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Abstract—Most existing methods for guaranteeing safety
within robotics require time-consuming set-based computations,
which greatly limit their applicability to real-world systems. In
recent work, the authors have proposed a novel controlled set
invariance framework to tackle this limitation. The framework
uses a classical barrier function formulation, but replaces the
difficult task of computing large control invariant sets with the
more tractable tasks of (i) finding a controller that stabilizes
the system to a backup set, and (ii) verifying that this backup
set is invariant under the stabilizing controller. In this paper,
we build upon these results to show that the requirement of
proving invariance of the backup set can be relaxed at the
expense of providing weaker guarantees on the safety of the
system. This trade-off is shown to be favorable in practice,
as the theoretically weaker safety guarantees are sufficient in
many practical applications. The end result is a framework
with a computational complexity that scales quadratically. The
effectiveness of the approach is demonstrated in simulation on
a Segway.

I. INTRODUCTION

Safety is arguably one of the most critical issues hindering
the democratization of autonomous systems. Though safety
is fairly well understood at a theoretical level, solutions that
are both rigorous and practical have yet to be realized. In
this paper, a framework is proposed that can handle complex
high dimensional systems while still providing rigorous and
practical safety guarantees.

A system is commonly defined to be safe if its state never
leaves some chosen set, known as the safety set. This forms
the basis of Controlled Set Invariance [1]: finding a control
strategy that ensures that the system always remains in the
safety set. When a system is simple, or enjoys some particular
structure as in [2], analytical control strategies ensuring safety
can be derived. In general, however, it is very difficult to
directly find such a control strategy. This is due to the fact that
inside an arbitrary safety set, some subsets cannot be visited
by the system without eventually and inexorably leaving the
safety set. However, finding a safe control law becomes much
simpler if one is able to find a control invariant (also referred
to as a viable) subset of the safety set [3]—i.e. a set that the
system is capable of remaining within for all times, given
that it started from any initial condition inside of it.

The largest control invariant subset of the safety set is
called the viability kernel. Finding the viability kernel grants
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Fig. 1: Segway vehicle used for simulation.

maximum operational freedom to the system while ensuring
that it can remain in the safety set. As a result, computing
viability kernels has been the focus of a wide variety of
research over the years. Approaches that have been proposed
include: discretized solutions of Hamilton-Jacobi equations
[4], SOS optimization [5], sampling [6] and many others [7].
Unfortunately, these algorithms take substantial time to run
and can only handle high dimensional systems at the expense
of conservative results, leading to small operational regions
and poor performance for the system.

Given a control invariant set, safety of the system can then
be guaranteed by continuously filtering the control signal
in a minimally invasive way as proposed in [8] (see [9],
[10], [11] for applications). In [12] the authors proposed a
method to preserve the performance of this Safety Filtering
methodology without the need to explicitly find a large
control invariant set. This is achieved by considering a backup
controller and a small forward invariant backup set. From
these, it is possible to implicitly define a set for which the
backup controller is effective at safely driving the system
back to the backup set. This set is a control invariant subset of
the safety set by construction. Thus, by performing sensitivity
analysis around the backup trajectories, it is possible to use
this implicitly defined set to safely regulate the system.

In the present paper, the work in [12] is first summarized in
Sect. III and then extended by reformulating the reachability
requirement as a time based condition in Sect. IV. This
mitigates the need for the backup set to be forward invariant
under the backup controller, and in turn decouples the choice
of backup set and controller. In particular, this makes it
possible to leverage an approximation of an optimal backup
controller to provide near optimal safety filtering. This is
explored in Sect. V, where a neural-network approximation
of the optimal policy is implemented on a simulated Segway.
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Fig. 2: Safety Filtering Control Structure.

II. SAFETY FILTERING

A controller design task generally consists of finding a
control policy that maximizes some performance criteria
while ensuring safety of the system. However, finding a high
performing policy that is safe by construction is difficult. Sys-
tem performance and safety are often conflicting goals, and
guarantees on safety of the system generally become much
more challenging as complexity of the controller increases.
As an alternate paradigm, we consider the control structure
depicted in Fig. 2. The idea here is to decouple performance
from the task of enforcing hard safety constraints in such
a way that prioritizes the latter over the former. Given a
nominal controller that processes commands and focuses on
performing the desired task, a safety filter can be used to
preempt these desired inputs in a way that ensures safety of
the system when necessary (see [10], [9], [11] for application
examples). Ideally, the filter is minimally invasive to the
desired input —i.e. udes is left unmodified as long as the
signal is not compromising to system safety. Designing such
a filter is the goal of the proposed Controlled Set Invariance
framework.

A. Sub-tangentiality Condition

In this paper, we will consider continuous-time affine
control systems of the form

ẋ = f (x) + g (x)u. (1)

Assumption 1. The functions f and g defined on a compact
set X ⊂ Rn are continuously differentiable. The control
policies are restricted to be functions u : R+ × X −→ Rn
that are Lipschitz continuous in state over X and piecewise
continuous in time over R+. We furthermore define by
U ⊂ Rm the compact and convex set of admissible inputs
for this system, i.e. ∀x ∈ X and ∀t ∈ R+, u (t, x) ∈ U .

Under these assumptions, system (1) is guaranteed to have
a unique solution over a time interval [0, TX ] for any initial
condition x (0) ∈ Int (X) and with TX > 0 being the time
when solutions to (1) leave X [13].

Let’s denote the chosen set of states that we allow our
system to visit as the safety set S̃ ⊂ X and require that it
is compact. The goal of Active Set Invariance Filtering is
to ensure that the system will remain in S̃ for all time.
But as discussed above, if S̃ is chosen arbitrarily, then it will
likely contain states that cannot be visited without inexorably
leading to the system leaving the safety set at some future
time. Such states are unsafe in the sense that they do not
permit the system to remain inside of the safety set. Arbitrary
safety sets that have not been chosen with care are therefore
fundamentally unsafe as they almost always contain these

unsafe states. Let us now assume that we have access to a
non-empty set S ⊆ S̃ and that S is control invariant for (1).

Definition 1. A closed set S is control invariant for system
(1) if there exist a control policy u satisfying Assumptions 1
and an associate solution x for (1) such that x (t0) ∈ S =⇒
∀t ≥ t0, x(t) ∈ S.

Such a set is very interesting as it does not contain any
unsafe states. It is therefore possible to guarantee safety of
the system by ensuring the invariance of S.

Definition 2. A closed set S is invariant for system (1)
under a policy u satisfying Assumptions 1 if the solution to
(1) satisfies that x (t0) ∈ S =⇒ ∀t ≥ t0, x(t) ∈ S.

Having access to S thus makes the controlled set invariance
task much easier. First, it provides a sufficient condition for
the initial state to be safe—x (t0) ∈ S. Next, it allows
us to use a local characterization of invariance originally
provided by Nagumo in 1942 [14] and specialized here for
our application [3]. Let TS(x) denote the contingent cone to
S at x [3], [14].

Proposition 1. Given (1) subject to Assumptions 1, if for
almost all t ≥ 0 and for all x ∈ S:

f(x) + g(x)u (t, x) ∈ TS(x), (2)

then for all x (0) ∈ S there exist a solution to (1) that remains
in S for all times t > 0, i.e. S is weakly invariant under u.

Proof. The proof is a direct application of [3, Thm. 11.7.1]
to the case of differential equations. �

Remark 1. Because u has been assumed to be Lipschitz
continuous with respect to its second argument, this solution
is unique and (1) extends to the “strong” invariance of S.

From this proposition, it naturally follows that the regula-
tion map US : X ⇒ 2U defined by

US (x) , {u ∈ U | f(x) + g(x)u ∈ TS(x)} (3)

is sufficient to encode the safety of a control action. Indeed,
if the control signal u takes values in US for all times,
i.e. if u is a selection of US , then the sub-tangentiality
condition (2) if trivially verified, guaranteeing the safety of
the system. Hence, US(x) encodes the set of inputs that are
both admissible and safe with respect to the set S.

B. Regulation Map

Depending on the type of set considered, there are different
ways of expressing the contingent cone. Practical sets—as
defined in [14]—are suitable for most realistic cases and
makes it convenient to express the contingent cone. To de-
scribe such sets, ones only needs to consider Ns continuously
differentiable functions hi : Rn → R such that 1:

S = {x ∈ Rn | ∀i ∈ {1, . . . , r} , hi (x) ≥ 0}
∂S = {x ∈ S | ∃i ∈ {1, . . . , r} , hi (x) = 0} .

(4)

1See [14, p. 103] for all conditions under which S is practical.
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For such sets, the contingent cone can be expressed as

TS(x) = {z ∈ Rn | ∀i ∈ Act(x), ∇hi(x).z ≥ 0} , (5)

with Act(x) , {i ∈ {1, . . . , Ns} | hi(x) = 0}. In that case,
the sub-tangentiality condition (2) can be written as

TCi (x, u) , Lfhi(x) + Lghi(x)u (x) ≥ 0, (6)

for all x ∈ ∂S, and i ∈ Act(x). Here, Lfh and Lgh denote
the Lie derivatives of h along f and g respectively. The
regulation map then becomes:

US (x) =

Ns⋂
i=1

{
{u ∈ U | TCi (x, u) ≥ 0} , ifx ∈ ∂S
U, otherwise

(7)

The sub-tangentiality condition is however not very usable
in practice as it only defines a non-trivial set of admissible
inputs when the system is on the boundary of the safety
set (hence the notation), which leads to a discontinuous
regulation of the control input. One solution to smooth out the
regulated input that is explored in [3]—further developed in
[8]—is to consider a strengthening term in (6) and to impose
a new barrier condition:

BCi (x, u) , Lfhi(x)+Lghi(x)u (x)+αi (hi(x)) ≥ 0, (8)

for all x ∈ S, i ∈ {1, . . . , Ns} and with the strengthening
extended class K functions αi : R → R. This barrier
condition defines a new sub-regulation map US of admissible
inputs:

US (x) , {u ∈ U | ∀i ∈ {1, . . . , Ns} , BCi (x, u) ≥ 0} (9)

and because for all x ∈ S, US (x) ⊆ US (x), the condition
also implies forward invariance of S. Note that because in
most cases US (x) ⊂ US (x) for some x ∈ S, finding a
control invariant set is not necessarily sufficient to ensure
that US does not take empty values. One has to be careful
and choose the strengthening functions αi accordingly, as
discussed in [9], [3], which is always possible under the
present assumptions.

C. Safety Filter as a Quadratic Program

In light of these results, it is now possible to construct
a safety filter (cf. Fig. 2) that can guarantee safety of the
system. Given a desired input udes provided by a nominal
controller, enforcing safety in a minimally invasive way
can be naturally formulated with the following quadratic
program:

Safety Filter QP

uact(t, x) = argmin
u

‖udes (t)− u‖2

s.t. u ∈ US (x)
(10)

For any x ∈ X and t ∈ R+, (10) has a unique solution,
so uact is a well defined single-valued function. Assuming
that udes is piecewise continuous, the Lipschitz continuity
in state of the resulting control policy uact can be verified.

For more information on the matter we refer the reader to
[15], [3], [16] but note that it is of little concern in practice.
Finally, because S is control invariant and Assumptions 1
hold, US has non-empty compact convex values, (10) is
indeed a convex program which is always feasible, which
makes its implementation realizable.

Ideally, one would want to use the largest control invariant
subset S of S̃ (i.e. the viability kernel) to maximize the
operational freedom of the system. Finding an explicit repre-
sentation of the viability kernel is however notoriously hard—
just as hard as finding an optimal closed-loop controller [4].
Consequently, this approach has been restricted to low dimen-
sional systems in practice (except in the unrealistic scenario
where U = Rm). The following section demonstrates an
approach for accessing a large control invariant subset of
S̃, while only requiring the explicit computation of a small
control invariant subset of S̃—which is comparatively easy.

III. IMPLICIT SAFETY FILTERING

The key idea of our approach it to propose a way for sys-
tematically and implicitly defining a control invariant subset
of S̃. The implicit set will be defined as the collection of
states such that a backup strategy can safely steer the system
to a backup set. This idea is not new, but to our knowledge,
it has only been developed in a context where switching
between the backup and nominal policy is performed (cf.
[17], [18]). In this section we summarize the results in [12]
and show how this idea can be used to make the Active Set
Invariance Filtering Framework of Sec. II more tractable.

A. Implicit Control Invariant Set

Let U be the set of all continuously differentiable backup
control laws taking values in the set of admissible inputs:
ub : Rn → U . Under Assumptions 1, we know that for all
ub ∈ U there exists a solution to (1) that is unique and defined
for all times when solutions to (1) stay in X . Therefore,
one can define φub : [0, TX ] × X → Rn to be the flow
of (1) under the control law ub. Under these assumptions,
the map φub

t : X → Rn defined by φut (x) , φu (t, x)
is a homeomorphism of X (cf. [19]) for all t ∈ [0, TX ].
We will denote by Sb ⊆ S̃ the non-empty compact backup
set as depicted in Fig. 3. We furthermore assume that Sb
is practical and can be represented as the super level set of
smooth functions hb,j : Rn → R, j ∈ {1, . . . , Nb}.

We can now define the implicit set more precisely.

Definition 3. We define the safe backward image of the
backup set to be the set Sub

T , R
ub

T ∩Ω
ub

T , where

Rub

T , {x ∈ X | φ
ub

T (x) ∈ Sb} , (11)

is a set encoding the reachability of the backup set under the
backup trajectory and

Ωub

T ,
{
x ∈ S̃ | ∀t ∈ [0, T ] , φub

t (x) ∈ S̃
}
, (12)

is a set encoding the safety of the corresponding backup
trajectory.
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(b) The backup set is forward invariant under ub.

��
 ��

��

�0

��(�0)
 ��

�̃

(c) The backup set is not forward invariant under ub.
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(d) The backup set is not forward invariant under ub.

Fig. 3: Safety Set in red, Backup Set in black, and Implicit Control Invariant set in blue. The backup trajectory under the
backup control law ub is in green.

The following propositions are stated without proofs as
they follow directly from the ones in [12].

Proposition 2. If Sb is invariant under ub ∈ U then for all
T ∈ R+, Sub

T is a subset of S̃ invariant under ub.

Remark 2. Note that in this case, Sub

T is never empty as it
always contains Sb.

Proposition 3. If Sb is invariant under ub ∈ U then for all
T ∈ R+:

Ωub

T =
⋂

t∈[0,T ]

{x ∈ X | hi ◦ φub
t (x) ≥ 0, i ∈ {1, . . . , Ns}} ,

and

Rub

T = {x ∈ X | hb,j ◦ φub

T (x) ≥ 0, j ∈ {1, . . . , Nb}} .

It trivially follows from these 2 propositions that Sub

T is
a control invariant subset of S̃, and so it can be used to
define a non-empty sub-regulation map USub

T
. In [12] it is

finally shown that the size of Sub

T is—loosely speaking—
increasing with both T and the performance of ub in driving
the system back to Sb. Therefore, it is now clear how we
have constructed large control invariant sets Sub

T from a small
control invariant set Sb as depicted in Fig. (3a).

B. Implicit Safety Filter

In order to use a Safety Filter, one must be able to evaluate
US (x). This is easy if S has an explicit representation, which
is why so much effort has been focused on finding such
a representation. In this case however, Sub

T is defined as
a function of φub

t for which we do not have an explicit

representation, hence the implicit nature of Sub

T . This is
however not an issue as in practice, numerical methods have
to be used to solve the optimization problem (10) at each
sampled (tk, x (tk)) pair anyway. Because it is possible to
use numerical methods to evaluate USub

T
at each sampled

state, this approach turns out to be satisfactory in practice.
The sub-regulation map USub

T
evaluated at a given state x0

is equal to the set of u ∈ U such that{
∇hi (xtb)Dφ

ub
tb

(x0) f̃ (x0, u) + αi (hi (xtb)) ≥ 0

∇hb,j (xT )Dφub

T (x0) f̃ (x0, u) + βj (hb,j (xT )) ≥ 0

with i ∈ {1, . . . , Ns}, j ∈ {1, . . . , Nb}, tb ∈ [0, T ], xt ,
φub
t (x0) and f̃ (x0, u) , f(x0) + g(x0)u.
One caveat here is that the image of USub

T
is formed

by an uncountable set of linear constraints, which elevates
the Safety Filter into the class of robust optimization prob-
lems. However, by integrating (1) forward in the interval
[0, T ], φub

tb
(x0) can be numerically evaluated at discrete

times {tb,0, . . . , tb,Nt
}. It is therefore possible to approximate

USub
T

(x0) by considering the countable set of constraints at
these different times tb,k—the more points being considered
the tighter the approximation. Interior point solvers are good
at handling a large number of constraints which makes
this type of approximation indeed tractable. To compute the
Jacobian Dφub

tb
(x0), one only needs to integrate a sensitivity

matrix of size n2 along the backup trajectory of (1) (cf. [20],
[12] for more details).

IV. FINITE TIME SAFETY GUARANTEES

Thus far, the backup policy and the backup set cannot be
chosen independently, as the former has to be invariant under
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the latter. This fact inhibits the scalability of the proposed
approach. In this section, we present an extension to this
approach that allows for independent selection of the backup
controller and backup set. As will be discussed, this comes
at the expense of weaker safety guarantees.

A. Reformulation of the Reachability Constraint

The main idea presented here is to relax the reachability
constraint for Rub

T . For simplicity, we will restrict ourselves
to backup sets that can be represented as the upper level-set
of a single function hb twice differentiable. This restriction
can be lifted by considering a Safety Filter that is a mixed-
integer QP. Let us now define the notion of time to safety.

Definition 4. Given a backup control law ub ∈ U , the time
to safety Tb : X → R is given by

Tb(x) = min {t ≥ 0 : hb (φ
ub
t (x)) = 0} . (13)

When x ∈ Sb, we choose Tb (x) = 0, and when x /∈ Sb and
a solution to (13) does not exist, we choose Tb (x) = +∞.

Consider now the set Rub

T given by the closure:

Rub

T , {x ∈ X | 0 < Tb(x) ≤ T}, (14)

with T > 0 and ub ∈ U . The interest of considering such a
set becomes clear when one realizes that if Sb is not invariant
under ub, then Sb is not a subset of Rub

T (cf. [12, Prop. 2]
and Fig. (3c)). This makes the set Rub

T unusable as it is not
guaranteed that Rub

T ∩ S̃ 6= ∅ and that Sub

T is not empty.
The set Rub

T on the other hand will at least contain part of
the boundary Sb (provided the backup set is not completely
repulsive) and grow monotonically with T (cf. Fig. (3d)).

B. Augmented Regulation Map

As in Sec. 3, we would like to regulate safe solutions using
the sub-regulation map US ; now however utilizing the set
Rub

T . The barrier condition (8) for set Rub

T evaluated at a
state x0 ∈ Rub

T for a given backup control law ub ∈ U is
given by

−∇Tb (x0) f̃ (x0, u) + α (T − Tb (x0)) ≥ 0, (15)

where f̃ (x0, u) , f(x0)+ g(x0)u. As demonstrated in [21]:

∇Tb (x0) = −
∇hb (x) ·Dx (x0)
∇hb (x) · f̃ (x, ub (x))

, (16)

with x , φub

Tb(x0)
. One will immediately notice that this

gradient is only defined when ∇hb (x) · f̃ (x, ub (x)) does
not vanish. States for which this happens should therefore be
avoided to allow for the regulation of safe solutions using US
with Rub

T . Let us therefore consider the following extension
of the safe backward image of the backup set

Sub

T = Rub

T ∩Ω
ub

T ∩ C
ub

T , (17)

with
Cub

T ,
{
x0 ∈ Rub

T | c̃os (x0) ≥ εb
}
, (18)

where εb > 0 is a small constant, and

c̃os (x0) ,
∇hb (x) f̃ (x, ub (x))

‖∇hb (x)‖
∥∥∥f̃ (x, ub (x))∥∥∥ . (19)

Proposition 4. If Rub

T 6= ∅, then for all x0 ∈ Sub

T \Sb, there
exist strengthening functions αi such that U

S
ub
T

(x0) 6= ∅.

Proof. Note that since ∇Tb is not defined on ∂Sb, we need
only consider states in Sub

T \ Sb. The map U
S

ub
T

evaluated at

a given state x0 ∈ Sub

T \Sb is equal to the set of u ∈ U such
that
∇hi (xtb)Dφ

ub
tb

(x0) f̃ (x0, u) + αi (hi (xtb)) ≥ 0

−∇Tb (x0) f̃ (x0, u) + β (T − Tb (x0)) ≥ 0

∇c̃os (x0) f̃ (x0, u) + γ (c̃os (x0)) ≥ 0

(20)

with i ∈ {1, . . . , Ns}, tb ∈ [0, Tb (x0)], xt ,
φub
t (x0) and f̃ (x0, u) , f(x0) + g(x0)u. First, as
Dx (x0) f̃ (x0, ub (x0)) = f̃ (x, ub (x)), we have

∇Tb (x0) f̃ (x0, ub (x0)) = −1. (21)

This is fairly intuitive as (21) is the time derivative of
the time to safety when the system is evolving along the
backup trajectory. Second, because for all tb ∈ [0, Tb (x0)],
x
(
φub
tb

(x0)
)
= x (x0),

∇c̃os (x0) f̃ (x0, ub (x0)) = 0. (22)

Finally, because x0 ∈ Sub

T ⊃ Ωub

T , for all tb ∈ [0, Tb (x0)],
φub
tb

(x0) ∈ S̃. By continuity of all of the functions involved,
αi can be chosen (cf. [9], [8]) such that for all x0 ∈ Sub

T :

∇hi (xtb)Dφ
ub
tb

(x0) f̃ (x0, ub) + αi (hi (xtb)) ≥ 0.

Thus all conditions in (20) can be simultaneously satisfied
in Sub

T by choosing u (x0) = ub (x0). Hence U
S

ub
T

is well

defined and non-empty over all of Sub

T . �

Remark 3. The functions β and γ can be chosen as arbitrary
extended class K functions.

Remark 4. Computing ∇c̃os (x0) requires the evaluation of
the Hessian of hb at x0, otherwise U

S
ub
T

can be evaluated
using the same technique as in Sec. III-B without any change
in complexity of the algorithms. Also note that this new
formulation of the sub-regulation map creates additional
algorithmic challenges in reliably finding x. The details of
these numerical issues are outside the scope of this paper.

C. Weaker but Practical Safety Guarantees

Let us now consider the guarantees that can be attained
when regulating the system in Sub

T using U
S

ub
T

.

Theorem 1. If Rub

T is not empty, x (0) ∈ Sub

T , and for almost
all t ∈ R+, u (t, x (t)) ∈ U

S
ub
T

, then there exist Ts ∈ [0,+∞]

such that for all t ∈ [0, Ts), φ
u(t,x(t))
t (x) ∈ Sub

T . Further-
more, if Ts < +∞, φu(t,x(t))Ts

(x) ∈ Sb.
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Proof. The proof follows from [3, Prop. 4.3.7]. Indeed, from
Prop. 4 we know that U

S
ub
T

is non-empty on Sub

T \ Sb so
the sub-tangentiality condition is satisfied on the boundary
of that set. Hence the system will never cross the boundary
of Sub

T \Sb. So if the system ever leaves the compact set Sub

T

it will be through Sub

T ∩ Sb which is never empty. �

Concretely, this means that regulating the inputs using
U
S

ub
T

(with safety filter (10) for example) will guarantee that,

if the system starts in Sub

T but outside of Sb, it will either
stay in S̃ and within reach the backup set Sb within a finite
time T , or reach the backup set in finite time (cf. Fig. 3d).
These guarantees may seem weak compared to the ones in
(III), but they are indeed very relevant in practice.

For autonomous systems for example, the priority is (al-
most) always given to the avoidance of human casualty over
the integrity of the system. Being able to safely terminate the
system is often all that is required (cf. [22] for more details in
the case of UAVs). For commercial transoceanic flights, being
able to safely reach an airfield within a set amount of time
is the safety criterion used by the Federal Aviation Admin-
istration (cf. ETOPS). In this case, the modality of landing
the plane—what happens once the system has reached the
backup set—can be handled separately.

Finally, it will not be proven here but it is easy to verify
that

(
Rub

T ∪ Sb
)
⊇ Rub

T , and that when Sb is forward invari-

ant under ub,
(
Rub

T ∪ Sb
)

= Rub

T (cf. Fig. 3b). Therefore,
when Sb is forward invariant (and εb small enough), the
present approach yields the original safety guarantees of
Sec. (III), i.e. the system remains in S̃ for all times. Hence
the soundness of this approach provides weak but practical
safety guarantees without the challenge of having to verify
the forward invariance of the backup set under ub, but also
provides strong safety guarantees when the backup set is
actually forward invariant under ub (cf. Fig. 3).

V. IMPLEMENTATION ON A SEGWAY

The performance of the safety filter—in the sense of least
restrictive filtering—is directly correlated to the size of the
safe backward image (SBI) of the backup set: the larger this
region is, the less intrusive the safety filter will be to the
nominal control input udes. As discussed in [12], backup
controllers that solve an optimal control problem (OCP)
whose cost is related to reaching the backup set quickly are
good at maximizing the size of the backward image of the
backup set. While there exist software to solve this problem
programmatically, doing so introduces a heavy computational
burden, often making the formulation intractable online.

An attractive solution to this issue is to solve the OCP
offline and to learn an approximate policy over the safety set
using a neural network (NN). At the expense of introducing
some conservatism in the filter compared to a pure online
implementation of the OCP, this function approximation is
much more computationally efficient. However, verifying the
forward invariance of the backup set for such controller
parameterization is difficult. So by using the reformulation

of the framework proposed in this paper, it is possible to
leverage the performance benefit of having a near optimal
backup policy without having to solve the OCP online—or
verify that the NN backup controller yield forward invariance
of the backup set. In this section, we first demonstrate the
effectiveness of using a NN to learn a near-optimal backup
policy, and then present an simulated implementation of the
framework using this NN.

A. Neural Network Approximation of the Optimal Backup
Controller

Consider a planar model of the two wheeled inverted
pendulum (commonly referred to as a Segway) in Fig. 1. The
state vector is composed of the following variables: position
(p), velocity (ṗ), pitch angle (ψ) and pitch rate (ψ̇), and the
input (u) is taken as the voltage applied to the motors. The
equations are derived using classical Lagrangian mechanics
assuming no-slip between the ground and the wheels and a
first order model of a DC motor. The resulting formulation
is control affine.

Our controller is derived from solutions to the following
optimal control problem, stated in continuous time:

Optimal Control Problem (OCP)

u∗(x) = argmin
u∈U

tf +
∫ tf
0
xTQx+Ru2dt

s.t. ẋ = f(x) + g(x)u
x(0) = x0, x(tf ) = 0
x ∈ S

(23)

where the state and input cost matrices are Q = 0.02I4 and
R = 0.01 respectively, and the input is bounded to the range
U = [−20, 20]. The goal of this controller is to drive the
vehicle to the origin while remaining in the safety set,

S = {x ∈ R4 : |p| ≤ 3, |ṗ| ≤ 3, |ψ| ≤ π
4 , |ψ̇| ≤ π}. (24)

Note that penalizing the final time tf conditions the solution
to reach its goal under shorter time horizon. However, the
numerical solution to a purely time optimal formulation tends
to result in highly non-smooth output signals that border
constraint boundaries. As such, state and input penalties
are added to the cost in order to make the solutions more
amenable to functional approximation.

The OCP (23) is solved using GPOPS-II [23] software
with the “hp-PattersonRao” mesh method at a tolerance of
0.01. Initial states for each trajectory are generated ran-
domly within the bounds of S̃. A total of 816 trajectories
are considered, comprising approximately 49000 trajectory
points. The trajectory and control data are to train a network
N (x) : R4 7→ R consisting of a single hidden layer with
100 nodes. Hyperbolic tangent sigmoid (tansig) activation
functions are used in this layer. The training process consists
of 280 epochs with the “Levenberg–Marquardt” training
algorithm, resulting in a mean squared error (MSE) of 2.96.

Sampled initial conditions are taken to characterize a level
slice of the SBI for (i) the computed solution to the OCP (23),
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(ii) the NN approximation N , and (iii) an LQR controller
with state and input cost matrices equal to those defined in
(23) (see Fig. 4). In this scenario, the initial position and
angle of the vehicle are fixed at zero x, ψ = 0, and a set of
initial velocity perturbations ẋ0, ψ̇0 are given in the bounds
of S. The backup set is defined by,

hb , 0.12 − (p/3)2 − (ṗ/3)2 − (4ψ/π)2 − (ψ̇/π)2, (25)

and each controller is integrated over a horizon of T = 5s.
The SBI for the LQR and NN controllers are estimated by

considering a 250×250 grid of initial velocity perturbations.
The SBI boundaries indicated in Fig. 4 separate the sets of
sampled initial conditions for which a safe backup policies
could always be found (interior) from the sets of sampled
initial conditions where safe backup policies were never
found (exterior). For the LQR controller, 21.0% of the
samples in fall into the SBI. The NN controller extends
this to cover 67.3% of the sample points. The increased
performance of the NN can be attributed to both its suitability
to the nonlinear dynamics, and the explicit consideration of
state constraints in the training process.

We may also compare the performance of the approxi-
mated controller to the returned solution to the OCP directly.
Fig. 4 shows the result of a number of GPOPS-II evaluations
corresponding to a set of uniformly distributed initial condi-
tions in this domain. We see that many feasible points extend
beyond the SBI of N , in theory indicating that this region
could be extended with more data and a larger network.
Infeasible outputs arise when either the program fails to
return a solution, or experiences numerical issues resulting in
a solution that violates one of the constraints. In contrast to
the controllers previously considered, the numerical solution
to the OCP does not appear to have a clear boundary for its
SBI. Solutions may fail in any subset of the domain. The NN
approximation excludes these failed trials, which effectively
regularizes the output of the solver. Hence in addition to
providing a more scalable approach, the learned control
strategy is seen to demonstrate a comparative improvement
in numerical reliability over its operational domain.

B. Simulation Results

The proposed framework has been implemented in C++
and tested on a simulator of the Segway depicted in Fig.
1. For the integration of the backup trajectory, the ODEINT
library [24] was used with the Dormand-Prince 5 adaptive
stepper scheme. For solving the resulting Quadratic Program,
the OSQP solver [25] was used.

The simulation consists of a Segway starting near the
origin of the state space. The desired input is set to be a
constant udes = 15V , which if left unaltered, will quickly
drive the system out of the safe set. The maximum time to
safety is chosen to be T = 3s at first, and is then changed to
T = 6s after 2s of simulation. As can be seen in Fig. 5, the
system never leaves the safety set, but also does not come
back to the backup set—it stabilizes at an equilibrium point
near the boundary of Sub

T . In Fig. 6, we can see udes being
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Fig. 4: Comparison of the safe backward images (SBI) of
Sb when using an LQR, solving the optimal control

problem (OCP), and using a NN regression of the OCP.

filtered within the set of admissible inputs, as well as the
time to safety and the safety of the backup trajectory trading
place as the active constraint in the SF.

For reference, when T = 6s and the integration step for
the backup trajectory is 0.01s, the average computation time
of each SF sampling iteration is around 600us on a laptop
with an i7-6820HQ processor at 2.7GHz.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel approach is presented for guarantee-
ing the safety of a system via minimally invasive filtering of
a nominal control output. In contrast to existing approaches,
this method does not require the difficult task of explicitly
computing a control invariant safety set. Instead, the safe
region of operation is implicitly defined by the ability of
an arbitrary backup control strategy to safely reach a chosen
backup set—from which all the computation necessary to run
a Safety Filter can be performed online. The practicality of
this is framework is demonstrated through a simulated case
study, where a neural network based backup controller is used
to ensure safety of a Segway. The authors are now focusing
on the hardware implementation of the proposed method.
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