frequency (10 SQP Iterations)

Horizon Length [s] 2.0 1.0 0.5 0.2
MPC Frequency [Hz] 270 480 670 850

benchmarks of the maximum obtainable MPC frequency for
different horizon lengths can be seen in Table I.

As can be seen in the supplementary video [42] the
proposed MPC formulation is capable of simultaneously sta-
bilizing the under-actuated system dynamics and synthesize
valid motion trajectories for a broad range of gait pattern
and target velocities both in simulation and on hardware.
To evaluate the effect of changing terminal components on
the feasibility and robustness of the full control pipeline, a
sequence of step disturbances of increasing magnitude was
applied in simulation with the following MPC configurations:

• MPC with No Terminal: The proposed whole-body MPC
with heuristic references for the running cost (refer to
Sec.III-D) and no terminal cost.

• MPC with Heuristic Terminal: Same as above, but with
heuristic references included as a terminal cost.

• MPC with HZD Reference: The proposed whole-body
MPC with HZD-based references for the running and
terminal cost (refer to Sec. III-C).

• Lumped Mass MPC: Uses a simplified dynamics model
for the planning stage by moving the leg inertia to
the torso, otherwise identical to MPC with Heuristic
Terminal.

• HZD with PD: An offline generated HZD trajectory
tracked by a joint level PD controller.

The results of these simulations are summarized in Ta-
ble II. First, we remark that the Lumped Mass MPC model
was introduced to highlight the effects of planning over the
full system dynamics for the given platform. The particular
structure of this model was chosen to resemble some prop-
erties of the simplified models mentioned in Sec. I, while
allowing for an implementation independent comparison.
Although the Lumped Mass MPC could withstand similar
disturbances to the whole-body MPC for a specified standing
position, it was observed to have only a marginal ability to
reject disturbances during dynamic motions like trotting and
walking, no matter the horizon length. This motivates the
need for whole-body online planning methods, especially for
robots like AMBER-3M which have a non-negligible mass
distribution concentrated in the legs.

Next, note that the MPC approach fails quickly when no
terminal cost is present. When a heuristic terminal com-
ponent is added, the robustness of the system dramatically
increases. Furthermore, when the proposed MPC approach
is combined with an HZD-based reference trajectory for

TABLE II: Maximum Disturbance Rejection for Trotting [N]

Horizon Length [s] 2 0.5 0.2
Lumped Mass MPC 2 - -
MPC + No Terminal 22 - -
MPC + Heuristic 22 22 -
MPC + HZD 22 22 20
HZD + PD 30

Fig. 5: Simulation results for the MPC with Heuristic Ter-
minal controller under a disturbance of 20 N applied during
the marked time of 1 s, including states (top), torques (mid-
dle), and contact forces (bottom). The commanded forward
walking velocity is 0.5 m/s.

running and terminal cost, the horizon length can be short-
ened to as low as 0.2 seconds, while still allowing for
almost as robust performance as the same model at longer
horizons. These results emphasize the importance of the
careful design of terminal components, as their construction
is tightly coupled with the performance of the overall system.
Finally, it is important to note that at a disturbance of 22 N
during walking the foot begins to slip, causing all of the
MPC based methods to fail. On the other hand, the HZD with
PD method exhibits more robustness to foot slipping and is
therefore able to endure larger disturbances. Future work will
seek to incorporate the robustness to foot slipping seen by
the pure HZD method into the proposed MPC methods.

As seen in the supplementary video [42], the various pro-
posed approaches react differently to disturbances. Specif-
ically, the purely HZD with PD approach is unable to
increase its step width, as the reference signal is fixed,
and instead accelerates the limbs along the predefined refer-
ence trajectory. While this allows for significant disturbance
rejection, it leads to the inputs being saturated for non-
negligible amounts of time. On the other hand, the MPC
with HZD as a terminal component updates its step width to



Fig. 6: Gait tiles and joint angle trajectories for forward walking behavior of the whole body MPC at a horizon length of
1 second (top, left), and the whole body MPC+HZD at a horizon length of 0.5 seconds (bottom, right). The HZD terminal
cost induces stronger periodic behaviors in the joint coordinates, correlated with the periodic nature of an HZD gait.

accommodate for disturbances, and is able to converge back
to the desired reference trajectory in one or two steps while
still satisfying state and input constraints. A depiction of the
simulation-based experiment consisting of commanding the
robot to walk forward at a fixed velocity of 0.5 m/s using the
proposed whole-body MPC planning model, and disturbing
it with a 20 N step disturbance lasting one second is seen in
Fig. 5. The system naturally converges to a periodic behavior,
and after being pushed, it first adapts its gait to recover, and
afterward returns to the periodic motion.

The MPC with a heuristic reference trajectory and a
horizon length of 1.0 second, and the MPC with an HZD
trajectory and a horizon length of 0.5 seconds were then
deployed on the AMBER hardware. As seen in Fig. 6, both
methods were able to produce forward walking and have a
visually distinct gait. We see in the joint angle trajectory data
that the MPC with HZD method displays strong periodic
behavior, similar to the periodic motions expected with
purely an HZD approach.

V. CONCLUSION AND OUTLOOK

In this work, we proposed a whole-body nonlinear MPC
framework that utilizes the full rigid body dynamics dy-
namics of the system and enables online gait optimization.
The addition of a terminal cost around offline generated
HZD references enables robust locomotion at a significantly
shorter planning horizon when compared with a heuristic
reference or no reference. The viability of the presented
control structure was shown in simulation and on hardware
by demonstrating a variety of robust dynamic behaviours.
The reduced computational complexity of the proposed
methods provides a first step towards future adaptation to
higher dimensional platforms and full 3D walking. Motivated
by the experimental results, future work will investigate
the theoretical properties of using HZD trajectories in the
terminal components.
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