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Abstract—This paper presents an online approach to safety
critical control. The common approach for enforcing safety of
a system requires the offline computation of a viable set, which
is either hard and time consuming or very restrictive in terms
of operational freedom for the system. The first part of this
work shows how one can constrain a system to stay within
reach of an appropriately chosen backup set in a minimally
invasive way by performing online sensitivity analysis around
a backup trajectory. For linear systems, we show how to use
an optimal backup strategy in the form of a Model Predictive
Controller (MPC) to maximize the operational freedom of the
system. The second part of this work shows how to leverage
this capability and factor in state constraints to enforce set
invariance only based on online computations of sensitivities.
For linear systems, the optimal strategy is again considered and
we show how one can perform the sensitivity analysis based on a
measure of feasibility of a state constrained MPC. This approach
is illustrated in simulation on a linear inverted pendulum.

I. INTRODUCTION

Thanks to the ever-increasing performance of embedded
computers and electromechanical systems, developing Cyber-
Physical-Systems (CPS) is now more accessible than ever.
Many people recognize the potential of CPS, especially in
the context of smart cities, transportation, and manufacturing.
Nonetheless, there has been a lack of translation of results
form the CPS domain to real-world settings. This is in part
due to their lack of reliability and safety [1]. Safety is a
notoriously difficult problem for which solutions that are both
rigorous and practical have yet to be realized. As a result,
people in practice are either left having to isolate the systems
from anything they could injure, or having to use heuristic
algorithms whose effectiveness is hard if not impossible to
evaluate. Rigorous and efficient solutions to this challenge
will therefore most likely be the key in allowing autonomous
CPS to accompany us in our everyday lives.

The concept of safety is fundamentally linked to the idea of
constrained behavior. Given a chosen safety set (set of states
of the system), a system being safe is commonly defined as
this system never leaving the safety set. Safety is therefore
usually associated with the topic of set invariance [2]. When
a system is simple or enjoys some particular structure as in
[3], analytical control strategies ensuring the system does not
leave the safety set can be derived. But in general, it is very
difficult to directly find such a control strategy. The main
difficulty with staying inside an arbitrary safety set comes
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from the fact that in general, some subsets of the safety
set cannot be visited by the system without eventually and
inexorably leaving the safety set. However, if one is able to
find a viable subset of the safety set [4], that is, a set such that
for any initial condition inside this viable set it is possible to
remain in this viable set—finding a safe control law becomes
much simpler.

Provided one is able to compute a viable set, continuous
filtering of the control input can then be performed so as
to enforce set invariance in a minimally invasive way as
proposed in [5]. The largest viable subset of the safety set
is called the viability kernel. Finding the viability kernel
grants maximum operational freedom to the system while
ensuring the it can remain in the safety set. As a result,
computing viability kernels has been the focus of of a wide
variety of research over the years [6]. Approaches that have
been proposed include: discretized solutions of Hamilton-
Jacobi equations [7], SOS optimization [8], sampling [9]
and many others [6]. Unfortunately, all these algorithms
take a substantial amount of time to run and can only
handle high dimensional systems at the expense of a very
conservative results, leading to small operational regions and
poor performances for the system.

The main contribution of this paper is a method to alleviate
the need to compute a viable set offline by computing the
local information needed to stay inside the safety set online.
This method requires having a backup strategy as in [10],
[11], but contrary to the aforementioned work, the backup
strategy is never followed. Instead, a set of all the states
safely within reach of an appropriate backup set is implicitly
defined. This set is showed to be larger than the backup set
and viable, which permits the use of Active Set Invariance
Filter (ASIF) [12]. Because this set is only defined implicitly,
the information necessary to the ASIF is numerically eval-
uated online using a forward sensitivity method [13]. This
approach is extended, for linear systems, to the case where
the backup strategy is optimal which ensures safety while
providing maximal operational freedom for the system.

The rest of the paper is laid out as follows. In Sect. II, we
present the mathematical background of the ASIF. In Sect.
III, we present a method to use the ASIF of Sect. II to stay
within reach of a backup set. In Sect. IV and V we show
how this method can be implemented for linear and nonlinear
systems respectively. In Sect. VI, we present a method to use
the conditions derived in Sect. III and guarantee feasibility of
the ASIF when used to enforce set invariance of an arbitrary
safety set. In Sect. VI, we show how this can be implemented
for linear systems. Conclusions are provided in Sect. VIII.



II. BACKGROUND ON ACTIVE SET INVARIANCE

In this paper, we start by considering ideal continuous-time
affine control system of the form:

ẋ = f(x) + g(x)u, (1)

with f and g continuous functions defined on Rn, and with
u ∈ U a compact set of Rm. Note that the existence and
uniqueness of solutions to (1) is required for most of the
discussed results to hold. The Lipschitz continuity of f , g and
u provides for example a sufficient condition in that regard.

As discussed in the introduction, the notion of safety is
formalized into a set invariance requirement.

Definition 1. A closed set S is forward invariant for system
(1) if x (t0) ∈ S =⇒ ∀t ≥ t0, x(t) ∈ S.

The main tool at our disposal for set invariance is
Nagumo’s theorem [14]. Nagumo’s theorem states that the
forward invariance of S for system (1) is equivalent to the
sub-tangentiality condition:

f(x) + g(x)u (x) ∈ TS(x), (2)

being satisfied for all x ∈ S, where TS(x) is the contingent
cone to S at x [4], [14].

Depending on the type of set considered, there are different
ways of expressing the contingent cone. Practical sets [14]
are suitable for most realistic cases and makes it convenient
to express the contingent cone. To describe such sets, one
only1 needs to consider r continuously differentiable
functions hi : Rn → R such that

S = {x ∈ Rn | hi (x) ≥ 0, i ∈ {1, . . . , r}}
∂S = {x ∈ Rn | hi (x) = 0, i ∈ {1, . . . , r}} .

(3)

For such sets, the contingent cone can be expressed as

TS(x) = {z ∈ Rn | ∀i ∈ Act(x), ∇hi(x).z ≥ 0} , (4)

with Act(x) , {i ∈ {1, . . . , r} | hi(x) = 0}. In that case,
the sub-tangentiality condition (2) can be written as

TCi (x, u) , Lfhi(x) + Lghi(x)u (x) ≥ 0, (5)

for all x ∈ ∂S, and i ∈ Act(x). Here, Lfh and Lgh denote
the Lie derivatives of h along f and g respectively.
Therefore, condition (5) defines for any x ∈ S a set US (x)
of admissible inputs that guarantee forward invariance of S:

US (x) ,{
{u ∈ Rm | ∀i ∈ {1, . . . , r} , TCi (x, u) ≥ 0} , ifx ∈ ∂S
Rm, otherwise

The sub-tangentiality condition is however not very usable
in practice as it only defines an non trivial set of admissible
inputs when the system is on the boundary of the safety set,
which is a surface in the state space, i.e. has no volume. The
idea introduced in [5] is to consider a strengthening term in
(5) and to impose this new barrier condition:

BCi (x, u) , Lfhi(x)+Lghi(x)u (x)+αi (hi(x)) ≥ 0, (6)

1See [14] for conditions under which S is practical.

for all x ∈ S, i ∈ {1, . . . , r} and with the strengthening
extended class K functions αi : R → R. This barrier
condition defines a set ŨS (x) of admissible inputs:

ŨS (x) , {u ∈ Rm | ∀i ∈ {1, . . . , r} , BCi (x, u) ≥ 0} (7)

and because for all x ∈ S, ŨS (x) ⊆ US (x), this new
condition also implies forward invariance of S.

In [15], the authors propose a method to supplement any
existing controller that would not be capable of ensuring
set invariance on its own by continuously filtering this con-
troller’s inputs. This is done by solving a quadratic program
in real-time (cf. Fig. 1 and (8)), minimizing the norm of the
difference between the desired and actual inputs, therefore
providing an optimal level of fidelity to any controller’s
desired inputs while guaranteeing safety of the system.

Controller ASIF System
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Fig. 1: Active Set Invariance control structure.

ASIF-QP

uact(x) = argmin
u∈U

‖udes(x)− u‖2

s.t. u ∈ ŨS (x)
(8)

This is however only half of the story as nothing guarantees
that ŨS (x) ∩ U is non empty for all x ∈ S. So there are
no guarantees that (8) is always feasible. This is because
for a given control system, arbitrary sets cannot a priori
be rendered forward invariant. A set that can be rendered
forward invariant is commonly referred to as viable set [4].

Definition 2. A closed set S is viable for system (1) if for
all x (t0) ∈ S, there exists a control law u : Rn → U such
that ∀t ≥ t0, x (t) ∈ S under that policy.

Ideally, one would want to find the largest viable subset of
S (the viability kernel) to maximize the operational freedom
of the system. This is however notoriously hard—just as hard
as finding an optimal control law [7]. But as in optimal
control, there is a dual approach: continuously solving for
the optimal control action at the current state. Unfortunately,
solving viability this way requires finding a trajectory over
an infinite time horizon, which is not possible in practice.
In the rest of this paper, we show how it is possible to take
a small viable subset of S (which is easy to compute) and,
by considering a finite time trajectory, allow the system to
evolve in a larger viable subset of S.

Note that because in most cases ŨS (x) ⊂ US (x), finding
a viable set is not necessarily sufficient to ensure that (8)
is always feasible. One has to be careful and choose the
strengthening functions αi such that for all x ∈ S, ŨS (x) ∩
U 6= ∅ as shown in [12].
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Fig. 2: Safety Set in red, Backup Set in black, and Region
of Attraction in blue and Backward Reachable set in Green.

III. ONLINE REACHABILITY THEORY

A. Arbitrary Backup Strategy

For the rest of the paper, we will call control policy inputs
that parameterized by time and control law inputs that are
parameterized by the state of the system. Let U be the set of
all Lipschitz continuous control laws u : Rn → U . We will
also denote by UT the set of all piecewise continuous control
policies u : [0, T ]→ U . Let’s assume that f and g are locally
Lipschitz continuous over Rn and that for all control laws
u ∈ U there exists a solution to (1) that is unique and defined
for all time. Therefore, one can define φu : R×Rn → Rn to
be the global flow of (1) under the control law u. Let S be a
closed safety set system (1) is required to stay in and Sb ⊂ S
be compact backup set as depicted in Fig. 2. We furthermore
assume that Sb is practical and can be represented as the
super level set of a smooth function hb : Rn → R. Finally,
we define

RuT , {x ∈ Rn | φuT (x) ∈ Sb} , (9)

with T ≥ 0 and u ∈ U . Under all these assumptions, the
map φut : Rn → Rn defined by φut (x) , φu (t, x) is an
homeomorphism of Rn [16], hence RuT = (φuT )

−1
(Sb) and

φuT (RuT ) = Sb. The definition of forward invariance can
therefore be reformulated in terms of the flow as x (t0) ∈
S ⇒ ∀t ≥ t0, x (t) ∈ S is equivalent to ∀t ≥ 0, φut (S) ⊆ S.

Our approach is motivated by the following observations.

Proposition 1. Given u ∈ U , if Sb is forward invariant under
that control law, then for all T ≥ 0, RuT is forward invariant.

Proof. Let’s reason by contraction and assume that RuT is not
forward invariant. That means there exist x∗ ∈ RuT and t∗ ≥
0 such that φut∗ (x∗) /∈ RuT . Let x̃ , φut∗ (x∗). By property
of the flow, φuT (x̃) = φut∗

(
φuT−t∗ (x̃)

)
. But φuT−t∗ (x̃) =

φuT (x∗) , xb ∈ Sb. So φuT (x̃) = φut∗ (xb) ∈ Sb since Sb
is forward invariant. Which implies that x̃ ∈ RuT , hence the
contradiction that proves the proposition.

Proposition 2. Given u ∈ U , then Sb being forward invariant
under that control law is equivalent to Sb ⊆ RuT for all
T ≥ 0.

Proof. Let’s first assume that for all T ≥ 0, Sb ⊆ RuT .
By definition of RuT and because φuT is an homeomorphism,
∀T ≥ 0, φuT (RuT ) = Sb. So for all T ≥ 0, φuT (Sb) ⊆ Sb
which proves the necessity of forward invariance. The suffi-
ciency of forward invariance follows directly from Prop. 1,

as for all T ≥ 0, φuT (RuT ) = Sb and φuT (RuT ) ⊆ RuT so
Sb ⊆ RuT .

Proposition 3. Given u ∈ U and a forward invariant set
Sb = {x ∈ Rn | hb (x) ≥ 0} with hb : Rn → R smooth, then
RuT = {x ∈ Rn | hb ◦ φuT (x) ≥ 0}.

Proof. Consider x ∈ RuT , then φuT (x) ∈ Sb. So
hb (φuT (x)) ≥ 0, hence x ∈ {x ∈ Rn | hb (φuT (x)) ≥ 0} .
Let’s now consider x ∈ {x ∈ Rn | hb (φuT (x)) ≥ 0}, then
φuT (x) ∈ Sb, hence x ∈ RuT .

So given a small forward invariant set, proposition (3)
gives us access to larger forward invariant sets via the flow
of the system. Because sets that are forward invariant for a
given control law are obviously viable, it is now possible to
use barrier condition (6) to guarantee that system (1) remains
in RuT . Using Prop. 3, (6) evaluated at a current state x0
becomes

∇ (hb ◦ φuT ) (x0) f̃ (x0, u) + α ((hb ◦ φuT ) (x0)) ≥ 0,

i.e.

∇hb (xT )DφuT (x0) f̃ (x0, u) + α (hb (xT )) ≥ 0, (10)

where f̃ (x0, u) , f(x0) + g(x0)u (x0) and xT , φuT (x0).
What is notable in this last equation is that in order

to evaluate it, one only needs to compute φuT (x0) and
DφuT (x0), which is the key idea in this paper. Instead of
computing large viable sets, one can just pick a smooth
control law that makes a small subset of the safety set forward
invariant and enforce forward invariance with respect to a
larger viable subset of the safety set. This only requires one
to evaluate the flow and the gradient of the flow locally at
the current state. By enforcing (10) through (8), the system is
constrained to stay inside RuT , which means that the system
is guaranteed to only evolve in a region where the chosen
backup strategy u can bring the system back to the backup
set Sb. This way, reachability is enforced in a minimally
invasive way, and the deployment of the backup strategy can
be reserved for actual emergencies.

An important detail we have not touched on yet is that
the flow needs to be differentiable in order to be able to
compute DφuT (x0). Smoothness of the dynamics and the
control law is sufficient in that regard, but is also restrictive.
In practice, dynamics are very often smooth and control
laws at least piecewise smooth. So when DφuT (x0) is not
defined, the backup strategy which is effective at rendering
RuT forward invariant can be used instead of the ASIF until
the discontinuity is crossed.

B. Optimal Backup Strategy

The natural question that arises is “what is the best backup
control law to choose?”. That is, a control law that maximizes
the size of RuT .

To address this question, we define the closed-loop time-
limited backward reachable set of Sb as

RT ,
{x ∈ Rn | ∃u ∈ U , ∃t∗ ∈ [0, T ] : φut∗ (x) ∈ Sb} ,

(11)



Then it immediately follows that for all u ∈ U , RuT ⊆ RT .
So the optimal backup control law, if it exists, is the one that
yields RT .

Let’s therefore consider the control law u∗ given by

u∗ (x0) = u∗x0
(0) (12)

with u∗x0
being the control policy solution to the following

optimal control problem:

MPC
u∗x0

, argmax
u∈UT

hb (x (T ))

s.t. ẋ = f(x) + g(x)u (t)
x (0) = x0
u (t) ∈ U, ∀t ∈ [0, T ]

(13)

Remark 1. Note that the time here has been shifted such that
x0 = x (t0) = x (0) for convenience as only time-invariant
control systems are considered.

Proposition 4. Given u∗ as defined in (12) and assuming
u∗ ∈ U , Ru

∗

T = RT .

Proof. The inclusion Ru
∗

T ⊆ RT follows trivially from
the definition (11). For the other inclusion, let’s reason by
contradiction and assume that x0 ∈ RT but x0 /∈ Ru

∗

T . This
means that φu

∗

T (x0) /∈ Sb. But φu
∗

T (x0) = x (T ), so the
optimal value h∗b of (13) under the control policy u∗ ∈ U
is such that h∗b (x (T )) < 0. But x0 ∈ RT , so ∃ũ ∈ U
such that φũT (x0) ∈ Sb since Sb is forward invariant under
u, i.e. h∗b (x (T )) ≥ 0, which contradicts the fact that u∗

is optimal for (13). Hence the contradiction proving that
Ru
∗

T ⊇ RT .

Remark 2. Note that Sb does not need to be forward invariant
for Prop. 4 to hold. Our approach however requires Sb
to be forward invariant under u∗. For that, hb being a
Control Lyapunov Function (CLF) for system (1) is sufficient
as explained in [17]. This also implies that u∗ yields a
stabilizing controller and is therefore a good backup strategy
[17].

We can now answer our initial question and assert that
the best backup control law is u∗ given by (11). Remember
that in order to utilize this control law, one has to be able to
compute ∇

(
hb ◦ φu

∗

T

)
(x0) and φu

∗

T (x0). By solving (13),
we actually get both of them. Indeed, φu

∗

T (x0) = x∗ (T )
where x∗ is the optimal trajectory solution to (13), and

∇
(
hb ◦ φu

∗

T

)
(x0) = ∇h∗b,u∗ (x0) , (14)

with h∗b the optimal cost of (13). One will immediately
recognize in (14) the co-states associated with (13) at time
t = 0 [18]. So by solving (13) in a way that also solves
for the co-states, all the information necessary to running the
ASIF for Ru

∗

T can be recovered. Because (13) is not state
constrained, the co-states are exactly the sensitivity of hb to
perturbation in the state [19], except when at a state x0 where
u∗ (x0) isn’t unique. One must also be careful when using
u∗ as in general it is not continuous. Particular care must be

taken to verify that (13) yield a continuous u∗ in order for
the proposed method to work. Often, the cost of (13) can be
only slightly modified to guarantee continuity with minimal
loss of optimality.

IV. ONLINE REACHABILITY FOR LINEAR SYSTEMS

A. Implementation

Linear systems provide an ideal class of systems in which
to illustrate the discussion of the previous section as MPC is
easy for these systems (solvable in polynomial time). Let’s
consider linear control systems of the form

ẋ = Ax+Bu, (15)

with A ∈ Rn×n and B ∈ Rn×m. For such systems, it is
possible to exactly discretize the continuous dynamics, and
the resulting MPC can be reduced to a finite dimensional
convex optimization problem. Provided the control input is
piecewise constant over intervals of duration dt = T/N , we
can define

Adt = eAdt, and Bdt =

(∫ dt

0

eA(dt−τ)dτ

)
B, (16)

and (15) aligns exactly with the discrete dynamics given by

xi+1 = Adtxi +Bdtui, i = 1..N. (17)

The backup set can systematically be chosen to be an
ellipsoidal set described by

hb (x) = v − x>Px, (18)

with v ∈ R+∗ and P ∈ Rn×n such that hb is a CLF of (15).
The MPC (13) can be approximated by the following

quadratic program:

MPC-Linear

maximize
u1...uN
x1...xN+1

N+1∑
i=1

βihb (xi)

s.t. xi+1 = Adtxi +Bdtui, i = 1..N
x1 = x (t0)
ui ∈ U, i = 1..N

(19)

with βN+1 chosen to be much larger than the other βi so
that (19) yields a control law close to u∗ but continuous. In
this exact discretized version of (13), the co-states of (13) are
equal to the Lagrange multipliers in (19). Let λ∗ ∈ Rn be
the vector of optimal Lagrange dual variables associated with
the constraint x1 = x (t0) in (19). Then the barrier condition
(10) can be written as

λ∗>Adtx0 + λ∗>Bdtu (x0) + α (h∗) ≥ 0. (20)



Fig. 3: Desired input (black line) and actual input (red and
green line). The actual input is green when the reachability
barrier condition is not active and red when active.

B. Numerical Example

Let’s consider the linear inverted pendulum

ẋ =

[
0 1
1 0

]
x+

[
0
1

]
u, (21)

with U = [−1, 1]. The target set is described as in (18) by

hb (x) = 0.001− x>
[

0.5858 0.2
0.2 0.4142

]
x. (22)

The time horizon is chosen to be T = 1, with N = 200. The
extended class K function α in (20) is given by α (x) = 10x.
The system starts at x (0) = [0, 0.2]

> and is simulated over
the time interval [0, 2] using the ASIF (8) and a nominal input
udes (t) = sin

(
π
2 t
)

(cf. Fig. 1).
As we can see in Fig. 3, the nominal input (dashed black

line) is being followed (green part of the solid curve), until
the barrier condition becomes active (red part of the solid
curve). This filtering happens when the end-point of the MPC
trajectory (in blue in Fig. 4) approaches the boundary of the
backup set (black ellipsoid). The filtering stays active for the
rest of the simulation and the system stays within reach of
the target set, as shown by the fact that all MPC trajectories
end in the backup set.

V. ONLINE REACHABILITY FOR NONLINEAR SYSTEMS

A. Implementation

The MPC formulation (13) provides a control strategy that
has the benefit of being maximally effective at bringing the
trajectory into the backup set, and consequently leads to the
least intrusive ASIF. However, when the system is not linear,
MPC is NP-hard to implement in real-time which makes
the use of an optimal control law almost impossible. In that
case, one has to rely on finding an analytical control law as
close as possible to the optimal one. This can for example be
done using some form of reinforcement learning. In that case,
provided that the dynamics and the control law are smooth,
it is actually easy to compute φuT (x0) and DφuT (x0).

Fig. 4: State space trajectory of the system, green when
the reachability barrier condition is not active and red when
active. In blue are the backup trajectories with the MPC at
certain simulation steps. In black is the backup set Sb.

By integrating (1) forward with that control law in the
interval [0, T ], φuT (x0) can be computed, up to the numerical
accuracy of the integration method of course. For DφuT (x0),
one only need to integrate along with (1) a sensitivity matrix
Q. As explained in [13], the dynamics of Q is given by

dQ (t)

dt
= Dfcl (φ

u
t (x0))Q (t) , (23)

with Q(0) = I and where fcl (x) , f(x) + g(x)u (x). In
that case, the matrix Q (t) represent exactly the Jacobian of
φut at x0:

Q (t) = Dφut (x0) . (24)

Note that it is important that the control law used respects
that ∀t ∈ [0, T ] , u (t) ∈ U . This is often overlooked
as u (t) ∈ U is a limitation imposed by hardware in the
form of a hard clamping. In our case however, the closed
loop dynamics has to be smooth. Smooth clamping can be
achieved for an arbitrary control law fairly easily though,
as finding a sequence of smooth functions that converge
uniformly to the saturation function over R is quite trivial.

B. Numerical Example

We again consider the setup of Sec. IV-B. The backup
control law u is chosen to be a saturated LQR regulator given
by the nonlinear control law

u (x) = σ([5.58, 5.58]x), (25)

where the smooth saturation function σ : R 7→ [−1, 1] is
given by

σ(x) =
2

1 + exp(−2x)
− 1, (26)

smoothly clamping the LQR to[−1, 1] .
The simulated behaviors for the input and trajectory are

shown in Fig. 5, and Fig. 6 respectively. Here we see that



Fig. 5: Desired input (black line), and actual input (green
and red line) at the top. The nominal input is green when the
barrier condition is not active and red when active.

the endpoint of the trajectory approaches the boundary of
Sb much sooner than with the MPC, resulting in the desired
input being altered by the ASIF much earlier.

VI. ONLINE SET INVARIANCE THEORY

In the previous sections, we showed how to keep a system
within reach of a backup set given an arbitrary control law.
The idea now is to use this capability to derive conditions
to be enforced by the ASIF guaranteeing the system always
remain in S. In this context, let’s consider the set

ΩT , {x ∈ S | ∀t ∈ [0, T ] , φut (x) ∈ S} . (27)

We can now state the following theorem.

Theorem 1. Given u ∈ U , if Sb ⊆ S is forward invariant
under u then for all T ∈ R+, S̃T , ΩT ∩RuT is a subset of S
that is forward invariant under that control law. In addition,
for S described as in (3), then

ΩT =
⋂

t∈[0,T ]

{x ∈ Rn | hi ◦ φut (x) ≥ 0, i ∈ {1..r}} . (28)

Proof. The fact that S̃T ⊆ S follows trivially from the
definition of ΩT . Let’s reason by contradiction and assume
that S̃T is not forward invariant. This means that there exist
x∗ ∈ S̃T and t∗ ≥ 0 such that φut∗ (x∗) /∈ S̃T . But from (1)
we know that RuT is forward invariant so φut∗ (x∗) ∈ RuT and
φut∗ (x∗) /∈ ΩT . Which implies that there exists t# > T
such that φut# (φut∗ (x∗)) /∈ S, or equivalently that there
exists t′ > 0 such that φut′ (φ

u
T (x∗)) /∈ S. But x∗ ∈ RuT

so φuT (x∗) ∈ Sb and because Sb is forward invariant,
φut′ (φ

u
T (x∗)) ∈ Sb, which contradicts Sb ⊆ S. Equation 28

follows trivially from the definitions of ΩT and S.

So one can therefore use S̃T instead of S and be sure that
the ASIF will be feasible and (1) will remain in S. Equation
(28) can therefore be used along Prop. 3 to define an new

Fig. 6: Plot of the trajectory in the state space. The trajectory
is green when the barrier condition is not active and red when
active. In blue are the backup trajectories with the LQR at
certain simulation steps. In black is the backup set Sb.

set of admissible inputs for the ASIF-QP as barrier condition
(6) evaluated at a current state x0 for the set ΩT becomes

∇hi (xt)Dφ
u
t (x0) f̃ (x0, u) + αi (hi (xt)) ≥ 0, (29)

for all t ∈ [0, T ] and i ∈ {1, . . . , r}, with xt , φut (x0)
and f̃ (x0, u) , f(x0) + g(x0)u (x0). The set of admissible
inputs ŨS̃T

(x) is therefore the set of u ∈ Rm such that{
∇hb (xT )DφuT (x0) f̃ (x0, u) + α (hb (xb)) ≥ 0

∇hi (xt)Dφ
u
t (x0) f̃ (x0, u) + αi (hi (xt)) ≥ 0

, (30)

for all t ∈ [0, T ] and i ∈ {1, . . . , r}, and this set is guaranteed
to be non-empty for all x ∈ S̃T as S̃T is viable (assuming
the αi have been properly chosen of course).

One caveat though is that (29) is an uncountable set of
linear constraints, which elevates the ASIF-QP into the class
or robust optimization problems. However, when using the
technique presented in Sec. V to evaluate xT and DφuT (x0),
the by-product of the integration is that xt and Dφut (x0)
are also available on a countable set of times tj ∈ [0, T ].
So it is actually possible to approximate the set ŨS̃T

(x)
by considering a countable set of constraints (29) at these
different tj without extra computations than the ones required
to compute (10). Interior point solver are good at handling
a large number of constraints which makes this type of
approximation actually tractable.

Imposing this reachability constraint can seem restrictive
compared to pure viability, but in practice it is often an
actual requirement. For commercial aviation and transoceanic
flights for example, being able to land on airfield within a
set amount of time is the safety criterion used by the Federal
Aviation Administration (cf. ETOPS). So having the ability
to enforce reachability constraints on top of set invariance
can be beneficial, but if reachability is not a concern, one
just needs to take T as large as possible to maximize the
size of S̃T . Even though we don’t demonstrate it here, one
can easily convince themselves that the closer to optimal the
backup policy is, the larger S̃T is.



VII. ONLINE SET INVARIANCE FOR LINEAR SYSTEMS

In this section, we show how ΩT can be represented when
the dynamics of the system are linear and the control policy
chosen is a constrained version of (19).

A. Implementation

Consider system (15), and assume that S and U are
polytopes. In this case, (19) is still a quadratic program:

MPC-Linear-Constrained

h∗ = max
u1...uN
x1...xN+1

N+1∑
i=1

βihb (xi)

s.t. xi+1 = Adtxi +Bdtui, i = 1..N
x1 = x (t0)
xi ∈ S, i = 1..N
ui ∈ U, i = 1..N

(31)

The idea is to use a measure of feasibility of (31) to
describe ΩT . For that, we consider the radius of the largest
sphere inscribed in F . Indeed, the radius of the inscribed
sphere is monotonically increasing with the volume of the
constraint set of (31) and is null only when (31) is infeasible,
i.e. when x (t0) ∈ ∂ΩT . Denote by F the constraints set of
(31) written here in condensed form:

F =


[
ū
x̄

]
∈ RmN×nN

∣∣∣∣∣∣∣∣
Ae

[
ū
x̄

]
= be

Ai

[
ū
x̄

]
≤ bi

 , (32)

with N = N + 1.
Because F is not full dimensional, we need to consider a

sphere inscribed in the projection F̃ of F on the dynamics
plane Aex = be. Let Nc = mN + nN , K ∈ RNc×mN be a
basis of the null-space of Ae, and xe ∈ RNc be a particular
solution of Aex = be. We choose the particular solution to
be xe = A+

e be, with Moore-Penrose pseudo inverse being
given by A+

e = A>e
(
AeA

>
e

)−1
. Therefore{

x ∈ RNc | Aex = be
}

=
{
Kz + xe | z ∈ RmN

}
. (33)

So F̃ is the full dimensional polytope given by

F̃ =
{
z ∈ RmN | Ãz ≤ b̃

}
, (34)

with Ã = AiK and b̃ = bi−Aixe, as we have F = KF̃+xe.
Finding the radius of the sphere inscribed in F̃ can be

achieved by solving the Linear Program [20]:

LP-Feasibility

r∗ = max
r∈R, z∈RmN

r

s.t. Ā

[
r
z

]
≤ b̃

(35)

where:

Ā =
[
V | Ã

]
with V =

√
diag

(
ÃÃ>

)

The following barrier condition is considered to enforce
the feasibility of (31):

∂r∗

∂x1
(Adtx1 +Bdtu) + α (r∗) ≥ 0. (36)

The value of ∂r∗

∂x1
can again be extracted from the optimal

dual variables λ∗ in (35). We know that λ∗ = ∂r∗

∂b̃
, so:

∂r∗

∂be
=
∂r∗

∂b̃

∂b̃

∂be
= λ∗>

∂b̃

∂be
, (37)

and
∂b̃

∂be
=
∂ (bi −Aixe)

∂be
= −AiA+

e . (38)

So ∂r∗

∂x1
are the rows of ∂r∗

∂be
corresponding to the constraint

x1 = x (t0) in (35).
Note that Ã contains lines equal to 0>. This is because

the state constraints on x1 are orthogonal to the dynamics
surface. Therefore r∗ is missing some of the feasibility
information about (35). To retrieve that information, we use
the expression of ΩT given in (28) but only at time 0 as
the rest of the constraints in (28) are completely contained
in (36). So by enforcing (6) for S, (36) and (20) with
appropriate choices of strengthening terms α, the MPC (31)
is guaranteed to always be feasible, which translates to the
ASIF also always being feasible. Note also that one must
be careful when using this method as pathological cases can
occur, for example when the set of constrains F̃ looses a
dimension. Handling such case is outside the scope of this
paper but definitely deserves closer attention before any kind
of practical implementation can be attempted.

B. Numerical Example

Consider the same setup as in Sec. (IV-B) is considered,
but with a time horizon T = 0.7, and a simulation over the
time interval [0, 1]. The state bounds are chosen to be

x1 ∈ [−0.1, 0.15] and x2 ∈ [−0.3, 0.25] . (39)

As we can see in Fig. 7, the nominal input (dashed black
line) is being followed (green part of the solid curve), until
either of the 3 barrier conditions becomes active (red, orange
or yellow part of the solid curve). As previously, the filtering
happens when the end-point of the projected trajectories (in
blue in Fig. 8) approaches the boundary of the backup set
(black ellipsoid), but also when a point on the projected
trajectories approaches the boundary of the safety set. The
filtering stays active for the rest of the simulation and the
system stays within reach of the target set and the system
remains inside S (cf. Fig. 8).

Note that the feasibility is constrained to be greater than 0.4
to avoid numerical instabilities when the size of the constraint
set F becomes too small. Not also that the choice of α is not
made a priori here but is done as part of the optimization of
the ASIF-QP. For that, the function α is chosen to be α (x) =
αsx and αs is considered as an extra decision variable in the
ASIF-QP with appropriate lower bound and associated cost.



Fig. 7: Desired input (black line) and actual input (multicol-
ored line). The actual input is green when no barrier condition
is active and red, orange or yellow when one of the barrier
condition is active.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a method to compute online sensi-
tivity information around a backup trajectory to replace the
offline complex computations of viable sets necessary for the
active set invariance task. We discussed how the operational
freedom of the system is directly correlated to the optimality
of the backup policy, and how sensitivity information can
be extracted from an MPC controller in the case of linear
systems. The effectiveness of the approach was illustrated in
simulation on an unstable linear system.

Solving an MPC online is not trivial though, especially
when the dynamics are nonlinear. An alternative implemen-
tation based on numerical integration has therefore been
presented which allows for any control law to be used.
The authors are currently exploring how machine learning
techniques can be leveraged to approximate the MPC with
an analytical expression. The authors are also exploring
how verified integration techniques can be used to eliminate
the approximations arising from numerical integration and
discretization for the constraint space of the ASIF.
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