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ABSTRACT There are two main approaches to safety-critical control. The first one relies on computation
of control invariant sets and is presented in the first part of this work. The second approach draws from the
topic of optimal control and relies on the ability to realize Model-Predictive-Controllers online to guarantee
the safety of a system. In the second approach, safety is ensured at a planning stage by solving the control
problem subject for some explicitly defined constraints on the state and control input. Both approaches have
distinct advantages but also major drawbacks that hinder their practical effectiveness, namely scalability for
the first one and computational complexity for the second. We therefore present an approach that draws
from the advantages of both approaches to deliver efficient and scalable methods of ensuring safety for
nonlinear dynamical systems. In particular, we show that identifying a backup control law that stabilizes
the system is in fact sufficient to exploit some of the set-invariance conditions presented in the first part
of this work. Indeed, one only needs to be able to numerically integrate the closed-loop dynamics of the
system over a finite horizon under this backup law to compute all the information necessary for evaluating
the regulation map and enforcing safety. The effect of relaxing the stabilization requirements of the backup
law is also studied, and weaker but more practical safety guarantees are brought forward. We then explore
the relationship between the optimality of the backup law and how conservative the resulting safety filter
is. Finally, methods of selecting a safe input with varying levels of trade-off between conservatism and
computational complexity are proposed and illustrated on multiple robotic systems, namely: a two-wheeled
inverted pendulum (Segway), an industrial manipulator, a quadrotor, and a lower body exoskeleton.

INDEX TERMS Safety-critical control, nonlinear control, real-time optimization, optimal control, viability
theory, barrier functions.

I. INTRODUCTION
Safety is arguably one of the most critical issues hindering the
democratization of autonomous systems. Even though safety
is fairly well understood at a theoretical level, solutions that
are both rigorous and practical have yet to be realized. In this
paper, a framework is proposed that can handle complex
high dimensional systems while still providing rigorous and
practical safety guarantees.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wonhee Kim .

A system is commonly defined to be safe when its state
never leaves some chosen set, known as the safety set. This
forms the basis of Controlled Set Invariance [1]: finding
a control strategy ensuring that the system always remains
in the safety set. When a system is simple or enjoys some
particular structure as in [2], analytical control strategies
ensuring safety can be derived. In general, however, it is very
difficult to directly find such a control strategy. This is due
to the fact that inside an arbitrary safety set, some subsets
cannot be visited by the system without it eventually and
inexorably leaving the safety set. However, finding a safe
control law becomes much simpler if one is able to find a
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control invariant (also referred to as a viable) subset of the
safety set [3]—i.e. a set that the system can entirely explore
while remaining capable of staying inside it for all times.

The largest control invariant subset of the safety set is
called the viability kernel. Finding the viability kernel grants
maximum operational freedom to the system while ensuring
that it can remain in the safety set. As a result, computing
viability kernels has been the focus of a wide variety of
research over the years. Approaches that have been proposed
include: discretized solutions of Hamilton-Jacobi equations
[4], SOS optimization [5], sampling [6] and many others
[7]. Unfortunately, these algorithms take substantial time to
run and can only handle high dimensional systems at the
expense of conservative results, leading to small operational
regions and degraded performances for the system. Nonethe-
less, given a control invariant set, safety of the system can
then be easily guaranteed by continuously filtering the control
signal in a minimally invasive way as proposed in [8] (see
[9]–[11] for applications).

However, computing viable sets is only one possible
approach for ensuring safe operation of a system. Another
popular class of methods relies on predicting systems’ trajec-
tories to guarantee safety. A backup strategy is chosen, and
the trajectory of the system under that backup control law is
computed online at every instant. Guaranteeing safety of the
system can then be achieved by switching between the nomi-
nal and backup controller intelligently based on the safety of
the backup trajectory [12], [13]. Multiple backup strategies
can also be chosen from on the fly with a same underly-
ing switching strategy [14], [15]. Furthermore, the backup
strategy can be determined on the fly so as to adapt to the
situation and be as minimally invasive as possible [16]–[18].
This last methodology is at the heart of path planning and
optimal control research, but even though it potentially yields
the best system performances, its complexity made practical
applications favor the simpler alternatives discussed before.

In this work, we propose to unify both set-based and
trajectory-based approaches and show that they are really just
two sides of the same coin.We present a safety critical control
framework that combines the strengths of both approaches
to deliver efficient and scalable methods of ensuring safety
for complex dynamical systems. First, we present the safety-
filtering methodology from a set-based perspective. We then
show how it is possible to systematically define a control-
invariant subset of the safety set, namely a Safe Backward
Image (SBI) of the backup set. This set is defined implicitly
from a backup control law and a backup set, and the imple-
mentation details of a safety filter in that context are then pre-
sented. We then show that one can relax the stability require-
ment on the backup control law and still get meaningful albeit
weaker safety guarantees. In a following section, we explore
the relation between optimality of the backup control law
and size of the Safe Backward Image. In the case of linear
systems we show that it is possible to implement and couple a
Model Predictive Controller and a Safety Filter to obtain the
largest possible Safe Backward Image. Finally, methods of

FIGURE 1. Safety filtering control structure.

selecting a safe input with varying levels of trade-off between
conservativeness and computational complexity are proposed
and illustrated on relevant systems and applications, namely:
a two-wheeled inverted pendulum (Segway), an industrial
manipulator, a quadrotor, and a lower body exoskeleton.

II. SAFETY FILTERING
A controller design task generally consists of finding a con-
trol policy that maximizes some performance criteria while
ensuring safety of the system. However, finding a high per-
forming policy that is safe by construction is difficult. System
performance and safety are often conflicting goals, and guar-
antees on safety of the system generally become much more
challenging to get as complexity of the controller increases.
As an alternative paradigm, we consider the control structure
depicted in Fig. 1. The idea here is to decouple performance
from enforcing hard safety constraints in such a way that
prioritizes the latter over the former. Given a nominal con-
troller that processes commands and focuses on performing
the desired task, a safety filter can be used to preempt these
desired inputs in a way that ensures safety of the systemwhen
necessary (see [9]–[11] for application examples). Ideally,
the filter is minimally invasive to the desired input, i.e. udes
is left unmodified as long as the signal is not compromising
to system safety. Realizing such a filter is the goal of the
proposed Controlled Set Invariance framework.

A. SUB-TANGENTIALITY CONDITION
In this paper, we will consider continuous-time control affine
dynamical systems of the form

ẋ = f (x)+ g (x) u. (1)

Assumption 1: The functions f and g defined on a compact
set X ⊂ Rn are continuously differentiable. The control
policies are restricted to be functions u : R+ × X −→ Rn

Lipschitz continuous in state over X and piecewise continu-
ous in time over R+. We furthermore define by U ⊂ Rm the
compact and convex set of admissible inputs for this system,
i.e. ∀x ∈ X and ∀t ∈ R+, u (t, x) ∈ U .
Under these assumptions, system (1) is guaranteed to have

a unique solution over a time interval [0,TX ] for any initial
condition x (0) ∈ Int (X) and with TX > 0 being the time
when solutions to (1) leave X [19].
Let us denote the chosen safety set by S ⊂ X and require

that it is compact. We will say that the system is safe as long
as its state is in S. The goal of Active Set Invariance Filtering
is to ensure that the system remains safe for all time. But
as discussed above, if S is chosen arbitrarily, it will contain
states that cannot be visited without inexorably leading to
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the system leaving the safety set—namely dangerous states.
Arbitrary safety sets that have not been chosen with care
are therefore fundamentally dangerous as they almost always
contain dangerous states. Let us now assume that we have
access to a non-empty set S ⊆ S and that S is control invariant
for (1).
Definition 1: A closed set S ⊂ X is control invariant

for system (1) if there exists a control policy u satisfying
Assumptions 1 and an associate solution x for (1) such that
x (t0) ∈ S H⇒ ∀t ≥ t0, x(t) ∈ S.
A control invariant set S is therefore very interesting as it does
not contain any dangerous states. It is therefore possible to
guarantee safety of the system by only ensuring the invariance
of S. We will therefore call any control invariant subset of the
safety set a safe set.
Definition 2: A closed set S ⊂ X is invariant for system

(1) under a policy u satisfying Assumptions 1 if the solution
to (1) satisfies that x (t0) ∈ S H⇒ ∀t ≥ t0, x(t) ∈ S.
Having access to S thus makes the controlled set invariance
task much easier. Firstly, it provides a sufficient condition for
the initial state to not be dangerous—x (t0) ∈ S. Secondly
it allows us to use a local characterization of invariance
originally provided by Nagumo in 1942 [20] and specialized
here for our application [3]. Let TS (x) denote the contingent
cone to S at x [3], [20].
Proposition 1: Given (1) subject to Assumptions 1, if for

almost all t ≥ 0 and for all x ∈ S:

f (x)+ g(x)u (t, x) ∈ TS (x), (2)

then for all x (0) ∈ S there exists a solution to (1) that remains
in S for all times t > 0, i.e. S is invariant under u.

Proof: The proof is a direct application of [3, Thm.
11.7.1] to the case of differential equations. �

From this proposition, it naturally follows that the regula-
tion map US : X ⇒ U defined by

US (x) , {u ∈ U | f (x)+ g(x)u ∈ TS (x)} (3)

encodes capture the safety of the system at an input level.
Indeed, if the control signal u takes values in US for all
times, i.e. u is a selection of US , then the sub-tangentiality
condition (2) is trivially verified, guaranteeing the safety of
the system.

B. SUB-REGULATION MAP
Depending on the type of set considered, there are differ-
ent ways of expressing the contingent cone. Practical sets—
as defined in [20]—are suitable for most realistic cases
and makes it convenient to express the contingent cone.
To describe such sets, ones only needs to consider Ns con-
tinuously differentiable functions hi : Rn

→ R such that 1:

S =
{
x ∈ Rn

| ∀i ∈ {1, . . . ,Ns} , hi (x) ≥ 0
}

∂S = {x ∈ S | ∃i ∈ {1, . . . ,Ns} , hi (x) = 0} . (4)

1See [20, p. 103] for all conditions under which S is practical.

For such sets, the contingent cone can be expressed as

TS (x) =
{
z ∈ Rn

| ∀i ∈ Act(x), ∇hi(x) · z ≥ 0
}
, (5)

with Act(x) , {i ∈ {1, . . . ,Ns} | hi(x) = 0}. In that case,
the sub-tangentiality condition (2) can be written as

TCi (x, u) , Lf hi(x)+ Lghi(x)u ≥ 0, (6)

for all x ∈ ∂S, and i ∈ Act(x). Here, Lf h and Lgh denote the
Lie derivatives of h along f and g respectively. The regulation
map then becomes:

US (x) = {u ∈ U | ∀i ∈ Act(x), TCi (x, u) ≥ 0} (7)

The sub-tangentiality condition is however not very prac-
tical as it only defines a non-trivial set of admissible inputs
when the system is on the boundary of S, i.e. Act(x) = ∅
if x /∈ ∂S, which leads to a discontinuous regulation of
the control input. Furthermore, it is not defined outside of
S which makes any real implementation actually impossible.
One solution to smooth out the regulated input and make
the safety filter implementation possible is explored in [3]—
further developed in [8]. It consists in considering a strength-
ening term in (6) and to impose a barrier condition:

BCi (x, u) , Lf hi(x)+ Lghi(x)u+ αi (hi(x)) ≥ 0, (8)

for all x ∈ S, i ∈ {1, . . . ,Ns} and with the strengthening
extended class K functions αi : R → R. This barrier
condition defines a sub-regulation map US of admissible
inputs:

US (x) , {u ∈ U | ∀i ∈ {1, . . . ,Ns} ,BCi (x, u) ≥ 0} (9)

and because for all x ∈ S,US (x) ⊆ US (x), the condition also
implies forward invariance of S. Note that because in most
cases US (x) ⊂ US (x) for some x ∈ S, finding a control
invariant set is not necessarily sufficient to ensure that US
does not take empty values. One has to be careful and choose
the strengthening functions αi accordingly, as discussed in
[3], [9], which is always possible under the present assump-
tions.

C. SAFETY FILTER AS A QUADRATIC PROGRAM
In light of these results, it is now possible to construct
a safety filter (cf. Fig. 1) that can enforce safety of the
system synergistically with the performance goals of the
system. Given a desired input udes provided by a nominal
controller, enforcing safety in aminimally invasive way can
be naturally formulated as the following quadratic program:

Safety Filter QP

uact(t, x) = argmin
u
‖udes (t)− u‖2

s.t. u ∈ US (x) (10)

If S is control invariant and Assumptions 1 hold, US has non-
empty compact convex values, but it is not necessarily the
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case for US . As discussed before, this can be addressed by
either choosing a control invariant set S and choosing the
αi functions accordingly so as to ensure that US is never
empty, or by first choosing the αi functions and then com-
puting a set S over which US is never empty.

Alternatively, given a control invariant set S, bar-
riers conditions can be used along with its smooth-
ing action without having to carefully choose the
αi by using the following safety filter formulation:

Relaxed Safety Filter QP

uact(t, x) = argmin
u,α

‖udes (t)− u‖2 +Mα2

s.t. Lf hi(x)+ Lghi(x)u+ αhi(x) ≥ 0

α ≥ 0

u ∈ U (11)

This way, the slowing down effect of a barrier condition can
be chosen and followed if possible, but otherwise relaxed in
way that still ensures that the resulting filter input is in US .
Ideally, one would want to use the largest control invari-

ant subset S of S (i.e. the viability kernel) to maximize
the operational freedom of the system. Finding an explicit
representation of the viability kernel is however notoriously
hard—just as hard as finding an optimal closed-loop con-
troller [4]. Consequently, this approach has been restricted to
low dimensional systems in practice. We will now show how
it is possible have access to a large control invariant subset
of S while only having to explicitly compute a small control
invariant subset of S—which is comparatively easy.

III. IMPLICIT SAFETY FILTERING
The key to our approach is to realise that, in practice,
an explicit representation of a control invariant set S is not
necessary. If S is practical and can be defined as in (4), then
one only needs to be able to numerically evaluate hi(x) and
∇hi(x) for any given state x ∈ S quickly enough for the
safety filter to run in real-time. We therefore propose a way
to systematically define a control invariant subset of S.

A. IMPLICIT CONTROL INVARIANT SET
Our approach for defining such a set is inspired by [21]. The
idea is to start with a ‘‘seed of safety’’: the backup set, that is
easy to compute explicitly and provide infinite time horizon
guarantees, i.e it is control invariant. Ideally, this backup
set would be big enough so that we can use it directly for
safety filtering, but as discussed previously, explicit safe sets
are hard to compute which leads to conservative results and
poor performance for high-dimensional systems. Therefore,
we chose to ‘‘implicitly expand’’ the backup set over an addi-
tional finite time horizon through the flow of the system under
a carefully chosen backup control law. This way, if this
implicit expansion is constructed properly, we get access to a
larger control invariant subset of the safety set without going

through the time-consuming process of computing an explicit
representation of this large set. We will call this implicit
expansion of the backup set the safe backward image of the
backup set. Indeed, as we are about to see, the key for defining
a set that is control invariant is to consider all the states that
can safely reach the backup set.
Assumption 2: Let U be the set of all continuously dif-

ferentiable backup control laws taking values in the set of
admissible inputs: ub : Rn

→ U . Under Assumptions 1,
we know that for all ub ∈ U there exists a solution to (1) that
is unique and defined for all times when solutions to (1) stay
in X . Therefore, one can define φub : [0,TX ] × X → Rn

to be the flow of (1) under the control law ub. Under all
these assumptions, the map φubt : X → Rn defined by
φut (x) , φu (t, x) is a homeomorphism of X (cf. [22]) for
all t ∈ [0,TX ]. We will denote by Sb ⊆ S the non-empty
compact backup set as depicted in Fig. 2. We furthermore
assume that Sb is practical and can be represented as the super
level set of a smooth function hb : Rn

→ R.
Definition 3: We define the safe backward image of the

backup set to be the set SubT , RubT ∩Ω
ub
T where:

RubT ,
{
x ∈ X | φubT (x) ∈ Sb

}
(12)

is a set encoding the reachability of the backup set under the
backup control law and:

Ω
ub
T ,

{
x ∈ S | ∀t ∈ [0,T ] , φubt (x) ∈ S

}
(13)

is a set encoding the safety of the corresponding backup
trajectory.

Because RubT =
(
φ
ub
T

)−1
(Sb) and φ

ub
T

(
RubT

)
= Sb, the def-

inition of forward invariance can be reformulated in terms
of the flow. Indeed, x (t0) ∈ S ⇒ ∀t ≥ t0, x (t) ∈ S is
equivalent to ∀t ≥ 0, φubt (S) ⊆ S. Hence the following
propositions.
Proposition 2: If Sb is forward invariant under ub ∈ U ,

then for all T ≥ 0, RubT is forward invariant.
Proof: Let us reason by contraction and assume that RubT

is not forward invariant. That means there exist x∗ ∈ RubT
and t∗ ≥ 0 such that φubt∗ (x

∗) /∈ RubT . Let x̃ , φ
ub
t∗ (x

∗).
By property of the flow, φubT (x̃) = φ

ub
t∗
(
φ
ub
T−t∗ (x̃)

)
. But

φ
ub
T−t∗ (x̃) = φ

ub
T (x∗) , xb ∈ Sb. So φ

ub
T (x̃) = φubt∗ (xb) ∈ Sb

since Sb is forward invariant. This implies that x̃ ∈ RubT , hence
the contradiction that proves the proposition. �
Proposition 3: The set Sb is forward invariant under ub ∈

U if and only if Sb ⊆ RubT for all T ≥ 0.
Proof: Let us first assume that for all T ≥ 0, Sb ⊆ RubT .

By definition of RubT and because φubT is a homeomorphism,
∀T ≥ 0, φubT

(
RubT

)
= Sb. So for all T ≥ 0, φubT (Sb) ⊆

Sb which proves the necessity of forward invariance. The
sufficiency of forward invariance follows directly from Prop.
2, as for all T ≥ 0, φubT

(
RubT

)
= Sb and φ

ub
T

(
RubT

)
⊆ RubT so

Sb ⊆ RubT . �
These two propositions are actually fairly intuitive as they

indicate that if the backup control law stabilizes the backup
set, then the backward reachable set of the backup set is an

187252 VOLUME 8, 2020



T. Gurriet et al.: Scalable Safety Critical Control Framework for Nonlinear Systems

FIGURE 2. Safety Set in red, Backup Set in black, and Implicit Control Invariant set in blue. The backup trajectory under the backup control law ub is
in green.

invariant set larger than the backup set. Let us now see how
we can analytically describe this set.
Proposition 4: Given ub ∈ U and a forward invariant set

Sb = {x ∈ Rn
| hb (x) ≥ 0}, then:

RubT =
{
x ∈ Rn

| hb ◦ φ
ub
T (x) ≥ 0

}
. (14)

Proof: Consider x ∈ RubT , then φ
ub
T (x) ∈ Sb.

So hb
(
φ
ub
T (x)

)
≥ 0, hence x ∈

{
x ∈ Rn

| hb
(
φ
ub
T (x)

)
≥ 0

}
.

Let us now consider x ∈
{
x ∈ Rn

| hb
(
φ
ub
T (x)

)
≥ 0

}
, then

φ
ub
T (x) ∈ Sb, hence x ∈ R

ub
T . �

The description for Ωub
T is similar.

Proposition 5: Given ub ∈ U and S described as in (4),
then:

Ω
ub
T =

⋂
t∈[0,T ]

{
x ∈ X | hi ◦ φ

ub
t (x) ≥ 0, i ∈ {1, . . . ,Ns}

}
,

(15)

or equivalently:

Ω
ub
T =

{
x ∈ X | hSubT

(x) ≥ 0
}
, (16)

with:

hSubT
(x) , min

t∈[0,T ]
i∈{1,...,Ns}

hi ◦ φ
ub
t (x) . (17)

We can now state the core theoretical proposition of this
work.
Proposition 6: If Sb ⊆ S is forward invariant under ub ∈

U , then for all T ≥ 0, the safe backward image SubT is a subset
of S that is forward invariant under that control law.

Proof: The fact that SubT ⊆ S follows trivially from the
definition ofΩub

T . Let us reason by contradiction and assume

that SubT is not forward invariant. This means that there exist
x∗ ∈ SubT and t∗ ≥ 0 such that φubt∗ (x

∗) /∈ SubT . But from Prop.
2, we know thatRubT is forward invariant soφubt∗ (x

∗) ∈ RubT and
φ
ub
t∗ (x

∗) /∈ Ω
ub
T . This implies that there exists t# ≥ 0 such that

φ
ub
t# (x

∗) /∈ S. But x∗ ∈ Ωub
T , so t# > T , i.e. there exists t ′ > 0

such that φubt ′
(
φ
ub
T (x∗)

)
/∈ S. But x∗ ∈ RubT , so φubT (x∗) ∈

Sb and because Sb is forward invariant, φubt ′
(
φ
ub
T (x∗)

)
∈ Sb,

which contradicts Sb ⊆ S. �
It trivially follows from this last proposition that SubT is a

control invariant subset of S, so it can be used to define a
non-empty sub-regulation map USubT

. The challenge now is
to be able to evaluate this regulation map, as it only has an
implicit expression inherited from the implicit nature of the
construction of SubT . Let us now see how we can tackle this
issue.

B. IMPLICIT SAFETY FILTER
1) IMPLICIT SUB-REGULATION MAP
In order to realize a safety filter, one must be able to evaluate
the regulation map US (x). This is easy if S has an explicit
representation, which is why so much effort has been focused
on finding such a representation. In our framework however,
SubT is defined as a function of φubt for which we do not have
an explicit representation, hence the implicit nature of SubT .

The sub-regulation mapUSubT
evaluated at a current state x0

is equal to the set of u ∈ U such that:{
∇hb (xT )Dφ

ub
T (x0) f0 (u)+ α0 (hb (xT )) ≥ 0

∇hi
(
xtb
)
Dφubtb (x0) f0 (u)+ αi

(
hi
(
xtb
))
≥ 0,

(18)

for all i ∈ {1, . . . ,Ns}, all tb ∈ [0,T ], and with xtb , φ
ub
tb (x0)

and f0 (u) , f (x0)+ g(x0)u.
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Two issues arise at the sight of this expression of the
sub-regulation map. First, the gradient of the flow—whose
existence is guaranteed from the smoothness assumptions in
1 and 2—needs to be computed. Second, because tb lives
in the interval [0,T ], the images of USubT

are formed by an
uncountable set of constraints, which elevates the safety fil-
ter’s underlying optimization problem into the class of robust
optimization problems, which is hard, if not impossible to
solve in real-time. Let us therefore see how we can address
these issues.

2) NUMERICAL APPROXIMATION OF THE SUB-REGULATION
MAP
The practical solution to these issues is to recourse to numer-
ical integration tools. By numerically integrating (1) forward
in the interval [0,T ] under the backup law ub, φ

ub
tb (x0) can be

numerically evaluated a discrete times
{
tb,0, . . . , tb,Nb

}
. It is

therefore possible to approximate USubT
(x0) by considering

the countable set of constraints at these different times tb,k ;
the more points being considered, the tighter the approxima-
tion becomes.

Then, to compute Dφutb (x0), one only needs to integrate
along with (1) a sensitivity matrix Q(tb, x0). As explained
in [23], the square matrix Q(tb, x0) solution of the following
differential equation:

dQ (t, x0)
dtb

= Dfcl
(
φ
ub
tb (x0)

)
Q (tb, x0) , (19)

with Q(0, x0) = I and where fcl (x) , f (x) + g(x)ub (x) is
exactly the Jacobian of the flow φubtb at x0:

Q (tb, x0) = Dφubtb (x0) . (20)

Note that it is important for the backup control law used to
smooth, which means that in the case of finite input bounds,
a smooth saturation function has to be used for the expression
of ub(x).

3) UNDER-APPROXIMATION OF THE SUB-REGULATION MAP
We now turn to the issue of having an infinite number of
functions defining the set. In practice, we can only enforce
positivity of a finite number of the functions in (18), and
therefore propose a safety filter that enforces positivity of a
finite subset of ε-tightened constraints evenly spaced in time:

∇hb(xT )Dφ
ub
T (x0)f0(u)+ α0(hb(xT )) ≥ 0, (21a)

∇hi(xtb,k )Dφ
ub
tb,k (x0)f0(u)+ αk (hb(xtb,k )− εi) ≥ 0, (21b)

for i ∈ J1,NsK and k ∈ J0,NbK.
Although this just enforces positivity of a finite number of

constraints, under some regularity conditions and appropriate
margins εi, we expect that this should be sufficient to guaran-
tee positivity of the whole family of functions. We make this
more precise below via the following lemma.

Lemma 1: Let Lh be the Lipschitz constant of a function h
with respect to the Euclidean norm and let:

Lφ = sup
x∈S
‖f (x)+ g(x)ub(x)‖2, (22)

be the maximal velocity of the backup vector field. Then:∣∣∣h ◦ φuBt (x)− h ◦ φu
B

s (x)
∣∣∣ ≤ LhLφ |t − s|. (23)

Proof: Assume WLOG that t ≥ s and let y = φu
B

s (x).
Then:∣∣∣h ◦ φuBt (x)− h ◦ φu

B

s (x)
∣∣∣ ≤ Lh ∥∥∥φuBt (x)− φu

B

s (x)
∥∥∥
2

= Lh
∥∥∥φuBt−s(y)− y∥∥∥2 ≤ LhLφ |t − s|,

since Lφ is the maximal velocity of the vector field. �
It follows that invariance of SubT can be enforced via the

finite subset of constraints in (21) provided that the times tb,k
are spaced tightly enough.
Theorem 1: Let ηi = maxk∈J1,Ni−1K tb,k+1 − tb,k be the

granularity of the time discretization. If for all i it holds that
εi ≥ LhiLφ

ηi
2 , then (21) enforce invariance of S

ub
T .

Proof: By the same reasoning as before, the constraints
(21) imply that hi(xtb,k ) = hj ◦ φ

ub
tb,k (x) ≥ ε for all k ∈ J1,NiK

for all times. Therefore, by Lemma 1, we can for each t ∈
[0,T ] find a k∗ such that:∣∣hi(xt )− hi(xtb,k∗ )∣∣ ≤ LhiLφ ηi2 , (24)

meaning that:

hi(xt ) ≥ ε − LhiLφ
ηi

2
≥ 0. (25)

Thus all the functions defining SubT are positive, and hence SubT
is invariant. �

C. NUMERICAL EXAMPLE
We now illustrate these ideas on a simple example of non-
linear inverted pendulum. This system is defined by the state
x =

[
θ, θ̇

]> and the dynamics:

ẋ =
[

θ̇

sin (θ)+ u

]
(26)

with a saturated input u ∈ [−umax , umax] with umax = 1.5.
This pendulum is upright at an unstable equilibrium when
θ = 0. The safety set is chosen to be a box centered at the
origin and of edge size 2π (cf. Fig. 3).

The first step is to choose a backup control law and a
backup set. In this example, we consider linear backup laws
that stabilize the system to the origin:

ub(x) = −K · x (27)

for some gain vector K . A backup set can then be carefully
chosen as a level set of a quadratic Lyapunov function of
the linearized dynamics of the system around the origin.
As hinted at before, higher backup gains yield in general a
larger SBI, as illustrated in Fig. 3. It is therefore important

187254 VOLUME 8, 2020



T. Gurriet et al.: Scalable Safety Critical Control Framework for Nonlinear Systems

FIGURE 3. Plot of the SBI for different backup gains K with T = 5.

to choose a good backup law as we will discuss further in
Sec. V.

Given a backup control law, a backup horizon T has to be
chosen. As one can expect, the larger this time horizon is,
the larger the resulting SBI also is, as illustrated in Fig. 4.

FIGURE 4. Plot of the SBI for different time horizons T .

Given a choice of backup law, set, and horizon, a safety
filter can be implemented using numerical integration as
explained in Sec. III-B2. At each safety filter iteration,
the dynamics of the system are integrated under the backup
law over a time horizon T . From the discrete values of the
state and sensitivity matrix over this backup trajectory, a set
of linear constraints approximating the regulation map can
be constructed. Finally, a quadratic program can be solved
to find the best input satisfying the safety constraint encoded
by the regulation map. Some trajectories of the system under
this safety filter can be seen in Fig. 5. In this illustration,
the pendulum is started from various initial angles with zero
velocity.

FIGURE 5. Trajectories of the system with udes = 0, T = 5 and K = [3,3].
The color of the trajectories indicate the magnitude of uact , green
corresponding to uact = udes = 0 and red to |uact | = umax = 1.5.

The value of the backup horizon therefore has a crucial
impact on the applicability of the method as one has to be
able to do the numerical integration and the QP solving fast
enough for the safety filter to run in real-time. Note also
that the computational complexity of the backup law and the
dynamics of the system have a non negligible impact on the
speed of the safety filter computations as they have to be
evaluated numerous times for the integration of the backup
trajectory.

Finally, it is important to note that, although we compute
the SBI explicitly in this example for the purpose of illustra-
tion, at no point it is required to do so for the safety filter to
operate. Through the numerical scheme we propose, we can
render the SBI forward invariant without having to find an
explicit representation of it. This makes this framework appli-
cable to nonlinear systems and does not require any particular
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analytical structure for the dynamics of the system.Aswewill
see in Sec. VII, not having to explicitly compute a control
invariant set has important advantages in practice.

IV. FINITE TIME SAFETY GUARANTEES
So far, the backup policy and the backup set cannot be
chosen arbitrarily as the former has to be invariant under
the latter, which still hinders the scalability of the proposed
approach. This comes from our desire for the safe backward
image to be a control invariant set, i.e. a set in which the
system can remain and evolve forever. In practice however,
safety requirements often do not necessitate that the system
be able to run forever, but only that the system be able to
safely stop or terminate. In this section, we discuss an exten-
sion to the proposed approach that allows a safety filter to
be used to enforce such safety requirements. As we will see,
this extension allows for the backup controller and backup set
to be chosen independently which makes our approach truly
scalable in this case.

A. REFORMULATION OF THE REACHABILITY CONSTRAINT
The idea here is to relax the reachability constraint of RubT .
For that, we will restrict ourselves to backup sets that can be
represented as the upper level-set of a single function hb twice
differentiable. In that context we define the notion of time
to safety.
Definition 4: Given a backup control law ub ∈ U , the time

to safety Tb : X → R is given by

Tb(x) = min
{
t ≥ 0 : hb

(
φ
ub
t (x)

)
= 0

}
. (28)

When x ∈ Sb, we choose Tb (x) = 0, and when x /∈ Sb and a
solution to (28) does not exist, we choose Tb (x) = +∞.
Let us now consider the set RubT given by the closure:

RubT , {x ∈ X | 0 < Tb(x) ≤ T }, (29)

with T > 0 and ub ∈ U .
The interest of considering such a set becomes clear when

realizing that if Sb is not invariant under ub, Sb is not a subset
of RubT (cd. Fig. (2c)). This makes the set RubT unusable as it
is not even guaranteed that RubT ∩ S 6= {∅} and that SubT is not
empty. The set RubT on the other hand will at least contain part
of the boundary Sb (provided the backup set is not completely
repulsive) and to grow monotonically with T (cf. Fig. (2d)).

B. AUGMENTED REGULATION MAP
Similarly to Sec. 187252, we would like to regulate safe
solutions using the sub-regulation mapUS while utilizing this
new set RubT . The barrier condition (8) for set RubT evaluated at
a state x0 ∈ RubT for a given backup control law ub ∈ U is
given by

−∇Tb (x0) f̃ (x0, u)+ α (T − Tb (x0)) ≥ 0, (30)

where f̃ (x0, u) , f (x0)+ g(x0)u. As demonstrated in [24]:

∇Tb (x0) = −
∇hb (x) · Dx (x0)

∇hb (x) · f̃ (x, ub (x))
, (31)

with x , φ
ub
Tb(x0)

. One will immediately notice that this
gradient is only defined when ∇hb (x) · f̃ (x, ub (x)) does
not vanish. States for which this happens should therefore
be avoided to allow the regulation of safe solutions using US
with RubT . Let us therefore consider the following extension
of the safe backward image of the backup set—the safe
backward reachable set of the backup set:

SubT = RubT ∩Ω
ub
T ∩ C

ub
T , (32)

with

Cub
T ,

{
x0 ∈ R

ub
T | c̃os (x0) ≥ εb

}
, (33)

a small constant εb > 0, and

c̃os (x0) ,
∇hb (x) f̃ (x, ub (x))

‖∇hb (x)‖
∥∥∥f̃ (x, ub (x))∥∥∥ . (34)

Proposition 7: If RubT is not empty, then for all x0 ∈ S
ub
T \Sb

their exist strengthening functions αi such that USubT
(x0) 6=

{∅}.
Proof: First, note that ∇Tb is not defined on ∂Sb, hence

considering only states in SubT \ Sb. Then, USubT
evaluated at a

given state x0 ∈ S
ub
T \Sb is equal to the set of u ∈ U such that

∇hi
(
xtb
)
Dφubtb (x0) f̃ (x0, u)+ αi

(
hi
(
xtb
))
≥ 0

−∇Tb (x0) f̃ (x0, u)+ β (T − Tb (x0)) ≥ 0
∇ c̃os (x0) f̃ (x0, u)+ γ (c̃os (x0)− εb) ≥ 0

(35)

with i ∈ {1, . . . ,Ns}, tb ∈ [0,Tb (x0)], xt , φ
ub
t (x0), β and

γ extended classK functions, and f̃ (x0, u) , f (x0)+g(x0)u.
Firstly, as Dx (x0) f̃ (x0, ub (x0)) = f̃ (x, ub (x)), we have

∇Tb (x0) f̃ (x0, ub (x0)) = −1. (36)

This is fairly intuitive as (36) is the time derivative of
the time to safety when the system is evolving along the
backup trajectory. Secondly, because for all tb ∈ [0,Tb (x0)],
x
(
φ
ub
tb (x0)

)
= x (x0),

∇ c̃os (x0) f̃ (x0, ub (x0)) = 0. (37)

Finally, because x0 ∈ SubT ⊃ Ω
ub
T , for all tb ∈ [0,Tb (x0)],

φ
ub
tb (x0) ∈ S. So by continuity of all the functions involved,

the αi can be chosen (cf. [8], [9]) such that for all x0 ∈ S
ub
T :

∇hi
(
xtb
)
Dφubtb (x0) f̃ (x0, ub)+ αi

(
hi
(
xtb
))
≥ 0.

So all conditions in (35) can be simultaneously satisfied in
SubT by choosing u (x0) = ub (x0) ,hence USubT

is well defined

and non-empty over all of SubT . �
Remark 1: The extended classK functions β and γ can be

chosen to be arbitrarily.
Remark 2: Computing ∇ c̃os (x0) requires the evaluation

of the hessian of hb at x0, but that otherwiseUSubT
can be eval-

uated using the same technique as in Sec. III-B without any
change in complexity of the algorithms. Also note that this
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new formulation of the sub-regulation map creates additional
algorithmic challenges in reliably finding x but the details of
these numerical issues are outside the scope of this paper.

C. WEAKER BUT PRACTICAL SAFETY GUARANTEES
Let us now study what guarantees we get when regulating the
system in SubT using U

S
ub
T
.

Theorem 2: If RubT is not empty, x (0) ∈ SubT , and for almost
all t ∈ R+, u (t, x (t)) ∈ U

S
ub
T
, then there exist Ts ∈ [0,+∞]

such that for all t ∈ [0,Ts), φ
u(t,x(t))
t (x) ∈ SubT . Furthermore,

if Ts < +∞, φ
u(t,x(t))
Ts (x) ∈ Sb.

Concretely, this means that regulating the inputs using U
S
ub
T

(with safety filter (10) for example) will guarantee that—
if the system starts in SubT but outside of Sb, it will either
stay in S and within reach of the backup set Sb within
a finite time T , or reach the backup set in finite time
(cf. Fig. 2d). These guarantees may seem weak compared
to the ones in (III), but they are actually very relevant in
practice.

For autonomous systems for example, the priority is
(almost) always given to the avoidance of human casualty
over the integrity of the system. Being able to safely terminate
the system is often all that is requested (cf. [25] for more
details in the case of UAVs). For commercial aviation and
transoceanic flights, being able to safely reach an airfield
within a set amount of time is the safety criterion used by the
Federal Aviation Administration (cf. ETOPS). In this case,
the modality of landing the plane—what happens once the
system has reached the backup set—can be handled sepa-
rately.

Finally, it will not be proven here but it is easy to verify that(
RubT ∪ Sb

)
⊇ RubT and that under some mild assumptions,

when Sb is forward invariant under ub,
(
RubT ∪ Sb

)
= RubT

(cf. Fig. 2b). Therefore, when Sb is forward invariant (and εb
small enough), the present approach yields the original safety
guarantees of Sec. (III), i.e. the system remains in S̃ for all
times. Hence the soundness of this approach that provides
weak but practical safety guarantees without the challenge
of having to verify the forward invariance of the backup
set under ub, but also provides strong safety guarantees
when the backup set is actually forward invariant under ub
(cf. Fig. 2).

D. NUMERICAL EXAMPLE
We now illustrate this approach on the nonlinear inverted
pendulum of Sec. III-C. In this case, we assume that the
pendulum shall not go past θ = −π2 on one side, but that
their is a hard stop on the other side at θ = π

2 that the system
can run into to safely stop. The backup set is therefore chosen
to be a narrow band around θ = π

2 , and the safety set is
a rectangle with edges θ = −π2 and θ̇ = ±π3 , so opened
towards the edge θ = π

2 (cf. Fig. 6). The backup policy is
chosen to be ub(x) = 10 ∗ ( π10 − θ̇ ) such as to drive the

FIGURE 6. Comparison between safe backward image and safe backward
reachable set for T = 11 and ub(x) = 10 ∗ ( π10 − θ̇).

system back towards the hard stop. In this case, the backup
set is certainly not invariant under the backup policy and so
isn’t the safe backward image of the backup set as illustrated
in Fig. 6. The safe backward reachable set on the other end is
well suited for this scenario where only finite time safety is
required. Indeed, as can be seen in Fig. 6, the safe backward
reachable set fully captures the set of safe states, and allows
for safe operations. As illustrated in Fig. 7, if the pendulum
is left to fall towards negative θs, the associated safety filter
slows it down so that it stops before θ = −π2 , but if it is left
to fall towards positive θs, the filter makes sure the system
safely reaches the backup set.

V. OPTIMALITY OF THE BACKUP CONTROLLER
A. MODEL PREDICTIVE BACKUP CONTROLLER
In light of the results illustrated in Fig. 3, a natural ques-
tion that arises is ‘‘what is the best backup control law to
choose’’, that is, a control law that maximizes the size of
the safe backward image for a given backup set and backup
horizon.

To address this question, let us consider the control law u∗

given by

u∗ (x0) = u∗x0 (0) (38)

with u∗x0 being the control policy solution to the following
optimal control problem:
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FIGURE 7. Trajectories of the system with udes = 0, T = 11 and
ub(x) = 10( π10 − θ̇). The color of the trajectories indicate the magnitude of
uact , green corresponding to uact = udes = 0 and red to
|uact | = umax = 1.5.

Backup MPC

u∗x0 , argmax
u∈UT

J (x(t), u(t))

s.t. ẋ = f (x)+ g(x)u

x (0) = x0
u (t) ∈ U , ∀t ∈ [0,T ]

x (t) ∈ S, ∀t ∈ [0,T ]

hb (x (T )) ≥ 0 (39)

for some cost function J and where UT denotes the set of all
piecewise continuous control policies.
Remark 3: The time in (39) is shifted so that x0 = x (t0) =

x (0) as only time-invariant control systems are considered in
this section.
Remark 4: Solutions to (39) might not be unique for a

given x0, in which case the right-hand side of (39) is chosen
to be any element in the set of solutions.

It immediately follows that

Su
∗

T =

{
x0 ∈ X | ∃u ∈ UT , s.t.

xx0 (t) ∈ S, ∀t ∈ [0,T ]
and xx0 (T ) ∈ Sb

}
,

(40)

where xx0 (t) is the solution to (1) starting at x0 at t = 0 under
the time based control policy u(t).

Therefore, for all ub ∈ U , SubT ⊆ Su∗T . We can therefore
conclude that u∗ is an optimal backup law in the sense that it

yields an upper bound on the largest possible safe backward
image for a given backup set, as illustrated in Fig. 8. However,
u∗ is not well suited for the current framework.
A couple of points are important to address if one wants

to use the u∗ law in the proposed framework. First, the cost
function J has to be chosen preferably so as to stabilise Sb
(see [21] for such conditions). Secondly, u∗ must be smooth
(or at least continuous if one uses the filtering approach of
Sec. VI), which is rarely the case in general. Finally, if one is
able to make u∗ smooth, solving a nonlinear MPC online is
not an easy task, and is even harder when one has to compute
the gradient of the flow under u∗ along with the optimal
trajectory.

In some cases, these issues can be successfully addressed
and an MPC backup controller can be used directly as show-
cased in [26]. Nevertheless, in the general case, it is not pos-
sible to use an MPC backup controller online, and we have to
default to a more offline approach. In particular, it is possible
to get near-optimal safe backward images by finding a smooth
explicit approximation of the optimal backup control law.

B. NEURAL NETWORK APPROXIMATION OF THE MPC
In practice, one can use any functional basis of choice to fit
the optimal backup policy, provided that it is fast enough
to numerically compute along with its gradient. A smooth
functional basis for approximating complex functions can
be found with feedforward neural networks, whose recent
popularity hasmade the associated tools very efficient. In par-
ticular, evaluating gradients of feedforward neural network is
computationally easy.

Indeed, for simple neural networks with recursion law:

yi+1 = f (wiyi + bi) , (41)

the gradient of the entire neural network can be computed in
the same forward pass with the following recursion law:

dyi+1 = diag
(
df (yi+1)
dx

)
widyi, (42)

with dy0 being the identity matrix of size n (state dimension).
Referring back to the nonlinear inverted pendulum of

Sec. III-C, we can see in Fig. 8 that the optimal safe backward
image is larger than the largest SBI we found using linear
feedback for the backup controller (cf. Fig. 3).

We first solve the OCP (39) with the cost function:

J (x(t), u(t)) =
∫ T

0

(
0.1u(t)2 + 10θ (t)2 + θ̇ (t)2

)
dt (43)

over a grid of size 200× 200 using GPOPS-II [27]. We then
fit a neural network with 2 hidden layers, each of size 35,
and with a hyperbolic tangent activation function over the
generated data. The resulting safe backward image of this
approximately optimal policy, as can be seen in Fig. 8, cap-
tures most of the optimally of the OCP, but, is actually usable
in the proposed framework. This method is applied on a larger
dimensional system in Sec. VII and similarly strong results
are observed.
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FIGURE 8. Comparison between the safe backward images of a linear
backup control law (27), the optimal control law (38), and a Neural
Network approximation of it, with T = 5.

VI. SCALABLE SAFETY FILTER
So far, we have been able to use an optimization-based safety
filter by relying on our ability to numerically evaluate the sub-
regulation map at any given state. Although this approach is
optimal in terms of filtering, it comes at the cost of having to
compute the gradient of the flow along the backup trajecto-
ries. The dimension of the system to integrate is therefore n+
n2, which can become a computational bottleneck for higher
dimensional systems. It is however, possible to sacrifice opti-
mally of the safety filter for better scalability. The key is that
by construction, the backup law evaluated at the current state
is always an element of the image of the regulation map for
that state. In other words, if the backup policy is followed for
the initial conditions inside SubT , the system will remain in the
safety set for all time.

A. SMOOTH SWITCHING TO THE BACKUP CONTROL LAW
This idea is at the core of a lot of alternative approaches to
safety filtering [12]–[18]. In most of these methods though,
the safety filter just operates a simple switch between nominal
and backup controller until the system has reached the backup
set, which in practice is fairly intrusive.

The natural evolution of this idea is to implement a smooth
transition between desired and backup inputs. To that end, let
us look at the following proposition.
Proposition 8: Given a nonlinear control system (1) with

a corresponding backup controller ub ∈ U and a continuous
function α : R+×Rm

×X×R→ U, the control law defined

by

uf (t, x) , α
(
t, udes(t), x, hSubT

(x)
)

(44)

is a continuous selection of USubT
if for all t ≥ 0 and x ∈ SubT ,

udes is continuous and:

α (t, udes(t), x, 0) = ub(x). (45)

Proof: This follows trivially from the fact that for all
x ∈ SubT , ub(x) ∈ USubT

and that USubT
is non-trivial only when

hSubT
(x) = 0. �

This means that by choosing a switching function α

appropriately, it is possible to mimic the behavior of a QP-
based safety filter without the added computational complex-
ity. Note, however, that this approach is fundamentally more
conservative than with a QP-based filter as when hSubT

(x) = 0,
it enforces uact (x) = ub(x) whereas with a QP-based filter,
uact (x) ∈ USubT

, which is in general larger than the singleton
ub(x). Nonetheless, it is possible with a proper choice of filter-
ing function to get good performances in practice. Especially
since on a significant part of the boundary of the viability
kernel of S, USubT

is actually reduced to a singleton [4].

FIGURE 9. Trajectories of the system under a scalable implicit safety filter
with udes = 0, T = 5 and K = [3,3]. The color of the trajectories indicate
the magnitude of uact , green corresponding to uact = udes = 0 and red to
|uact | = umax = 1.5.

B. NUMERICAL EXAMPLE
We now illustrate this approach on the nonlinear inverted
pendulum of Sec. III-C. The safety specifications are the
same as in Sec. III-C. The switching function is first chosen
to be a basic ramp up of the backup input near the boundary
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of the safe backward image:

α
(
t, x, hSubT

(x)
)
=

(
1− hSubT

(x)
)6
ub(x). (46)

Some trajectories of the system under this scalable safety fil-
ter can be seen in Fig. 9. As expected, this safety filter is more
conservative than the QP-based one of Fig. 5, which often
translates into an oscillatory behavior near the boundary of
the safe backward image. However, it is possible to mitigate
this behavior with a better choice of filtering function. For
example, let us consider the switching function defined by:

α
(
t, x, hSubT

(x)
)
= σ 1

0 (λ(x)+(1−λ(x))λd (t)) ub(x) (47)

with

λ(x) ,
(
1− hSubT

(x)
)6
, (48)

λd (t) , −ζ
dhSubT

(x(t))

dt
, (49)

and σ 1
0 the saturation function between 0 and 1. As illustrated

in Fig. 10, adding such a damping term can help reduce the
oscillatory nature of such scalable filters. A further approach
for enhancing the performance and applicability of these
scalable safety filters will be presented in Sec. VII-D.

FIGURE 10. Trajectories of the system under a scalable implicit safety
filter with udes = 0, T = 5, K = [3,3] and different switching functions.
The color of the trajectories indicate the magnitude of uact , green
corresponding to uact = udes = 0 and red to |uact | = umax = 1.5.

VII. APPLICATIONS
A. TWO-WHEELED INVERTED PENDULUM (SEGWAY)
1) HARDWARE SETUP
The Segway platform used here is a modified a Ninebot E+
with custom electronics and control hardware and software.

FIGURE 11. Segway vehicle used for experiments.

The onboard sensing is performed using wheel incremental
encoders and a VectorNav VN-100 IMU. The main onboard
computer is a Jetson TX2, which computes the control action
that is sent to the motor controllers. The TX2 runs standard
Linux and the ERIKA3 real-time operating system concur-
rently through the Jailhouse hypervisor. The Linux OS runs
ROS, which allows external communication and logs all of
the necessary data. The real-time operating system handles
the low-level communication and the computation of the
control actions. These two operating systems are able to share
information through a shared memory interface. All of the
code running on the Segway is written in C++.

2) SEGWAY TEST
In order to test the implicit safety filter on the Segway,
a model of the dynamics is required. The equations of motion
are derived via Newton-Euler method, treating the Segway as
a two-wheeled inverted pendulum with torque inputs at each
wheel. For this experiment, the planar model is used, consist-
ing of four states: position (p), velocity (ṗ), pitch angle (ψ),
and angular rate (ψ̇) (cf. Fig. 11a). Since themotor controllers
command current, the motor torque constant is estimated
via system identification. The other necessary parameters,
including the mass and inertia properties of the Segway frame

187260 VOLUME 8, 2020



T. Gurriet et al.: Scalable Safety Critical Control Framework for Nonlinear Systems

FIGURE 12. Pictures of the implicit filtering Segway experiment.

and wheels, were measured directly using various custom-
made testbeds.

The next step is to define the safety set for the test. This
is simply defined as bounds on all of the states, with p ∈
[−1, 1] m, and ψ ∈ [−π6 ,

π
6 ] rad. The input bounds are u ∈

[−20, 20]A.
After identifying the system dynamics and determining

a safety set, a backup set and backup controller must be
generated. The backup set must be a subset of the safety set
that is invariant under the backup controller. Thus, we choose
a backup controller that stabilizes the Segway to the origin at
its equilibrium angle. This is achieved with a simple LQR
controller. To obtain the backup set, we compute a small
region of attraction for this controller about the origin in the
form of a level set of a quadratic Lyapunov function of the
linearized dynamics of the system.

To implement the safety filter, a C++ implementation
of the proposed safety filter was developed. The library
requires an expression for the dynamics, the backup con-
troller, the gradient of the closed-loop dynamics, the backup
set, the safety set, and the gradient of the safety set. The
library integrates the dynamics using an Euler scheme. The
resulting quadratic program is solved using a modified ver-
sion of OSQP [28] that can be compiled on the real-time
operating system.

To showcase the effectiveness of the proposed approach,
a simple scenario is executed on the Segway with and without
an implicit safety filter. The nominal controller is a simple
LQR that can be commanded a desired position. A sequence
of desired positions outside of the safety set are commanded,
and as can be seen in Fig. 13 and Fig. 12, without safety filter,
the system blithely breaches the safety set to the point where
it falls to the ground when the command is too aggressive.
On the other hand, with the proposed implicit safety filter,
the system stably remains inside the safety set despite the
unsafe desired inputs. Note that for this experiment, the filter
ran at 800Hz on the embedded hardware with a backup
horizon T = 1s and an integration time-step of 0.01s. A video
of this experiment can be found in [29].

FIGURE 13. Results of the implicit filtering Segway experiments with and
without safety filter. The nominal controller is an LQR driven by a desired
position xdes.

VOLUME 8, 2020 187261



T. Gurriet et al.: Scalable Safety Critical Control Framework for Nonlinear Systems

FIGURE 14. The IRB 6640 robotic arm along with the reachable sets for a
human worker at t = 0s in purple and t = 1s in yellow.

B. INDUSTRIAL MANIPULATOR IN TIME VARYING
ENVIRONMENT
Next, we apply the infinite-time implicit safety method
described in Section III to the problem of collision avoidance
in a dynamic environment. The global industrial robot market
has more than doubled in the past five years, and the Inter-
national Federation of Robotics expected almost two million
new robot installations in factories by 2020 [30]. However,
concern for the safety of their human counterparts grows
along with the density of robots in factories. As a result,
in heavy manufacturing, machines and humans are mostly
separated. This makes the process rigid: it becomes spatially
constrained and manual intervention in the vicinity of a robot
may require halting the process altogether. To reduce down-
time and allow for more human-robot interaction, we would
like to be able to ensure that these robots cannot collide
with human operators under any circumstances while also
avoiding having to stop the robot altogether when a worker is
in its vicinity. More information about this work can be found
in [31].

1) PROBLEM FORMULATION
This problem is complex because human workers can move
around the robot in a somewhat unpredictable manner.
In order to guarantee that no collision can occur with such
dynamic and uncertain targets, there is no choice but to
assume all possible movements of the workers and avoid all
of them. In other words, the safety set in this scenario has
to be the complement of the forward reachable set of the
human workers. Such a set spans space and time, so the
state of the system has to be augmented to include this time
dependency. Furthermore, the forward reachable set, and so
the safety set, has to be periodically updated to account for
the actual movement of the worker and avoid very punitive
conservativeness.

FIGURE 15. Illustration of time varying uncertain environment. The
obstacle moves with time (red line) but its position is only measured at
specific times (0.4,0.8,1.0). The safety set is the complement of the unsafe
set, which is the forward reachable set of the obstacle minus the backup
set. The system has to remain outside of the unsafe set, which shrinks for
each obstacle measurement.

A major advantage of our implicit safety filtering over
explicit safety filtering is that the safety set can be changed
on the fly without any additional computations, whereas with
an explicit safe set approach, if the safety set changes, a new
safe set has to be computed, which is time consuming and
represent a real bottleneck that hinder the capability of these
explicit approaches to handle practical scenarios such as this
one.

Let us consider the 6-link IRB 6640 manipulator from
ABB depicted in Figure 14 that has six degrees of freedom.
The dynamics of this robotic arm can be written in a classic
manipulator equations form:

M (q)q̈+ C (q, q̇) q̇+ G(q) = τ, (50)

where q describes the joint angles and τ is a vector of applied
torques.

For manipulators with many degrees of freedom,
the explicit expressions for M (q), C(q, q̇) and G(q) are very
complicated. As an alternative, they can be evaluated at given
points via the Articulated Body Algorithm (ABA) that steps
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over links of the manipulator in a recursive fashion [32].
Only having ‘‘black-box’’ access to the equations of motion
would pose a problem for most methods for finding invariant
sets, but the implicit method proposed in this paper only
requires access to the numerical values of the dynamics and
its derivatives. As discussed above, the state of the system is
extended to contain time which makes the overall system’s
state 13-dimensional:

x = [q, q̇, t]T . (51)

A point in the Cartesian and time space will be denoted by:

k = [a, b, c, t]T . (52)

2) SAFETY AND BACKUP SETS
The backup set is considered to be a vertical tube around
the robot. In practice, this would be a small closed-off area
that is inaccessible to the human. For this implementation,
it is described by angle constraints on the second and third
joints (the joints being enumerated from the base to the end
effector):

Sb =

x ∈ R13

∣∣∣∣∣∣∣
q2 ∈

[
−
π

12
,
π

12

]
q3 ∈

[
−
7π
12
,−

5π
12

]
 . (53)

The safety set is then simply the union of the backup set and
complement of the reachable set of the human in space-time
over the duration of the backup maneuver. For the purpose
of this demonstration, the human is modeled as a single inte-
grator with a maximum velocity vmax, meaning that the size
of its reachable set grows linearly in time. By adding time as
a state, we prevent the filter from being overly conservative,
which would be the result if we only used the reachable set
of the human over the time horizon of the backup controller.
Note that more complex models of human mobility could be
used in order to further reduce the conservativeness of the
safety set.

If (a0, b0) is the current horizontal Cartesian position of
the human, the reachable set of the human can be simply
expressed as an n-cylinder [33] centered at (a0, b0,H/2) in
Cartesian space, where H is the height of the human. We can
then write this set as the lower-level set of a time-dependent
differentiable function hr : R4

→ R defined by:

hr (k) = (a− a0)2 + (b− b0)2

+
(c−
√
H )2(r0 + vmaxt)2

H
− (r0 + vmaxt)2. (54)

Thus, for the robot to not come in contact with the human,
hr (k) must be positive for all physical points k along the
robot. However, because the dynamics of the robot are
defined in joint space and the safety set is defined in Cartesian
space, one must be careful when using the hr . Let us denote
our forward kinematics function that takes a point from joint

and time space to Cartesian and time space, by K : R13
→

R4. The gradient of hr with respect to the states is:

∂hr (k)
∂x

=
∂hr (K (x))

∂x
=
∂hr (K (x))

∂k
∂K (x)
∂x

, (55)

where:

∂K (x)
∂x
=

[
∂K
∂q

∂K
∂ q̇

∂K
∂t

]
=

[
J E0 J q̇
E0 E0 1

]
, (56)

with the kinematic Jacobian J being computed numerically.
The safe set h is then defined as the union of hr and the

backup set, Sb, in order to avoid issues with the reachable set
of the human intersecting with the backup set, which is not
possible in reality.

Finally, as the system evolves, the reachable set of the
worker gets larger in the Cartesian space. It is therefore
important to update this reachable set when a new measure-
ment (a0, b0) is available so as to avoid the reachable set
filling the entire work envelope of the robot. A fundamental
constraint for this update to be possible is that the resulting
safety set must be larger after the update than before. In our
case, this is guaranteed by the fact that any new position of
the human will be contained in its reachable set (cf. Fig. 15),
so the safety set grows in the full state space, even though it
does not when only looking at Cartesian space.

3) BACKUP CONTROLLER
For the backup controller, we leverage the power of the
RecursiveNewton-Euler Algorithm (RNEA) [34], which pro-
vides the necessary joint torques to generate desired joint
accelerations. The flexibility of this method is again show-
cased by the fact that we do not need an analytic expression
for the backup controller, as long as we know its gradient.

There are only two joints that require actuation to reach
the backup set. A simple PD controller is used to obtain
desired joint accelerations for these joints, which is fed into
the RNEA that generates the control inputs, as well as their
gradient. The controller is of the form:

ades(q, q̇) = −kp(q− qd )− kd (q̇),

ub(q, q̇) = RNEA(q, q̇, ades(q, q̇)). (57)

The gradient of this backup controller, which is required to
evaluate the sub-regulation map, is described by:

∂ub
∂q
=
∂RNEA
∂q

+
∂RNEA
∂ades

∂ades
∂q
=
∂RNEA
∂q

− kp
∂RNEA
∂ades

,

∂ub
∂ q̇
=
∂RNEA
∂ q̇

+
∂RNEA
∂ades

∂ades
∂ q̇
=
∂RNEA
∂ q̇

− kd
∂RNEA
∂ades

,

∂ub
dt
= 0.

Since the RNEA provides the exact torques needed to
achieve desired joint accelerations, the forward invariance of
the backup controller is guaranteed under the proper choice
of desired joint accelerations.
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4) SIMULATION
The rigid body algorithm library used for this simulation is
Pinocchio [35]. This C++ library has been shown to be the
fastest of its kind, with the Table 1 showcasing the average
computation times of each necessary expression for the robot.

TABLE 1. Computation time for IRB 6640 in Pinocchio.

FIGURE 16. Block diagram of the control architecture used in the
manipulator simulations.

A ROS environment was created to simulate the sys-
tem, with V-REP used as a visualizer. The simulation con-
sisted of five component: the robotic arm (PLANT), the task
giver (TASK), a nominal controller (CONT), the human
(HUMAN), and the safety filter (ASIF), connected as shown
in Figure 16. Each component of the system ran at 200 Hz on
a desktop PC with an Intel 8700k processor. The dynamics
were integrated in the plant node via theODEint C++ library,
with the runge_kutta_dopri5 scheme over a timestep
of 5 ms.

The controller node tracked a sequence of desired end-
effector positions given to it by the task giver node. Once
the system reached the desired position, the task giver would
send a new desired location to the system to mimic a typical
operational cycle for such robot. The RNEA approach is also
used for this tracking controller. The human node allowed
the user to joystick a human, modeled as a single integrator,
around the factory floor.

Lastly, the safety filter node handles safety for the system.
It takes in the state from the robot and the desired inputs from
the controller, and outputs the actual inputs that is used for
integration by the plant.

The ASIF uses an adaptive-step RK4 scheme for integra-
tion under the backup controller, and the resulting quadratic
program is solved by the OSQP library [28].

Figure 17 shows the value of the ASIF when a human
attempts to pass through the working area of the arm. This
image well illustrates the minimally invasive property of the
ASIF, as the filter keeps the value of h(x) just barely above
zero. For a video demonstration of the filter’s capabilities,
please see [36].

FIGURE 17. Value of the Barrier Function with and without ASIF engaged.

FIGURE 18. Schematic representation of the Atalante exoskeleton. In red
are the joints that will be used for variable assistance.

C. VARIABLE ASSISTANCE FOR LOWER BODY
EXOSKELETONS
Next, we apply this framework, and more specifically the
approach of Sec. VI, to the problem of variable assistance for
lower body exoskeletons. Contrary to most common appli-
cations of this framework, this particular one is not about
safety. The main focus of this application is exoskeleton
technology aimed at restoring locomotion for people with a
leg pathology [37]–[41]. Recently, dynamically stable crutch-
less exoskeleton walking has been demonstrated for patients
with paraplegia by leveraging the full nonlinear dynamics
of the system and generating dynamically stable gaits [42].
While this approach enables crutch-less exoskeleton walk-
ing, it is no longer optimal when exoskeleton technology is
extended to patients who are recovering muscle functionality.
A previous study showed that permitting partial assistance
and variability during step training enhanced stepping recov-
ery after a complete spinal cord transection in adult mice
[43]. As we are about to see, the framework presented in this
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paper can be used to enable assist-as-needed strategies while
guaranteeing coherence of the walking pattern. The method
presented here allows users to control their own motions
when they are performing well, but intervene when they are
not, so as to maintain a functional walking pattern. More
details about this method can be found in [44].

The exoskeleton used for this work, named Atalante,
was developed by the French startup company Wandercraft.
As shown in Fig. 18, this lower-body exoskeleton has 12 actu-
ated joints. The position and velocity of each actuated joint is
measured using a digital encoder. Additionally, the exoskele-
ton has four Inertial Measurement Units (IMUs) that are used
to provide additional information about the attitude of the
robot with respect to the world. To detect ground contact, four
3-axis force sensors are attached to the bottom of each foot.
All of the actuators and sensors are controlled by an embed-
ded computing unit running a real-time operating system.

The main advantage of the proposed framework is its
ability to not require offline computation given the system
dynamic. In this scenario, it means that the framework can
be applied to multiple patients without any overhead. Indeed,
in order to accommodate each patient, the exoskeleton is
equipped with thigh and shank length adjustments to change
the dimensions of the exoskeleton. A combined human-
exoskeletonmodel for each patient is generated to account for
each person’s unique physical characteristics. In particular,
this combined human-exoskeleton system can be mathemati-
cally represented as a rigid body system. A floating-base gen-
eralized coordinate system is constructed as q = (p, φ, qb) ∈
Q ∈ R18, where p ∈ R3 and φ ∈ SO3 denote the position
and orientation of the exoskeleton’s base frame with respect
to the world frame. The relative angles of the actuated joints
are denoted by qb ∈ R12. In total, the system has 18 degrees
of freedom, and is fully actuated when one foot is flatly in
contact with the ground.

1) VARIABLE ASSISTANCE FRAMEWORK
As discussed in [43], the correct muscle activation pattern is
an important criterion for the spinal learning process. To that
end, we utilise the proposed set invariance framework to
precisely control how much freedom is granted to the user,
as the better the motricity of the patient is, the more he or she
can be relied on to execute a stable walking pattern. First,
we choose joints that we want to let the user control: the
assisted joints. All the other joints will be rigidly controlled.
In this work, we choose to only assist the sagittal hip and
sagittal knee of the swing leg (cf. Fig. 18).

The architecture of the variable assistance framework,
as shown in Fig. 19, contains four main components. First,
a nominal gait is obtained from a neural network based library
built fromPHZD trajectories (cf. [42], [45]–[49]). This trajec-
tory is modulated by a deadbeat mechanism. This deadbeat
mechanism is critical in this case because the nominal joint
trajectory will not be followed very accurately when the user
is in control of the assisted joints.

The filtered trajectory qdes(·) is then fed into two separate
controllers. One is the baseline controller that plays back
the trajectory and generates position and velocity targets
qdes(t − ti) and q′des(t − ti) for the PID controllers that in turn
generate tracking torques ut (t). The flatfoot ankle controller
separately computes targets for the swing leg ankle that are
then substituted in place of the nominal ones.

The other controller is the variable assistance controller.
This controller is the heart of this variable assistance approach
and leverages the proposed controlled invariance framework.
The variable assistance controller has three subcomponents:
joint idealization, feedforward assistance, and virtual guide
filter.

The joint idealization component computes the torques
required to compensate for gravity and friction in the assisted
joints. The goal is to make these joints as transparent as
possible such that when there is no assistance, the user does
not feel any resistance that would impede his ability to walk
freely. This joint idealization component is, however, not suf-
ficient to make the exoskeleton fully transparent as the inertia
of the exoskeleton is not compensated for, which makes
the user’s legs harder to move. The feedforward assistance
component therefore provides feedforward torques uf (t) –
calculated during the PHZD gait generation process [42] –
to obtain a first-order level of compensation for the inertia
of the assisted joints. This does not truly compensate for
inertia, but at least provides enough assistance for the user to
move the exoskeleton legs along the desired trajectory. The
intensity of both idealization and feedforward components
can be adjusted to produce varying levels of user effort.

The virtual guide filter computes the joint torques uv(t)
required to limit the discrepancy between the actual and
desired trajectory of the assisted joints. To that end, we will
explore two approaches. First, the discrepancy limit is
described by a tube around the desired trajectory: a virtual
guide. The shapes and sizes of the virtual guides can be
chosen almost arbitrarily. In a second time, the discrepancy
will be characterised by the position of the swing foot with
respect to a nominal trajectory.

Finally, an impact detection block also records which
leg of the exoskeleton is in stance or swing, and generates
an ‘‘assisted joints selection matrix’’ that controls which
joints are being assisted at a given instant. Only these joints
are assigned the assistive torques. The remaining joints are
assigned the baseline tracking torques. The merging of these
torques comprises the final joint torques u(t) that are com-
manded to the exoskeleton.

2) JOINT-BASED VIRTUAL GUIDE FILTER
Formulation: In this first approach, each joint is idealized so
that it can be handled independently of the rest of the system.
We therefore consider the following dynamics for each joint:

J q̈ = uv + uf (t − ti)+ uext , (58)

where J is the inertia at the joint, uv is the torque the virtual
guide filter can apply, uf (t) the feedfoward torque applied to
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FIGURE 19. Architecture of the variable assistance framework.

the joint, and uext the torque applied by the exoskeleton user
on the joint. The state of the system is therefore x = [q, q̇]>.
The virtual guide S we want to constrain the joint to stay

in is characterized by:

h(t, x) = 1−
(
qdes(t − ti)− q(t)
qbound (t − ti)

)2

(59)

for some properly chosen qbound to achieve the desired shape
of the guide (cf. Fig. 20 for examples of shapes). Note that
this is a time varying set, so the propositions of Sec. VI have
to be modified as done in [44].

Because uext is not known ahead of time, a robust version
of the method presented in VI has to be used. The key is that
system (58) is monotone [50]. In this case, the safe backward
image is characterized by:

hΩT (t, x) = min
τ∈[0,T−t]

uext∈
{
uminext , u

max
ext

}h ◦ φub,uextτ (q) , (60)

where uminext and umaxext are the extreme values of the distur-
bance the user can generate. So in order to evaluate hΩT (t, q),
the numerical integration of the dynamics only has to be
performed twice each time assuming the extremal values of
the disturbance. The backup policy is chosen to be:

ub(t, x) = Kp(qdes(t−ti)−q)+Kd (q̇des(t − ti)−q̇) (61)

for some properly chosen gains Kp and Kd . For this work,
these gains were chosen to be the same as the one used for
the PIDs of the baseline controller.

Finally, the filtering law is given by:

uv(t, x) = (λ(t, q)+(1−λ(t, q)) λd (t, q)) ub(t, x), (62)

where λ(t, q) =
(
1− hΩT (t, q)

)3 and λd (t, q) = ζ
dhΩT (t,q(t))

dt
for some derivative gain ζ . The usage of this derivative term
helps dampen the behavior of the safety filter.
Experiments: The validation experiments were performed

on the empty exoskeleton as it hung in the air in an effort to
show the behavior of the filter without user perturbations and
without feedforward torque. The plots of the experimental
results, shown in Fig. 20, illustrate the actual joint angles over

30 steps with each step overlaid on top of each other. It can be
seen that for all tube shapes, the actual joint angles remained
inside of the bounds and the filter only acts when necessary.

Then, the variable assistance framework was tested with
a subject inside the exoskeleton and walking on a tread-
mill. The required assistive torque as well as the trajectory
tracking are presented in Fig. 21. It can be observed that
when the subject is passive under partial assistance, the joint
trajectories tend to group near the virtual guides as expected.
Alternatively, when the subject is active under partial assis-
tance, the actual joint trajectories tend to span more of the
virtual guide as the subject is actively trying to avoid hitting
the bounds of the guide. In all cases, the trajectories stay
contained within the virtual guides. For a video of these
experiments please see [51].

FIGURE 20. Left hip positions joint angles for the Exoskeleton empty and
hanging in the air. The plots corresponds to 30 right steps and each
subplot correspond to a different virtual guide shape.

3) FEATURE-BASED VIRTUAL GUIDE FILTER
One of the issues with this first approach is that the subject
has to follow the nominal trajectory which in practice is not
particularly anthropomorphic. This makes it difficult for the
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FIGURE 21. Comparison at the joint level between a subject actively
trying to walk and being passive under both full and partial assistance of
the exoskeleton. Because of early striking, most steps ended before the
phase variable reached 1, unlike in Fig. 20 where the exoskeleton was in
the air.

FIGURE 22. Simplified model of the exoskeleton and its swing leg.

subject to perform well. So to make the variable assistance
more permissive while still ensuring coherent walking if the
subject is not performing well, we propose to extend the
previous approach to a feature-based constraint instead of a

joint-based one. Here, we propose to constrain the trajectory
of the swing foot to ensure a correct ground clearance and
forward motion. This way, the user has more freedom on
individual joints trajectories which allows him to perform
more natural steps.

For this approach, the controller architecture remains the
same as in Fig. 19. Only the formulation of the virtual guide
filter is changed from the previous section.
Formulation: This time, we consider a simplified model

of the swing leg as a whole. In particular, we model the
swing leg as a double pendulumwhose joints corresponds the
sagittal hip and knee, the ankle joints being assumed locked
(cf. Fig. 22). The state of the system is now 4-dimensional:
x = [q, q̇]> with q = [q1, q2]>, and both hip and knee
joint torques are being filtered concurrently. For simplicity,
the torso pitch angle q0 is fixed at the desired angle chosen to
generate the nominal trajectory. The dynamics can be found
using classical Euler-Lagrange formalism and is of the form:

M (q)q̈ = u− C(q, q̇)− g(q), (63)

where u = [u1, u2]> is the vector of joint torques.
The virtual guide is now characterized by the forward posi-

tion of the swing footwith respect to the nominal trajectory
(cf. Fig. 22):

h(t, x) = px (q(t))− px (qdes(t − ti))+ εx . (64)

In other words, the swing foot is constrained to move forward
at least as fast as it does in the nominal trajectory.

The backup policy is chosen to be the same as for the
joint-based virtual guides—PID tracking of the nominal
trajectory—and similarly with the filtering law. The constant
εx is chosen so as to allow the backup law to steer the system
away from the boundary of the virtual guide.
Experiments: The validation experiments were performed

on the empty exoskeleton as it hung in the air. The plots of
the experimental results, shown in Fig. 23, illustrate the foot
position and constraints over several steps. It can be seen that
in the absence of user effort, the proposed formulation results
in the actual foot trajectory following closely the nominal
one.

Then, this approach was tested with a subject inside the
exoskeleton and walking on a treadmill. The results are pre-
sented in Fig. 24 and 25. It can be observed that in this
case, the subject can freely execute a gait with longer step
length if he desires (cf. Fig. 25), while still guaranteeing that
a minimum step stride is respected if the subject is not able
to perform longer steps (cf. Fig. 24).

D. SAFE EXPLORATION OF UNKNOWN ENVIRONMENTS
WITH A QUADCOPTER UAV
Finally, we apply this controlled set invariance framework to
the problem of safe exploration of an unknown environment
(note that more information about this work can be found
in [52]). This task is particularly relevant for drones whose
usage is becoming prevalent for tasks such as autonomous
deliveries, aerial surveillance, or disaster relief. Most of these
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FIGURE 23. Foot level variable assistance for the Exoskeleton empty and
hanging in the air.

missions involve navigating through unknown or uncertain
environments. Due to the altitude of the vehicles and their
often exposed propellers, collisions are catastrophic for the
drone and might also be dangerous for its surroundings.
For this reason, collision avoidance techniques are crucial to
further the use of these systems in everyday life.

In typical drone flight, collision avoidance is the topic
of navigating safely through an environment. This usually
translates into creating and tracking trajectories that take
the drone through the surrounding free space and that avoid
occupied or uncertain space. While this approach to colli-
sion avoidance can be effective in practice, as evidenced in
[18], [53], [54], its computational complexity necessitates
simplified abstractions of the model and obstacles. Couple
to that the inherent uncertainty associated with mapping an
environment and it is easy to see why such approaches are
typically conservative, which can lead to slowmobility, while
still lacking guarantees of collision-free tracking of the trajec-
tories.

FIGURE 24. Foot Level Assistance for an able-bodied subject being
passive.

The authors therefore believe that trajectory planning is not
the most effective layer in which to enforce safety. Planner
updates are too infrequent, and there is too much uncertainty
stemming from the aforementioned hurdles to be able to
provide rigorous guarantees of safety with such a method.
Instead, we propose an approach leveraging the proposed set
invariance framework to ensure collision avoidance enforced
at a control level while relying solely on local sensing infor-
mation (i.e. no mapping is required). This approach can be
applied in conjunction with any planning algorithm (or even
a human operator), which means that it allows for planning
algorithms that are more aggressive, since they do not need
to guarantee collision avoidance or dynamic feasibility.

The planner used for this work is designed to work in
tandem with the Octomap mapping library [55] to represent
the environment map. The path planning is a basic implemen-
tation of the A∗ algorithm that searches for a path to a nearby
frontier cluster. The search algorithm runs directly on the
octomap, which is possible via implementation of algorithms
that enumerate neighbors in a 3D octree [56]. Special heuris-
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FIGURE 25. Foot Level Assistance for an able-bodied subject actively
trying to take long steps.

tics encourages the planner to visit large clusters that are close
to the current position of the drone. After a global plan is
achieved, the local planner creates a spline and continuously
updates a target point on this spline in front of the UAV.
The position of this target point in the UAV frame is then
used as the desired velocity Vdes for the performance filter
(cf. Fig. 27).

1) COLLISION AVOIDANCE FRAMEWORK
The goal of this Collision Avoidance Framework is to allow
the vehicle to safely navigate around any unknown environ-
ment. As discussed above, we want to only rely on local
sensing information, i.e. no mapping will be performed. It is
therefore fundamental that the sensing method used allows
full 360 degrees coverage of the vehicle surroundings. The
goal is to define the safety set as an envelope around the UAV
in which we know there is no obstacles.

For this scenario, the environment is assumed to be static,
and we will use a point-cloud representation of the environ-
ment. We will assume that this point-cloud is obtained from a

FIGURE 26. Simulation environment. The top shows the desired and
filtered velocity commands based on the closest point in the point cloud.
The bottom shows the drone navigating through the cave.

FIGURE 27. Safety filtering control structure for UAV exploration.

ray-based method of sensing such that all segments between
the vehicle and the points of the point-clouds corresponds
to unoccupied space (i.e. does not go through any obsta-
cles). Points therefore correspond to the boundary between
free space and either physical obstacles or unknown space
(cf. Fig. 31). The safety set will hence be described as in (4)
with:

hi = ‖p− pi‖2 −12
h, (65)

where p is the position of the UAV in cartesian space, pi
are the points of the point-cloud, and 1h a hard margin
introduced to account for the size of the vehicle (cf. Fig. 28).
Most ray-tracing sensors available to date do not enjoy

the same high update rate as the sensors necessary for low
level control (i.e. IMU, visual odometry, etc. . . ). Therefore,

VOLUME 8, 2020 187269



T. Gurriet et al.: Scalable Safety Critical Control Framework for Nonlinear Systems

FIGURE 28. Illustration of the safety filter. From left to right is a depiction
of the evolution of the drone as it gets close to the obstacles. In yellow to
blue are the backup trajectories. In grey are the hypothetical positions of
the drone if it were to follow the backup trajectory. The size of the drone
icon corresponds to its velocity.

the position of the UAV only has to be tracked between each
environment sensor update. This is one of the main advan-
tages of the proposed framework over the ones requiring
global planning and positioning. Only local positioning over
a duration corresponding to the update period of the environ-
ment sensor is required.

Similarly to Sec. VII-B, the safety set is continuously
changing as the environment gets explored. However, con-
trary to Sec. VII-B, the time dependency of the safety set
is not known ahead of time and so the safety set does not
necessarily always grow inside the state space (cf. Fig. 31).
Furthermore, it is not trivial to find an efficient backup policy
for all the possible shapes of safety set that can arise during
exploration. Finally, embedded systems for UAVs do not
quite have the computational capabilities to run a QP-based
safety filter as for Sec. VII-B, especially at the control rates
necessary for such agile vehicles.

To tackle this problem, we will therefore take the same
approach as in Sec. VII-C and use the scalable safety filter
of Sec. VI. The filtering law is chosen to be:

vsafe(x) = λ(x)vperf (x)+ (1− λ(x)) vb(x), (66)

with

λ(x) = 1− e
−3h

S
ub
T

(x)/(1s−1h)
, (67)

where 1s is the soft margin (cf. Fig. 28).
A key difference with the work presented so far though

is that the safety filter is placed before a velocity controller
(cf. Fig. 27). This velocity controller closes the loop around
desired velocities in the world frame. In this work, it is a
simple Velocity-Attitude-Rates cascade PID controller, but
any controller that can track a desired velocity would work
in this framework. This has two effects: first it makes the
overall system more robust to model uncertainty. Secondly,
it allows us to think about backup policies in a space that is
simpler to grasp than the actuator space (in that case a 3D
velocity space). Therefore, efficient backup policies can be
constructed more easily.

FIGURE 29. Illustration of the UAV backup law.

FIGURE 30. Illustration of the UAV performance filter.

FIGURE 31. Illustration of the UAV recursive feasibility issue.

The backup policy chosen for this application is inspired
by previous work on a geofencing for civilian UAVs [57].
The idea is to slow down to a halt while steering the vehicle
awaywhen getting close to obstacles. This can be achieved by
commanding Vbak = 0 unless the vehicle is between the soft
and hard margins, in which case the Vbak vector is pointed
away from the nearest obstacles as depicted in Fig. 29.

The effect of that backup policy in conjunction with the
filtering law is depicted in Fig. 28. However, even though
this approach guarantees safety of the system, it yields poor
performances in some circumstances. In particular, it does
not allow the system to smoothly glide along obstacles as the
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FIGURE 32. Pictures of the cave (in red) and the octomap (in yellow) being built throughout the 28 minutes it takes for the drone to completely explore
the cave.

backup policy is intermittently switched to and from, leading
to very oscillatory behaviors. Therefore, in order to increase
the overall performance of the system, another component is
used to filter the velocity inputs commanded by the planner
in order to minimize the interventions from the safety filter:
the performance filter.

The base of this performance filter is the same as the one
of the backup policy (cf. [57]). The desired velocity is altered
in a way that slows down convergence to the obstacles when
getting close to it, and incentivizes divergence when past the
soft margin. However, the closest point considered for the
filtering of Vdes is not based on the distance between the cur-
rent drone position and the obstacles, but the shortest distance
between the drone position along the backup trajectory
and the obstacles (cf. Fig. 30). Furthermore, the distance to
this closest point is the shortest distance between the drone
position along the backup trajectory and the obstacles. This
way, the performance filter is able to better anticipate incom-
ing obstacles which leads to less intrusions of the backup
trajectory into the soft margin, which in turn leads to less
interventions of the safety filter. In the end, these 3 compo-
nents work together to provide a filter withminimal conserva-
tiveness andwith guaranteed collision avoidance (cf. Fig. 27).

2) RECURSIVE FEASIBILITY
As discussed before, at each update of the environment sen-
sors, a new safety set is redefined. This means that after an
update, the system could end up outside of SubT as illustrated
in Fig. 31. To address this use, there are two approaches.

A first approach it to check for each update whether or not
the systemwould end up inside of SubT with this new safety set.
If it does, then the update can be carried out, otherwise this
new safety set is discarded and the current one continues to
be used until the next update. This approach carries a non-
negligible computational weight as the safety filter has to
be ran twice when an update is not successful. One must

also be careful because when safety set updates are skipped,
the system only relies on localisation data whose drift can
become substantial.

A second approach is to rely on the backup policy to bring
the system to a stop if the system ends up outside of SubT after a
safety set update. Indeed, even though the system is outside of
SubT , it is not before the update, which means that the backup
policy can safely bring the system to a stop. As the slowing
down occurs, the safety set can continue to be updated in hope
to regain feasibility of the safety filter. In practice, feasibility
is regained quickly and this is the approach we take for the
following simulations.

3) SIMULATION
The simulation environment is a ROS-based C++ environ-
ment. The point-cloud data is obtained from a modified
Velodyne LIDAR sensor inside of the Gazebo simulator at
a frequency of 10 hz. The simulation, including visualization
in Gazebo and RVIZ, was able to run at a frequency of 300 Hz
on a modern laptop computer.

The cave environment to explore was a large 240m by
460m structure with one entrance and one exit (cf. Fig. 32
and Fig. 26). The cave height is constant at roughly 3m, but
the width is constantly changing, and gets as small as 0.5m
with several protruding areas.

The quadrotor was able to explore the entire 240m by 460m
cave in just under 28 minutes (cf. Fig. 32). The maximum
allowable speed from the planner was 5 m/s, which the drone
reached during open areas of the cave. The average desired
speed sent from the planner was 4.09 m/s, and the average
speed of the drone after the safety filter was 3.28 m/s.

A positive value of the barrier functions was maintained
throughout, meaning the quadrotor never went closer than the
minimum allowed distance from a point in the point-cloud,
which was set at 1h = 0.2m meters. For a video of these
simulations please see [58].
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FIGURE 33. Illustration of the issue when using a mapping sensor with
restricted field of view. An assumption about the safety of the vehicle has
to be made at the initialization of the mapping in the form of a bubble of
free space around the vehicle. The black line around the UAV represent
the boundary between free and either unknown or occupied space.

FIGURE 34. Illustration of the mapping process. The black line around the
UAV represent the boundary between free and either
unknown or occupied space.

FIGURE 35. Image of the mapping process in the simulation environment.
The free space boundary is represented by a point-cloud.

4) RESTRICTED FIELD OF VIEW
So far, we required that the vehicle be equipped with sensors
that cover all of the UAV surroundings. Even though this is
possible with available technology, such a sensing capability

would be fairly expensive and would require a large enough
vehicle to carry the sensors as well as an embedded computer
capable of processing that much data. Therefore, we propose
to extend the proposed approach for vehicle equipped with
only partial sensing of the vehicle surrounding. This is for
example the case of most UAVs that are equipped with a
single forward-facing depth-sensing camera.

In that case, each individual sensor point-cloud is not
sufficient to create a safety set that envelops the vehicle as
illustrated in Fig. 33. It is therefore necessary to implement
a mapping strategy to create a safety set envelope that the
vehicle can evolve in. Note, however, that for the first iteration
of the algorithm, the vehicle is not inside the safety set, so an
assumption must be made that the immediate surroundings of
the vehicle are safe for this 1st iteration (cf. Fig. 33). During
subsequent iterations, mapping can be performed based only
on new sensor data and a safety set can be progressively built
as illustrated in Fig. 34.
To implement this approach in a way that leverages the

precision and efficiency of a point-cloud representation of
the safety set, we propose an algorithm that combines point-
cloud and voxel representations of the environment. A naive
approach would be to just fusion the point-clouds given by
the sensor, however this would only define the boundary
between free and occupied space, but not between free and
unknown space. One could therefore rely on a voxel-based
representation of the environment, but this would come at the
cost of conservatism on the location of the obstacle. One way
to address this issues is therefore to combine both approaches.

Point-cloud data is therefore used to generate a voxel map
of the environment, but point-cloud data is also conserved
to refine the position of the frontier between free and occu-
pied space (cf. Fig, 35). Successive point-clouds are merged
together and the resulting point-cloud is down-sampled using
the generated voxel map such that each voxel contains only
one point. The position of this point is then associatedwith the
corresponding voxel. A point-cloud of the safety set envelope
is then generated by using the down-sampled point-cloud
augmented by another point-cloud of the centers of all voxels
on the frontier between free and unknown spaces. The rest of
the safety filtering algorithm is the same as in the previous
section.

The simulated cave environment is explored again using
an Intel Realsense as the only source of environmental data.
This time, the yaw of the vehicle is controlled so as to point
forward with respect to the path. As expected, the UAV is able
to explore the cave safely, but does so more slowly overall.

VIII. CONCLUSION AND FUTURE WORK
In this work, a Scalable Safety Critical Control Framework is
presented. This frameworkmakes it possible to enforce safety
for high dimensional nonlinear systems in a minimally inva-
sive way. The trade off between computational complexity
and conservativeness is analysed and approaches with vary-
ing levels of scalability are proposed. The idea of compos-
ing backup controllers though functional approximation of
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optimal policies is explored as a potential method of combin-
ing the advantages of scalability seen in simpler controllers
with the permissiveness characterising optimal controllers.
Finally, the effectiveness of the framework is illustrated with
multiple relevant applications. In particular, we show how
this framework both makes it possible to guarantee safety in
time varying and uncertain environments, and enables fast
and safe exploration of unknown environments with UAVs.
We showcase the effectiveness of the framework on hardware
though the safe control of a two-wheeled inverted pendulum
(Segway), and with the assistive control of a lower body
exoskeleton.

As touched upon in the work of Sec. VII-D, the extension
of this work to handle dynamics and sensing uncertainty is
key to providing meaningful guarantees for real world safety
critical applications.

Another challenge with safety critical control frameworks
in general is the issue of representing the environment in such
a way that provides meaningful guarantees when used in such
framework. In Sec. VII-D, a discrete point-cloud represen-
tation is used that does not actually provide guarantees of
avoidance with obstacles. Indeed, with this representation,
avoidance with only the parts of the obstacles represented by
the points of the point-cloud will be avoided, which can be
an issue if the point-cloud is not dense enough. Furthermore,
in this same work, a map of the environment is used while it
is generated from perfect estimation of the vehicle position,
which is obviously not realistic. Developing strategies for
mapping the environment that are dense and truly safe, i.e.
guarantee that no obstacles are within the free space while
accounting for all sources of uncertainties, and are not too
computationally expensive is a real challenge that deserves
attention.
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