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Abstract—There is currently a gap between control-
theoretical results and the reality of robotic implementations—
this makes it difficult to transfer analytical guarantees to
practice. This problem is especially troubling when it comes to
safety guarantees for safety-critical systems. In this paper we
seek to help bridge this gap. We first make a clear theoretical
distinction between a system and a model, and outline how the
two need to be related for guarantees to transfer from the latter
to the former. We then introduce various imperfections into the
model, including uncertainty in actuation and sensing, as well as
time discretization effects from digital control implementations.
These assumptions lead to new criteria for controlled invariance
to be realizable. We investigate these criteria and propose a
digital control implementation for enforcing safety in the pres-
ence of uncertainty. Our ideas are illustrated with a numerical
example where a ground robot satisfies safety constraints in the
presence of perception noise.

I. INTRODUCTION

Safety and reliability of cyber-physical systems are two
of the biggest obstacles on the road towards ubiquitous
robotic systems. It is widely accepted that a solution to
these problems can only emerge from rigorous mathematics,
methods and processes [1], [2], [3]. However, while there
is a vast body of work on safety and reliability in control
theory, very little of it is actually used in practice where
safety margins are typically empiric and/or heuristic. Math-
ematically grounded approaches toward safety have several
potential major benefits. In particular, systems can become
adaptive and utilize large safety margins only when motivated
both from a safety and from an uncertainty perspective, which
improves both performance and safety compared to heuristic
approaches. Furthermore, the set of safe operating conditions
is made explicit, which is beneficial when a system is moved
to a new environment or connected to other systems.

We believe that the gap between theory and practice is a
direct echo of the discrepancy between the reality of cyber-
physical systems (CPSs) and their representative models used
in control theory. For the result of a theorem to apply, all the
hypotheses must be satisfied. Therefore, it should not come
as a surprise that system implementations based on theorems
whose assumptions are impossible to satisfy in practice often
turn out to be unreliable. This discrepancy needs to be
addressed from both sides: with better hardware that attains
performance close to idealistic assumptions, but also with
mathematics capable of accounting for model imperfections.
In this paper we investigate the theory side of the problem
in the context of safety.
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At a fundamental level, safety can be reduced to constrain-
ing system behavior. From a control perspective, safety is
therefore usually associated with the concept of set invari-
ance [4]—given a desired safety set, ensuring safe system
operation is equivalent to making sure that it remains in-
side a safety set at all times. This is usually done in two
stages. First, parts of the safety set from where future safety
violations are unavoidable must be excluded, which is done
by computing a viable (or controlled-invariant) subset of the
safety set [5], [6]. Many approaches have been proposed to
find such a subset, from discretized solutions of Hamilton-
Jacobi equations [7], SOS optimization [8], sampling [9], and
many others [10]. Secondly, a control law that renders the vi-
able subset forward invariant needs to be implemented. In this
second step, two different approaches are usually considered.
In [11], [12], a control structure is proposed that switches
between a nominal controller designed for performance and a
“safe” controller designed for set-invariance. Whereas in [4],
continuous optimization-based filtering of the control input
is performed so as to enforce set-invariance in a minimally
invasive way. At a fundamental level, both strategies reduce
to enforcement of Nagumo’s sub-tangentiality condition [13]
with varying degrees of conservatism.

Despite solid theoretical underpinnings, the practical effec-
tiveness of this body of work is hindered by the use of idealis-
tic system representations and assumptions. Inclusion of more
realistic representations in the context of set invariance is still
fairly recent and not yet fully developed. Additive uncertainty
has been considered [14], [15], and also generic parametric
uncertainty [16], including for hybrid systems [17], whereas
[18], [19] treat sampled data systems. But even with these
“robust” approaches, systematic and unfailing set invariance
has yet to be demonstrated on actual hardware, although there
have been multiple cases recently of experimental success
through reasonable approximations of the formal approaches
to safety [16], [20].

In order to achieve the goal of verifying theory on hard-
ware, we argue that these approaches must be revisited on
the basis of a rigorous and quantifiable description of the
differences between systems, and models of systems. With
this approach, a formal and quantifiable link can be made
between mathematical theorems and the requirements in
terms of modeling and hardware implementation to achieve
the results predicted by these theorems. Therefore, the main
contribution of this paper is the derivation of realizable set-
invariance conditions based on realistic assumptions about
cyber-physical systems. In particular, we introduce robust
viability under state uncertainty—a property that a set must
satisfy in order for it to be possible to render it invariant
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under realistic assumptions. We give sufficient conditions for
this property to hold, and suggest a digital control scheme
that enforces invariance of such a set even in the presence of
model imperfections.

The rest of the paper is laid out as follows. In Section
II, a formal distinction is made between a system and a
model of that system, and we introduce an approximation
hierarchy of models. In Section III we first revisit Nagumo’s
theorem, before extending it by relaxing overly idealistic as-
sumptions. We study robust viability under state uncertainty
in Section IV, and propose an invariance-enforcing digital
control scheme in Section V. A numerical example is given
in Section VI before the paper is concluded in Section VII.

Notation: For a mapping f : X → Y and a subset A ⊆ X ,
we write f(A) = {f(x) : x ∈ A}. We write ‖ · ‖ to denote
the standard Euclidean norm; the Euclidean ball with center
x and radius r is denoted B(x, r) = {y : ‖y − x‖ ≤ r}. The
diameter of a set X is defined as ‖X‖ = supx,y∈X ‖x− y‖,
with this notation ‖B(x, r)‖ = 2r. We write ⊕ and 	 for
Minkowski addition and subtraction.

II. SYSTEM AND MODEL TERMINOLOGY

George Box famously wrote that “all models are wrong,
but some are useful” [21], which can be taken as an argument
both for and against model-based control. Based on this
statement alone, it seems unlikely that any sort of “guarantee”
is possible to achieve in the real world, since it is impossible
to foresee exactly how inputs affect the system at hand.
However, guarantees can in theory be achieved even with
a model that is incorrect—what is required is that the model
captures (or over-approximates) the true behavior, which is
a much less strict requirement than being exact.

While systems and system models are treated interchange-
ably in much of the existing literature, at the core of this
paper is the clear distinction between these two fundamen-
tally different entities.

Terminology 1. A system Σ is a collection of measurable
physical quantities, also called “states”. We refer to the
number of states n as the state dimension of the system.
The input to a system is a collection of physical quantities
whose values affect the state of the system, and which can
be (approximately) controlled via actuators to desired values.
We refer to the number of inputs m as the input dimension
of the system.

We write (x(t),u(t)) ∈ Rn×Rm to denote trajectories of
the system, i.e. the measurements x(t) resulting from setting
system inputs to u(t) at time t. In the following we assume
that the system is such that x(t) is differentiable and defined
for all times.

The model of a system is the mathematical representation
of the evolution of the state of the system. Modeling can be
done in many ways; motivated by highly dynamical robotic
systems we focus on continuous-time models.

Terminology 2. A system modelM = (f,X,U, P ) consists
of a Lipschitz continuous map f : X ×U ×P → Rn, where

X ⊆ Rn is the domain of the model, U ⊆ Rm is a set of
admissible inputs, and P is a parameter set.

Since we can not hope to obtain an exact mathematical
representation of a physical system, we resort to the idea
of finding models that over-approximate it. A model over-
approximates a physical system if all possible state/input
trajectories of the system are consistent with the model. That
is, every possible behavior of the system must be contained
in the model, but the model may contain additional behaviors
that are not present in the true system. Constructing an
over-approximating model for a real system is of course a
very challenging task that involves a trade-off between the
confidence in the model indeed being an over-approximation,
and the magnitude of the “approximation gap”.

Definition 1. A model M = (f,X,U, P ) is an over-
approximation of a physical system Σ, written M � Σ,
if for every trajectory (x(t),u(t)) there exists a continuous
parameter trajectory p : R→ P such that

dx(t)

dt
= f(x(t),u(t),p(t)). (1)

The parameter signal p should be thought of as a way
to model uncertainty and unknowns in the system and its
environment, as well as any unmodeled dynamics.

It is straightforward to extend the concept of over-
approximations also to pairs of system models: we say that
a model M1 = (f1, X1, U1, P1) over-approximates a model
M2 = (f2, X2, U2, P2), written M1 � M2, if there exist
(projection) maps ΓX , ΓU and ΓP such that X1 ⊇ ΓX(X2),
U1 ⊇ ΓU (U2), P1 ⊇ ΓP (P2), and for all x ∈ X2 and u ∈ U2,

f1(ΓX(x),ΓU (u),ΓP (P2)) ⊇ TxΓX(f2(x, u, P2)), (2)

where TxΓX is the tangent map of ΓX at x. Combined, these
conditions imply that the dynamics ofM2 via the projection
maps can be embedded in the space of M1 in a way so that
all behaviors of M2 are captured also by M1.

This partial order between a system and different models
allows for exploration of the trade-off between performance
and confidence. Consider two models M1 and M2 such
that M1 � M2 � Σ. Ensuring safety of Σ with respect
to a tight over-approximation M2 implies a comparatively
small performance loss compared to a hypothetical “optimal”
safe controller, while a more conservative over-approximation
M1 implies a larger margin and more cautious behavior.

III. INVARIANCE CONDITIONS AND REALIZABILITY

The objective of this work is to constrain a system to stay
inside a closed safety set S under realistic modeling and
implementation assumptions. We achieve this by enforcing
forward invariance on an over-approximating model, which
implies forward invariance of the system itself.

Definition 2. A set S is forward controlled invariant for a
system Σ if the input u(t) can be chosen such that x (0) ∈
S =⇒ ∀t ≥ 0, x(t) ∈ S.

3643



A. Nagumo’s Set-Invariance Condition

The core tool behind set invariance is the famous
Nagumo’s theorem, which relates invariance to derivatives
taking values in the tangent cone TS(x)1. Here we state it in
a slightly extended formulation that makes a clear distinction
between a system and a system model.

Theorem 1. Consider a system Σ, a model M =
(f,X,U, P ) such that M � Σ, and a closed set S ⊆ X .
If for every trajectory with x(0) ∈ S the input u(t) can be
chosen Lipschitz continuous and such that

f(x(t),u(t), P ) ⊆ TS(x(t)), ∀t ≥ 0, (3)

then the set S is forward controlled invariant for Σ.

Proof. For any system trajectory (x,u) we can find an
associated continuous parameter trajectory p such that (1)
holds. Due to continuity of f and p, the solution of (1)
for this choice of p is unique. Furthermore, (3) implies that
d
dtx(t) ∈ TS(x(t)) for all t ≥ 0. Therefore the classical
version of Nagumo’s theorem [6], [13] applies, and S is
forward invariant for M and hence also for Σ.

With the objective of enforcing condition (3) through
means of feedback control, it is fundamental to look at the
realizability of this condition. In theory, the only requirement
for satisfying the condition is that the set is robustly viable.

Definition 3. A set S is robustly viable for a model M =
(f,X,U, P ) if for all x ∈ S there exists a u ∈ U such that

f(x, u, P ) ⊆ TS(x). (4)

However, there are always imperfections that prevent en-
forcement of (3) even if (4) holds in theory. We therefore
proceed by adding additional realistic assumptions that model
uncertainty. We have already accounted for uncertainty in
the dynamics via the unknown parameter signal p(t) ∈ P .
Here we introduce additional uncertainty and imperfections
stemming from estimation, actuation, and digital control.

B. Actuation Uncertainty

There are many reasons as to why a desired input might not
be perfectly achievable on the real system. For instance, in
many cases the computed input is passed to an electronic con-
trol unit (ECU) that acts as a closed-loop controller around
the property of interest (e.g. servo angle, torque, or speed).
In that case, transients in the ECU control loop might cause
the input to deviate from the desired value. In low-powered
embedded systems there may also be quantization effects
that result in small but significant discrepancies between the
desired and actual inputs.

Assumption 1 (Actuation). For a desired input ū(t) to the
system, the physical input u(t) is such that:

u(t) ∈ {ū(t)} ⊕∆u, ∆u ⊆ Rm. (5)

1The tangent cone TS(x) of S at x can be defined as the set of all
directions v such that for every sequence {xi} → x in S and every
monotone sequence {ti} → 0, there exists a sequence {vi} → v such
that xi + tivi ∈ S for all i [22, Prop. 5.2].

This assumption reflects noise and unmodeled dynamics
between the controller output ū(t) and the actual value
of the system input u(t). The following result shows that
input uncertainty can be incorporated into the model as an
additional parameter variation.

Proposition 1. A model M = (f,X,U, P ) with input
uncertainty ∆u is equivalent to M̄ = (f̄ , X, U, P̄ ) with

P̄ = P ×∆u, f̄(x, u, (p, δu)) = f(x, u+ δu, p). (6)

Thus, actuation uncertainty can be accounted for by en-
forcing the robust sub-tangentiality condition (3) on an over-
approximating model M̄ � M, which is possible if the
safety set is robustly viable with respect to M̄.

C. Sensing Uncertainty

Condition (3) assumes knowledge of the current state
x, which is typically estimated via filters and hence not
exactly known. To obtain overall guarantees on system safety
with inaccurate state estimates, a measure of the degree of
inaccuracy must be known so that the safety controller can
account for the worst-case scenario.

Assumption 2 (State Estimation). If the state of the system
is x(t) ∈ S, we have access to an estimate x̄(t) of that state
such that:

x(t) ∈ {x̄(t)} ⊕∆x, ∆x ⊆ Rn. (7)

This assumption relates directly to the accuracy of the
sensors, as well as to the accuracy of the state estimation
method. We have opted for a robust formulation of state
uncertainty assumptions for simplicity and consistency with
other assumptions. For linear systems it is known how this
type of robust state-valued observers can be synthesized [23],
but optimal observers can be arbitrarily complex whereby
more practical alternatives have been proposed [24]. How-
ever, most state estimation filters operate under probabilistic
assumptions. In this setting, the resulting probability distri-
bution can be converted into a chance constraint set ∆x with
P [x(t)− x̄(t) ∈ ∆x] ≥ 1 − δ, and ∆x can be taken as the
state estimate. This results in safety guarantees that hold with
high probability.

As opposed to input uncertainty, state uncertainty can not
be directly incorporated into the model since also the right-
hand side in (3) depends on the state. Consequently, we need
to strengthen the sub-tangentiality condition as follows.

Proposition 2. Let M = (f,X,U, P ) be a model that
over-approximates a system Σ and assume that x̄(t) satisfies
Assumption 2. If for every trajectory with x(0) ∈ S the input
u(t) can be chosen such that

∀x ∈ S ∩ {x̄(t)} ⊕∆x, f(x,u(t), P ) ⊆ TS(x), (8)

then S is forward controlled invariant for Σ.

Proof. Assume for contradiction that (8) holds and that there
exists a trajectory (x,u) with x(0) ∈ S for which S is not
forward invariant. By Theorem 1 there exists a time τ such
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B(x̄, ε)

x̄

S

B(x̄, ε)

x̄

S

Fig. 1. Graphical illustration of the ε-robust viability condition. Tangent
cones for the set S are shown in red, and cones f̄(x) = f(x, ū, P ) in blue.
To the left, f̄(x̄) ⊆ TS(x̄), but this inclusion property does not hold in the
whole set S ∩ B(x̄, ε) which presents a problem when state uncertainty is
present. To the right however, the same input ū satisfies the sub-tangentiality
condition in all of S∩B(x̄, ε) so it can safely be applied even in the presence
of state uncertainty.

that x(τ) 6∈ TS(x(τ)). This is however a contradiction of (8)
and Assumption 2.

Essentially, the result states that in order to enforce set
invariance under imperfect sensing, it is sufficient to enforce
condition (3) for all possible values of the state around the
nominal sensed value. However, this stricter condition also
implies more requirements on the safe set S; robust viability
is no longer enough. We therefore extend the robust viability
concept to allow for uncertainty in the state.

Definition 4. A set S is robustly viable under state ε-
uncertainty (abbreviated ε-robustly viable) for a model
M = (f,X,U, P ) if for all x̄ ∈ S there exists a u ∈ U
such that

∀x ∈ S ∩ B(x̄, ε), f(x, u, P ) ⊆ TS(x). (9)

This condition is stronger than that in Definition 3 since
it requires existence of inputs that guarantee the sub-
tangentiality condition in a set, rather than at a single point
as in (4), as illustrated in Fig. 1.

D. Digital Control

Proposition 2 allows a set invariance condition to be
enforced even if the state is not exactly known. However,
one would still need access to a continuous estimation of
the states, and the capability to continuously modify the
inputs. This is potentially possible through means of analog
electronics; however, modern systems overwhelmingly rely
on digital electronics. In this case, estimates of the states
are available only at discrete time instances, and the input
is modified at discrete points in time. Furthermore, the time
between receiving a state estimate and setting a computed
control command is non-negligible. Therefore, it is important
to derive a set invariance condition that addresses this reality.
For that, we consider a typical timing structure of a digital
control system as depicted in Fig. 2.

Assumption 3 (Hard Real-Time Implementation). The
digital control system operates at a fixed loop frequency
1/∆t. Each control loop starts at time tk, k ∈ N with
an estimate x̄k = x̄(tk) of the state as in Assumption 2.
This estimate is then used to calculate the subsequent control
action ūk that is activated at time tk + α∆t for α ∈ [0, 1].

t

tk tk+1 tk+2tk + α∆t tk+1 + α∆t

ūk−1 ūk ūk+1

Fig. 2. Time visualization of a real-time control loop. A sensor reading is
performed at times tk which is the basis for computation of an input signal
that changes at times tk + α∆t.

Here the continuous time assumption is replaced by a more
realistic correctness assumption on the timing of the control
loop. We refer the reader to the real-time computing litera-
ture for more details on the complex issue of guaranteeing
a bounded computing time [25]. Incorporating the digital
control module into the analysis makes the overall system
cyber-physical (i.e. hybrid). Rather than incorporating these
discrete components into an overall model, we set out to
design the digital controller in a way that guarantees safety
with respect to the continuous-time model.

Having outlined Assumptions 1–3 that we argue accu-
rately capture realistic implementations, we define the two
problems that must be solved to enforce invariance under
these assumptions: finding sets that are robustly viable under
state uncertainty, and enforcing uncertain cone inclusion
constraints through the means of digital real-time control.

Problem 1. Given a model M = (f,X,U, P ), a safety set
S, and a maximal magnitude of state uncertainty ε, find a set
S̄ ⊆ S that is ε-robustly viable.

Problem 2. Given a model M � Σ and a set S̄ that is
ε-robustly viable, construct a digital controller such that if
Assumptions 1–3 are satisfied, then S̄ is invariant for Σ.

We contribute towards a solution of the first problem in
Section IV by giving different sufficient conditions for robust
viability under state uncertainty. We then propose a solution
to Problem 2 in Section V. Both these problems are however
challenging and we do not possess complete solutions at this
point in time. We elaborate further in the conclusion (Section
VII) on future work that we plan to undertake.

IV. ON ROBUST VIABILITY UNDER STATE UNCERTAINTY

The condition in Definition 4 is of type “for a neighbor-
hood of every point”, and is therefore cumbersome to verify.
Here we give sufficient conditions that imply ε-state-robust
viability: one tightened formulation of the standard robust
viability property that opens the door for known viability
algorithms to be adapted to the case with state uncertainty,
and one condition that hinges on the existence of a function
certificate.

A. Cone Algebra

The results in this section are based on studying expansions
and contractions of cones. Let K ⊂ Rn be a cone, i.e. a set
that contains 0 and that is closed under scaling. For a positive
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K K
c
⊕ φ K

c
	 φ

Fig. 3. Illustration of expansion (blue) and contraction (green) operations
on a cone K (red).

angle φ > 0 we define the inflated and deflated cones K
c
⊕φ

and K
c
	 φ as follows:

K
c
⊕ φ =

{
tv : t ∈ R+,∃k ∈ K s.t.

k · v
‖k‖‖v‖

≥ cos(φ)

}
,

K
c
	 φ =

{
tv : t ∈ R+,

k · v
‖k‖‖v‖

≥ cos(φ) =⇒ k ∈ K
}
.

The operations are illustrated in Fig. 3. It can be verified that
(K

c
⊕φ1)

c
⊕φ2 = K

c
⊕ (φ1 +φ2) and that (K

c
	φ)

c
⊕φ ⊆ K;

two facts that are used below. For a set X ⊂ Rn we define:

cone(X) = {tx : t ∈ R+, x ∈ X}.

B. Conditions for State-Robust Viability
Our results rely on assumptions on how the tangent cone

varies along the boundary of the safe set. To express these
assumptions in a convenient manner we restrict attention
the class of practical sets [13], which is broad enough to
address most applications and enjoys a simple expression of
the tangent cone. A practical set is described by a collection
of r continuously differentiable functions hj : Rn → R:

S =

{
x ∈ Rn | min

j∈J1,rK
hj (x) ≥ 0

}
,

∂S = S ∩
{
x ∈ Rn : min

j∈J1,rK
hj(x) = 0

}
,

(10)

where J1, rK = {1, . . . , r} ⊂ N. For such a set, the tangent
cone to S at x is expressed by:

TS(x) =
⋂

j∈Act(x)

{z ∈ Rn | 〈∇hj(x), z〉 ≥ 0} , (11)

where the active constraint set at x is Act(x) =
{j ∈ J1, rK | hj(x) = 0}.

Sub-tangentiality conditions become more cumbersome at
“corners” of the safe set, i.e. at points x where Act(x) >
1. To illustrate our ideas clearer, we therefore start with a
simplified condition that only applies for r = 1, i.e. to sets
that are defined by a single inequality and therefore do not
have corners.

Theorem 2. Consider a practical set S = {x : h(x) ≥ 0}
and assume that x 7→ cone(∇h(x)) is µ-Lipschitz in a cone
sense along ∂S, i.e. that for x, x̄ ∈ ∂S,

∇h(x̄) ⊆ cone(∇h(x))
c
⊕ µ‖x− x̄‖. (12)

Under these conditions, if for all x ∈ S there exists a u ∈
U such that 1) the mapping x 7→ cone(f(x, u, P )) is λ-
Lipschitz in x locally in B(x, ε):

cone(f(x̄, u, P )) ⊆ cone(f(x, u, P ))
c
⊕ λ‖x− x̄‖, (13)

x

x′

x

x′

Fig. 4. Examples where (15) are satisfied (left) and violated (right). The
condition requires that for any ball B(x, ε) that intersects ∂S, there must
exists a point x′ ∈ ∂S where all constraints that are active anywhere in the
ball are active, and has distance at most ε from the intersection of the ball
with ∂S. To the left, all intersection segments (in red) lie within ε-vicinity
of x′ where both constraints are active. To the right however, this does not
hold.

and 2):
f(x, u, P ) ⊆ TS(x)

c
	 2(µ+ λ)ε, (14)

then S is robustly viable under ε-uncertainty.

Proof. By (11) cone Lipschitz continuity of ∇h is equiv-
alent to cone Lipschitz continuity of TS(x) for the same
Lipschitz constant. Take any x ∈ S and consider two
cases: B(x, ε) ⊆ int(S), and B(x, ε) 6⊆ int(S). In the first
case the result evidently holds since TS(x) = Rn in the
interior of S. Consider therefore the second case; we can
find a point x′ ∈ ∂S ∩ B(x, ε) and a ū such that by (14),
cone(f(x′, ū, P )) ⊆ TS(x′)

c
	 2(µ+λ)ε since the right-hand

side is a cone. Take any x̄ ∈ ∂S∩B(x, ε), then ‖x′−x̄‖ ≤ 2ε
and consequently,

f(x̄, ū, P ) ⊆ cone(f(x̄, ū, P ))

⊆ cone(f(x′, ū, P ))
c
⊕ 2λε

⊆ (TS(x′)
c
	 2(µ+ λ)ε)

c
⊕ 2λε

⊆ (TS(x̄)
c
	 2(µ+ λ)ε)

c
⊕ 2λε

c
⊕ 2µε ⊆ TS(x̄).

Since x was arbitrary condition (9) therefore holds.

For a condition that applies to more general sets, it is also
necessary to ensure that corners are not too close to each
other, and that the angles at the corners are not too sharp.

Proposition 3. Consider a set S = {x : minj∈J1,rK hj(x) ≥
0} and assume that for all x ∈ S with Bε(x) ∩ ∂S 6= 0,

∃x′ ∈ ∂S s.t.


Act(x′) =

⋃
x̄∈B(x,ε)

Act(x̄),

max
x̄∈∂S∩B(x,ε)

‖x′ − x̄‖ ≤ ε.
(15)

Then, if (12) holds for all hj , j ∈ J1, rK, and for each x ∈ X
a u ∈ U can be found such that (13) and (14) hold, then S
is robustly viable under ε-uncertainty.

Proof. Consider the proof of Theorem 2 and let Sj = {x :
hj(x) ≥ 0} so that S = ∩j∈J1,rKSj . Due to (15) it is possible
to pick x′ ∈ ∂S ∩ B(x, ε) so that all inequalities that are
active anywhere in B(x, ε) are active at x′. Thus, satisfaction
of (14) at x′ implies that f(x′, u, P ) ⊂ TSj (x′)

c
	 2(µ +

λ)ε, i.e. satisfaction of the subtangentality constraint for each
j ∈ Act(x′). The remainder of the proof of Theorem 2 then
applies for each j separately.
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Examples where the additional condition (15) is satisfied
or violated are shown in Fig. 4. In essence, the requirement
prohibits corners that are too sharp: if an ε-ball can be
positioned such that it touches two separate boundaries
{x : hi(x) = 0} and {x : hj(x) = 0} without being close to
the set {x : hi(x) = hj(x) = 0}, then robust viability can
not be verified via pointwise conditions.

We conclude this section by giving a certificate-based
condition that serves to verify tightened sub-tangentiality
conditions such as (14). In addition, it can be implemented
as a control barrier function (CBF) condition [4] in an on-
line control scheme to ensure that a robust sub-tangentiality
condition is satisfied. An advantage of the CBF condition
over the sub-tangentiality condition is that the K∞-function
α can be tuned to achieve a smooth response, as opposed to
the often abrupt intervention caused by the sub-tangentiality
condition.

Theorem 3. Let S = {x : h(x) ≥ 0} for a continuously
differentiable control barrier function h. Suppose that for all
p ∈ P

〈∇hj(x), f(x, u, p)〉 − ‖∇hj(x)‖‖f(x, u, p)‖ sin(ε)

≥ −α(h(x))
(16)

for a K∞ function α. Then the following tightened sub-
tangentiality condition holds:

f(x, u, P ) ⊆ TS(x)
c
	 ε. (17)

Proof. Consider x ∈ ∂S. Since α(h(x)) = 0,

〈∇hj(x), f(x, u, p)〉 ≥ ‖∇hj(x)‖‖f(x, u, p)‖ sin(ε). (18)

Let d(u, v) = arccos(〈u, v〉 /(‖u‖‖v‖)) be the angu-
lar distance pseudometric, then (18) is equivalent to
d(∇hj(x), f(x, u, p)) ≤ π/2 − ε. Take a v such that
d(f(x, u, p), v) ≤ ε, the triangle inequality in this metric then
gives d(v,∇hj(x)) ≤ π/2− ε+ ε = π/2. This is equivalent
to 〈v,∇hj(x)〉 ≥ cos(π/2) = 0, i.e. v ∈ TS(x) by (11),
which completes the proof by definition of

c
	.

V. DIGITAL SAFETY CONTROL

Assuming knowledge of a set that is robustly viable
under state uncertainty, we turn to the problem of en-
forcing sub-tangentiality conditions via digital control. Let
M = (f,X,U, P ) be a model where any potential actuation
uncertainty is included in the parameter set. Since digital
control only allows for control actions to be taken at discrete
time instances, it is necessary to account for system evolution
in between these instances to ensure safety, i.e., reachability
computations are required.

Definition 5. The reachable set for a modelM under input
signal u, denoted Ru

=t (∆), is the set of states reachable from
∆ in time t. Similarly, the interval reachable set for a model
M, denoted Ru

≤t (∆), is the set of states reachable in time
up to t, i.e.

Ru
≤t (∆) =

⋃
τ∈[0,t]

Ru
=t (∆) . (19)

We use non-bold letters to denote constant input signals, i.e.,
for u(t) ≡ ū we write Rū≤t = Ru

≤t.

We propose the digital control scheme in Algorithm 1 that
accounts for state uncertainty and time quantization effects
as a solution to Problem 2. The essence of the algorithm is
to select an input that enforces the robust sub-tangentiality
condition everywhere in the set where the system state may
be during the time interval [α∆t, (α+ 1)∆t].

Algorithm 1: Digital safety controller

1 At t = tk, obtain state estimate
Xk−1 = {x̄(tk)} ⊕∆x;

2 Propagate estimate via forward reachability to time
tk + α∆t: X ′k−1 = R

ūk−1

=α∆t
(Xk−1);

3 Select ūk such that f(x̄, ūk, P ) ⊆ TS(x̄) for all
x̄ ∈ S ∩Rūk

≤∆t
(X ′k−1);

Theorem 4. Let λx and λp be Lipschitz constants of f in x
and p, respectively. and let

V = sup
x∈X,u∈U,p∈P

‖f(x, u, p)‖ (20)

be an upper bound on vector field velocity. Suppose that S is
robustly viable under ε-uncertainty and that state estimates
∆x are such that(
‖∆x‖+ λp∆t

(
α+

1

2

)
‖P‖

)
eλx∆t(α+ 1

2 ) + V∆t ≤ ε.

Suppose furthermore that one iteration of Algorithm 1 can
be computed in less than time α∆t. Then Algorithm 1 solves
Problem 2.

This result exhibits the trade off between system uncer-
tainty and possible performance. With significant uncertain-
ties and/or long sampling times the set of safe inputs shrinks.
Remark that when the sampling time ∆t → 0, the left-hand
side goes to ‖∆x‖, i.e. all the uncertainty stemming from the
digital implementation disappears. The inequality is the result
of over-approximations of the size of reachable sets. The
over-approximations are general but fairly crude; if tighter
a priori over-approximations can be obtained the result can
be strengthened accordingly. Before proving Theorem 4 we
state two lemmas that bound the size of reachable sets.

Lemma 1. Assume that f is λx-Lipschitz in x and λp-
Lipschitz in p. If ‖∆‖ ≤ ε, then

‖Ru
=t (∆) ‖ ≤ (ε+ λpt‖P‖) eλxt. (21)

Proof. Consider the function φ(t) = ‖x(t;u,p, x0) −
x(t,u,p′, x′0)‖, where x(t;u,p, x0) is the (unique) solution
of (1) with initial condition x(0) = x0, input u and
parameter trajectory p. Then elementary calculations show
that

∣∣ d
dtφ(t)

∣∣ ≤ λxφ(t) + λpt‖P‖. Consequently we have
φ(t) ≤ φ(0)+

∫ t
0

∣∣∣dφ(τ)
dτ

∣∣∣ dτ ≤ φ(0)+λpt‖P‖+
∫ t

0
λxφ(τ)dτ

and Gronwall’s lemma [26, p. 310] gives that φ(t) ≤
(φ(0) + λpt‖P‖) eλxt.
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Lemma 2. Assume that ‖f(x, u, p)‖ ≤ V everywhere. Then
‖Ru
≤t (∆) ‖ ≤ ‖Ru

=t/2 (∆) ‖+ V t.

Proof. Follows from remarking that the state for a time τ ∈
[0, t] must be within distance V t/2 of the set Ru=t/2 (∆).

Proof of Theorem 4. From the two lemmas it follows that
for any u ∈ U with the input u(t) = ūk−1 for t ∈ [0, α∆t]
and u(t) = u for t > α∆t we have

‖Ru
≤∆t

(X ′k−1)‖ ≤ ‖Ru
=∆t/2

(X ′k−1)‖+ V∆t

≤
(
δ + λp∆t

(
α+

1

2

)
‖P‖

)
eλx∆t(α+ 1

2 ) + V∆t,

which by assumption is smaller than ε. As a consequence,
robust viability under ε-uncertainty of S implies that a ūk ∈
U that satisfies the condition on Line 3 in Algorithm 1 always
exists provided that Rūk

≤∆t
(X ′k−1) intersects S.

The result now follows by noting that the condition on
Line 3 in Algorithm 1 necessarily implies that (8) holds for
all τ ∈ [α∆t, (α+1)∆t]. An induction argument over k then
implies that S is forward invariant and that Rūk

≤∆t
(X ′k−1)

intersects S at every step.

We remark that Algorithm 1 is still sound if over-
approximations of reachable sets are used rather than exact
reachable sets themselves. In that case an additional margin
must however be included in the robust viability condition
to ensure that the digital control implementation remains
feasible.

VI. GROUND ROBOT WITH STATE UNCERTAINTY

We illustrate some of the theory from Section IV and how
robust set invariance conditions can achieve adaptive safety
under varying perception conditions. Consider a ground robot
model with state x(t) ∈ R2 and dynamics

d2x

dt2
= u. (22)

The robot is tasked with tracking a desired trajectory, which
is done with a standard PD controller. However, it is also
subject to a safety constraint of remaining inside the circular
region {x ∈ R2 : ‖x‖ ≤ r̄}. We enforce this constraint via a
radial barrier function

h(x, ẋ) = r̄ − r(x)− (ṙ(x, ẋ))2

2ū
, (23)

where ū is a maximal radial acceleration and r(x) = ‖x‖,
ṙ(x, ẋ) = 〈x,ẋ〉

‖x‖ .
The zero super-level set S of h is shown in Fig. 5 in (r, ṙ)

coordinates. The safety-enforcing control signal is equal to
u = −ū along the whole boundary of the set. Since the
control does not change, it follows that S is robustly invariant
under state uncertainty without needing to apply the results
in Section IV. However, for illustration purposes we discuss
how a modified set that satisfies a tightened sub-tangentialty
condition can be constructed. Consider the red curve in Fig.
5; it demarcates the boundary of the set S̃ = {(r, ṙ) :

h̃(r, ṙ) ≥ 0} for h̃(r, ṙ) = r̄−r− (ṙ+δ)2

2ū —a barrier obtained
from the artificial dynamics v̇ = u, ṙ = v + δ.

r̄

√
2ūr̄

S
r

ṙ

Fig. 5. Viable set for system r̈ = u with constraints r ≤ r̄ and u ≥ −ū.

For f(ṙ, u) =
[
ṙ u

]T
denoting the dynamics on state

space form, the modified barrier h̃ has the property that〈
∇h̃(ṙ), f(ṙ,−ū)

〉
‖∇h̃(ṙ)‖‖f(ṙ,−ū)‖

=
δ√

ū2 + (ṙ + δ)2
√
ū2 + ṙ2

≥ δ

ū2
.

By calculations analogous to the proof of Theorem 3 it
follows that

f(ṙ,−ū) ∈ TS̃
c
	 arcsin

(
δ

ū2

)
, (24)

i.e., f(ṙ,−ū) satisfies a tightened sub-tangentiality condition
with respect to h̃. This can be seen in Fig. 5 by noting that
the gray curves (integral curves of the flow f(ṙ,−ū)) cross
the red curve (zero level set of h̃) at an angle.

We now demonstrate the benefit of robust barriers in a
simulation with sensor uncertainty: we assume that the state
can not be perfectly measured, and that the quality of state
measurements depends on the distance from the point [1,−1]
where a sensor is located (the measurement noise is Gaussian
with state-dependent variance). The estimated state and vari-
ance are given by a Kalman filter, and this is the basis for both
PD control and barrier enforcement. The Kalman filter gives a
Gaussian distribution which does not have finite support; we
therefore convert the Gaussian probability distribution into
a chance constraint by selecting an appropriate confidence
region X such that P[x ∈ X] ≥ 1−δ, and implement a robust
barrier for the state uncertainty set X via interval analysis.
This results in a probabilistic safety guarantee with low
probability of constraint violation. Here we chose δ = 0.05.

Fig. 6 shows simulations of the system with and without
noise, and with normal and robust barrier enforcement. As
can be seen, the safety constraint is violated for the normal
barrier in the presence of noise, but this does not happen with
the barrier that is robust to state uncertainty. Furthermore, the
barrier that is robust to state uncertainty adjusts its degree
of cautiousness depending on the state estimate quality—
the robot moves closer to the boundary when state estimates
are accurate, but stays further away when uncertainty is
increased, which showcases the advantage of controllers that
are aware of the interplay between safety and uncertainty.

VII. CONCLUSIONS AND FUTURE WORK

We have provided partial answers to the question of how
safety can be achieved in the presence of uncertainty. In
particular, we generalized viability to viability under state
uncertainty which applies in situations when the state esti-
mate is not perfectly known, and presented various results
regarding properties of state-robustly viable sets. Secondly,
we proposed a digital control implementation for enforcing
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Fig. 6. Barrier performance in different situations for an example where a robot tracks the dashed black line but is constrained to stay inside of the red
circle. When localization is noise-free (b), a barrier enforces the constraint h ≥ 0, but this fails in (c) where localization is subject to error, as shown in the
magnifications. However, enforcing a robust barrier constraint (8) implies safety even in the presence of noise (d). Furthermore, the degree of conservatism
is adaptive with respect to the noise magnitude: the robot moves closer to the boundary when it is close to the sensor location [1,−1] where the perception
quality is higher. Green circles show 95% confidence regions for the estimated state.

invariance of such sets, and gave conditions for such an
implementation to be equipped with correctness guarantees.

However, the introduction of state-robust viability opens
up additional new problems that remain to be addressed.
Firstly, there is no known general way to compute state-
robustly viable sets. The results in Section IV suggest that
algorithms for finding “standard” robustly viable sets under
certain conditions can be extended with robustness margins
to obtain sets that are viable under state uncertainty, but
it may also be possible to find state-robustly viable sets
directly. Secondly, the implementation in Section V relies
on reachability computations, which in general can not be
done exactly, and even if reachable sets can be computed
it is potentially challenging to find an input on Line 3
in Algorithm 1. In future work we aim to explore over-
approximations of reachable sets, and how robust inputs
can be synthesized via linear over-approximations of the
constraint sets analogously to the method in [16]. However,
both these steps involve additional over-approximations that
have to be accounted for in order for a result like Theorem 4
to be valid. This is all subject to future work, in conjunction
with hardware demonstrations of these ideas.
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