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ABSTRACT

This paper proposes a cost function constructed from hu-
man data, the human-based cost, which is used to gauge the
“human-like” nature of robotic walking. This cost function is
constructed by utilizing motion capture data from a 9 sub-
ject straight line walking experiment. Employing a novel
technique to process the data, we determine the times when
the number of contact points change during the course of a
step which automatically determines the ordering of discrete
events or the domain breakdown along with the amount of
time spent in each domain. The result is a weighted graph or
walking cycle, associated with each of the subjects walking
gaits. Finding a weighted cycle that minimizes the cut dis-
tance between this collection of graphs produces an optimal
or universal domain graph for walking together with an opti-
mal walking cycle. In essence, we find a single domain graph
and the time spent in each domain that yields the most “nat-
ural” and “human-like” bipedal walking. The human-based
cost is then defined as the cut distance from this optimal
gait. The main findings of this paper are two-fold: (1) when
the human-based cost is computed for subjects in the ex-
periment it detects medical conditions that result in aberra-
tions in their walking, and (2) when the human-based cost is
computed for existing robotic models the more human-like
walking gaits are correctly identified.
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Figure 1: An example of a domain breakdown, i.e.,
the discrete phases of a walking gait, based upon a
specific temporal ordering. The red dots indicate
the constraints enforced in each discrete phase (or
domain).
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1. INTRODUCTION

While constructing a bipedal walking robot, beyond the
immediate goal of obtaining stable walking, a cost function
is generally chosen to optimize certain system parameters.
The choice of a cost function can have a dramatic impact on
the resulting gait. In contrast to other robotic applications,
the goal of bipedal walking is typically not to minimize the
energy expended but rather to achieve the more nebulous
goal of natural or human-like walking. The most popularly
chosen cost function to obtain bipedal walking are torque
squared [5, 11, 20] or the specific cost of transport [8, 12,
15]; however, no clear connection exists between minimizing
these types of costs and achieving anthropomorphic walk-
ing. This lack of connection motivates the question: can
a cost function be constructed that, when minimized, pro-
duces human-like gait?

This paper proposes a cost function based upon human-
walking data: the human-based cost, built upon the idea of
comparing the temporal ordering of events for humans and
robots and, more specifically, the amount of time spent in
each successive domain. One of the most important deci-
sions made during the design of controllers for bipedal robots



is the temporal ordering of events that occur during the
walking gait, i.e., the discrete phases (or domains) of the
walking termed a domain breakdown. This decision alone
determines the constraints that are enforced at any given
time during the walking gait, and thus determines the con-
tinuous dynamics (through holonomic constraints) on each
phase and the discrete dynamics (impact equations) between
each phase. Therefore, given the equations of motion for a
bipedal robot, the temporal ordering of events completely
determines the mathematical model for the biped. The tem-
poral ordering of events not only determines the underly-
ing mathematical model of a bipedal robot, but is essential
during control design; specific controllers are often designed
or constrained by the specific choice of domain breakdown.
When controllers are obtained that yield a walking gait, this
gait is again related back to the domain breakdown since
one can consider the amount of time spent in each discrete
domain. The end result is a weighted cycle associated to
a walking gait, termed a walking cycle (see Fig. 1 for an
example).

Given the domain breakdown’s significance, this paper
proposes employing walking cycles collected from human
walking experiments to develop a cost function, the human-
based cost, that judges the “human-like” nature of a specific
gait. We begin by considering a 9 subject straight line walk-
ing experiment recorded using motion capture. From this
data, we develop a novel and automatic method for deter-
mining the domain breakdown of each subject. The end
result is a collection of walking cycles. We then find the
cycle graph and associated weighting that is the minimum
cut distance between all of the subjects, termed the optimal
walking cycle, which gives a “universal” domain breakdown
and associated walking cycle for walking. The human-based
cost is the cut distance between a walking cycle and the op-
timal walking cycle. To demonstrate the usefulness of the
proposed cost function we compute the human-based cost
for both the subjects in the experiment along with existing
robotic models. When the human-based cost is computed
for the subjects in the experiment we are able to automat-
ically find preexisting medical conditions without a priori
knowledge of such conditions. Computing the human-based
cost for existing bipedal robotic models confirms that robotic
gaits that are more anthropomorphic in nature have a lower
human-based cost.

The applications of the results of this paper have the po-
tential to be far-reaching in the bipedal robotic community.
There is currently a fractured landscape when one consid-
ers only domain breakdowns. Most models assume a single
domain model [9, 18, 20] which we show in this paper, even
under the best case scenario, results in an unnatural gait
due to their high human-based cost. When bipedal models
are extended beyond a single domain, there is no unity as
to which domain breakdown should be used; temporal or-
derings have been chosen ranging from one discrete phase
to five, e.g., [10] considers one, [1, 6, 7, 13, 19] considers
two, [16, 19] considers three, [4, 11] considers four, and [17]
considers five. This lack of consistency among models in the
literature motivates the desire to determine if there does in
fact exist a single “universal” domain breakdown that should
be used when modeling bipedal robots, especially in the con-
text of obtaining human-like bipedal walking. This is what
the optimal walking cycles that are determined in this paper
offer.

It is important to note that human gait has been studied
at great length by the biomechanics community [2, 21, 22,
23]. This work has focused almost entirely on either under-
standing the kinematic nature of human gait or muscle co-
ordination during human gait. In contrast to these classical
biomechanics approaches, we use human data to determine
the temporal ordering of events. Since a temporal ordering
of events is crucial in determining the dynamical model of a
biped, the discovery of a “universal” temporal ordering could
dramatically aide in the development of a bipedal robot with
an anthropomorphic gait.

2. FROM CONSTRAINTS TO MODELS

Bipedal robots display both discrete and continuous be-
havior, i.e., they are naturally modeled as hybrid systems.
Bipeds evolve in a continuous fashion according to tradi-
tional equations of motion when a fixed number of points
on the biped are in contact with the ground, e.g., when one
foot is flat on the ground while the other swings forward.
The discrete behavior in the system occurs when the num-
ber of contact points changes.

In this section, we formally introduce hybrid systems and
discuss how the equations of motion of a robot together with
a temporal ordering of constraints completely determines
the hybrid model of the system. That is, when modeling
bipedal robots, one needs only the Lagrangian of the robot
and a domain breakdown.

2.1 Hybrid Systems.

Hybrid systems (or systems with impulse effects) have been
studied extensively in a wide variety of contexts and have
been utilized to model a wide range of bipedal robotic mod-
els. In this section, we introduce a definition of a hybrid
system applicable to bipedal walking.

Graphs and Cycles. A graphisatupleI’ = (V, E), where
V' is the set of vertices and E C V x V is the set of edges;
an edge e € E can be written as e = (3, j), and the source of
e is source(e) = i and the target of e is target(e) = j. Since
steady state bipedal walking is naturally periodic, we are
interested in hybrid systems on a cycle; therefore, we are
interested in graphs that contain cycles or are themselves
cycles. A directed cycle (or just a cycle) is a graph £ = (V, E)
such that the edges and vertices can be written as:

vV = {UO,Ul,--quflL (1)

E = {eo=(vo,v1),...,ep—1 = (Vp-1,70)}.

Since in the case of a cycle, the edges are completely deter-
mined by the vertices, we sometimes simply denote a cycle
by: £: vo — v1 = --- — vp_1. In the case when a graph I
is being considered with more than one cycle, we denote a
cycle in the graph by £ C T.

Example 1. The domain graph pictured in Fig. 1 has
an underlying graph that is a directed cycle: T'y, = (Vy, Ey).
In particular, there are 4 vertices and edges, which results
in the cycle:

Ly [Lh,lt] — [It] — [lt,7h] — [lt,rh, rt].

With the notion of a directed cycle, we can introduce the
formulation of a hybrid system that is of interest in this

paper.



Definition 1. A hybrid system in a cycle is a tuple
HE =, D,U,S,AFG),
where

e (= (V,E) is a directed cycle

D ={D,}vev is a set of domains, where D, C R™ X
R™ is a smooth submanifold of R™ x R™* (with R™
representing control inputs),

U = {Uy}vev, where U, CR™ is a set of admissible
controls,

S = {Sc}eck is a set of guards, where Se C Dggurce(e)

A = {Aclecr is a set of reset maps, where A,
Rsource(e) — R"target(e) 45 g smooth map,

FG = {(fv,9v)}ver, where (fv,gv) s a control system
on Dy, i.e., & = fo(x)+gv(z)u forxz € D, andu € U,.

2.2 Hybrid Systems from Constraints.

The remainder of this section illustrates how a Lagrangian
for the biped, together with a domain breakdown (which
determines the active constraints on each vertex of a directed
cycle), allows one to explicitly construct a hybrid model of
the system. Many details of this construction summarize
the procedure presented in [11].

2.2.1 General Setup

We begin with a bipedal robot either in two or three
dimensions—the discussion in this paper is applicable to ei-
ther case. We first construct a Lagrangian for the biped
when no assumptions on ground contact are made and then
enforce the ground contact conditions through constraints
as determined by the domain graph.

Lagrangians. Let Ry be a fixed inertial or world frame,
and R, be a reference frame attached to the body of the
biped with position p, € R® and orientation ¢, € SO(3).
Consider a configuration space for the biped @, i.e., a choice
of (body or shape) coordinates for the robot where typically
gr € Qr is a collection of (relative) angles between each
successive link of the robot. The generalized coordinates
of the robot are then given by ¢ = (pf,é¢,q-)" € Q =
R®x SO(3) x Q, with Q the generalized configuration space.

The Lagrangian of a bipedal robot, L : TQQ — R, can be
stated in terms of kinetic and potential energies as:

The Euler-Lagrange equations yield the equations of motion,
which for robotic systems [14] are stated as:

D(q)id + H(q,q) = B(q)u, (2)

where D(q) is the inertia matrix, B(q) is the torque distribu-
tion matrix (and only depends on ¢,), B(q)u is the vector of
actuator torques and H(q, ¢) = C(q, ¢)¢+G(q)—T(q, ¢) con-
tains the Coriolis, gravity terms and non-conservative forces
grouped into a single vector.

Contact Points. The continuous dynamics of the system
depend on which constraints are enforced at any given time,
while the discrete dynamics depend only on the temporal
ordering of constraints. Constraints and their enforcement
are dictated by the number of contact points of the system

with the ground. Specifically, the set of contact points is the
set C = {c1,¢2,...,cr}, where each ¢; is a specific type of
contact possible in the biped, either with the ground or in
the biped itself (such as the knee locking).

If the knees do not lock, and assuming reasonable behavior
by the feet, e.g., no standing on one corner of the foot, there
are four contact points of interest given by:

Cu = {lh,lt,rh,rt},

where [h and It indicate the left heel and toe, and rh and rt
indicate right heel and toe, respectively. If the knees lock,
additional contact points for the left and right knee, Ik and
rk, must be considered. This yields a set of contact points:

Ci = {lh,lt,lk,rh,rt, rk}.

Constraints. Contact points introduce a holonomic con-
straint on the system, 7. for ¢ € C, which is a vector valued
function 7. : Q@ — R™¢, that must be held constant for the
contact point to be maintained, i.e., n.(q) = constant € R"¢
fixes the contact point but allows rotation about this point if
feasible. It is useful to express the collection of all holonomic
constraints in a single matrix 7(g) € R™* /€l as:

mn(q) 0 0 0
_ 0 mulqg) 0 0
0 0 0 nrt(q)
where n = ECEC n.. To determine the holonomic con-

straints for the contact points of interest, i.e., C, and Ci,
two cases must be considered: one for foot contact points
and another for knee contact.

In the case of foot contact, consider a reference frame R.
at the contact point ¢ € {lh,lt,rh,rt} such that the axis
of rotation about this point (either the heel or toe) is in
the z direction. Then the rotation matrix between Ry and
R. can be written as the product of three rotation matrices
Rot(z, ¢Z)Rot(y, p?) Rot(z, ¢7) and the position and orienta-
tion of R, relative to Rp is given as n.(q) = (pe(q)”, ¢, o¥) T,
where p.(q) is the position of ¢, since ¢Z is free to move
while ¢? and ¢¥ must be held constant. The end result of
this choice of coordinates is a holonomic constraint n.(q) =
constant, which fixes the foot contact point to the ground
but allows rotation about the heel or toe depending on the
specific type of foot contact. In the case of knee contact, let
gc, ¢ € {lk, Tk}, be the relative angle of the left or right knee.
The holonomic constraint is then given by n.(¢) = g., and
enforcing the constraint 7.(q) = 0 keeps the knee locked.

Another class of constraints that are important are uni-
lateral constraints, h. for ¢ € C, which are scalar valued
functions, h. : @ — R, that dictate the set of admissi-
ble configurations of the system; that is hc(g) > 0 implies
that the configuration of the system is admissible for the
contact point ¢. Again, there are two types of these con-
straints to consider depending on whether foot or knee con-
tact is being considered. In the case of foot contact, as-
suming that the walking is on flat ground, these constraints
require the height of a contact point above the ground be
non-negative: hc(q) = pZ(¢) > 0. In the case of knee con-
tact, these constraints require the angle of the knee be pos-
itive: hc(q) = g > 0. These constraints can be put in the
form of a matrix h(q) € RI9¥I9 in the same manner as the
holonomic constraints.



Domain Breakdowns. A domain breakdown is a di-
rected cycle together with a specific choice of contact points
on every vertex of that graph. To define this formally, we as-
sign to each vertex a binary vector describing which contact
points are active in that domain.

Definition 2. Let C = {c1,ca,...,ck} be a set of contact
points and £ = (V, E) be a cycle. A domain breakdown is a
function B : 0 — Z5 such that B(v); = 1 if ¢; is in contact
on v and B(v); = 0 otherwise.

Example 2. In the case of the graph Iy, given in Exam-
ple 1 and set of contact points C = {lh,lt,rh,rt}, for the
domain breakdown given in Fig. 1, this domain breakdown
is formally given by B, : £, — 73 where By ([lh, 1t]), B.([lt]),
B.([lt,rh]) and By ([lt,rh,Tt]) are given by:

1

=]

B.(0) : —

SO =O
_= == O

1
0
0

O =

2.2.2  Hybrid System Construction

We now demonstrate that given a Lagrangian, a directed
cycle, and a domain breakdown, a hybrid system can be
explicitly constructed. Since the Lagrangian is intrinsic to
a robot, this result proves that a domain breakdown, which
is determined by the enforced contact points, alone dictates
the mathematical model of a biped.

Continuous Dynamics. We explicitly construct the con-
trol system & = fy,(x) + go(z)u through the constraints im-
posed on each domain through the domain breakdown.

For the domain v € V, the holonomic constraints that are
imposed on that domain are given by:

7w (q) = n(q)B(v),

where the domain breakdown dictates which constraints are
enforced. Differentiating the holonomic constraint yields a
kinematic constraint:

‘]U (Q)q = 07
where J,,(¢) = RowBasis (8"57(1(‘7)) is a basis for the row space

of the Jacobian (this removes any redundant constraints so
that J, has full row rank). The kinematic constraint yields
the constrained dynamics on the domain:

D(q)i+ H(q,4) = B(q)u+ Ju(q)" F, (3)

which enforces the holonomic constraint; here D, H and
B are as in Equation (2) and F, is the wrench containing
forces and moments expressed in the reference frame R. [14].
To determine the wrench F;,, we differentiate the kinematic
constraint:

9Jv(q) .
dq ¢=0

and combine this equation with Equation (3) to obtain an
expression for Fy(q, ¢, u) which is affine in u. Therefore, for
xz = (q¢7,¢")T, Equation (3) yields the affine control system
&= fuo(x) + go()u.

Discrete Dynamics. We now construct the domains,
guards and reset maps for a hybrid system using the domain
breakdown.

Jo(a)d +

Given a vertex v € V, the domain is the set of admis-
sible configurations of the system factoring in both friction
and a unilateral constraint. Specifically, from the wrench
Fy(q,q,u), one can ensure that the foot does not slip by
considering inequalities on the friction which can be stated
in the form: w,(q)T Fo(q,d,u) > 0, with p,(g) a matrix of
friction parameters and constants defining the geometry of
the foot (see [11] for more details). These are coupled with
the unilateral constraint on this domain, h,(q) = h(q)B(v),
to yield the set of admissible configurations:

Au(g, G u) = ”“(q)foq(;]’q’“) > 0. (4)

The domain is thus given by:
Dy ={(q,¢,u) € TQ x R™ : Ay(q,¢,u) = 0}.

The guard is just the boundary of this domain with the
additional assumption that set of admissible configurations
is decreasing, i.e., the vector field is pointed outside of the
domain, or for an edge e = (v,v’) € E,

Ge={(¢g,¢,u) € TQ xR™ : Ay(q,q4,u) =0
and A, (q,¢,u) < 0}.

The impact equations are given by considering the con-
straints enforced on the subsequent domain. For an edge
e = (¢,4') € E, the post-impact velocity ¢ is given in
terms of the pre-impact velocity ¢~ by:

¢"=Pe(q,q7) = =D g (Jy D g) " Iy)q”

with I the identity matrix. This yields the reset map’:

Re(q,4) = { Pe(qu) ]

The end result is that given a domain breakdown and a
bipedal robot, the hybrid model for the biped is completely
determined.

3. DOMAIN BREAKDOWNS FROM
HUMAN DATA

In this section, we determine the domain breakdown for 9
human subjects during walking. We begin by discussing the
experiment and how the data was handled. We then present
a method for extracting the times when the constraint for a
given contact point is enforced through a method that fits
the “simplest” function to the motion of the contact point
when it is not enforced; the time intervals during a step when
the constraints are enforced are simply the times when this
function is not being followed. The end result of this proce-
dure is a temporal ordering of events, which yields a domain
breakdown. The domain breakdowns for all 9 subjects are
presented in the case of no knee-lock and knee-lock (the mo-
tivation for considering both cases is discussed further in
this section).

Walking Experiment. Data was collected on 9 subjects
using the Phase Space System?, which computes the 3D po-
sition of 19 LED sensors at 480 frames per second using
12 cameras at 1 millimeter level of accuracy. The cameras

'Note that in order to get periodic behavior in the walking,
the “left” and “right” leg must be “swapped” at one of the
transitions; this “trick” is common throughout the literature.
*http://www.phasespace.com/



Figure 2: Illustrations of the experimental setup
(left) and sensor placement on each foot (middle and
right). Each LED sensor was placed at the joints
as illustrated with the red dots on the right lateral
(middle) and anterior aspects (right) of the each leg.

were calibrated prior to the experiment and were placed to
achieve a 1 millimeter level of accuracy for a space of size
5 by 5 by 5 meters cubed. 8 LED sensors were placed on
each leg at the joints on on the heel and toe, 1 LED sensor
was placed on the sternum, 1 LED sensor was placed on the
back behind the sternum, and 1 LED sensor was placed on
the belly button. Each trial of the experiment required the
subject to walk 3 meters along a line drawn on the floor.
Each subject performed 12 trials, which constituted a single
experiment. 3 female and 6 male subjects with ages rang-
ing between 17 and 77, heights ranging between 161 and
189 centimeters, and weights ranging between 47.6 and 90.7
kilograms. Table 3 describes the measurements of each of
the subjects. The data for each individual is then rotated so
that the walking occurs in the z-direction and for each sub-
ject, the 12 walking trials are averaged (after appropriately
shifting the data in time) which results in a single trajec-
tory for each constraint for each subject for at least two
steps (one step per leg); the resulting data can be seen in
Fig. 4. Any interested researcher can perform analysis on
the collected data®.

*http://wuw.eecs.berkeley.edu/ ramv/HybridWalker
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Age Welght Helght L1 Lz L3 L4
30 90.7 184 14.5 | 8.50 | 43.0 | 44.0
19 53.5 164 15.0 | 8.00 | 41.0 | 44.0
17 83.9 189 16.5 | 8.00 | 45.5 | 55.5
22 90.7 170 14.5 | 9.00 | 43.0 | 39.0
30 68.9 170 15.0 | 8.00 | 43.0 | 43.0
29 59.8 161 14.0 | 8.50 | 37.0 | 40.0
26 58.9 164 14.0 | 9.00 | 39.0 | 41.0
77 63.5 163 14.0 | 8.00 | 40.0 | 42.0
23 47.6 165 15.0 | 8.00 | 45.0 | 43.0

0| 00| ~1| o] | | wof po| =
= EEEEEHE

Figure 3: Table describing each of the subjects.
The subject number is in the left column and
the Li,Ls, L3, Ly measurements correspond to the
lengths described in Fig. 2. The measurement in
column 4 is in kilograms (and was self reported) and
the measurements in columns 5-9 are in centimeters.
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Figure 4: The data for the height of the heel (left),
height of the toe (middle) and angle of the knee
(right) together with the fittings of a constant,
Gaussian, and constant for the heel (left), a con-
stant, 4 order polynomial, and constant for the
toe (middle) and a constant, Gaussian, and constant
for the knee (right). The vertical lines indicate the
transitions points between the fitting functions.

Function Fitting. In order to determine the domain
breakdowns for the subjects in the walking experiment, it is
necessary to determine the times when the number of con-
tact points change, i.e., the event times. Rather than look-
ing for when the contact point is constrained (via threshold-
ing), we choose a “simple” function that the contact point
follows when unconstrained. When this function is not be-
ing followed, the constraints are enforced and thus constant.
Therefore, once this function has been identified, the rest
of the process to determine the domain breakdown becomes
automatic.

To formalize the idea of function fitting to determine event
times, given a set of contact points, C, let s.(n,a) be the
“simplest” function that the contact point ¢ € C follows
while unconstrained (@ € R* is a vector that parameter-
izes the function). Denote the contact point sensor data
by yc(n) where n € {1,...,7}. When the contact point
is constrained the sensor data appears constant, and when
the contact point is unconstrained the sensor data follows
se(n,a). We therefore define the function:

se(mya) if n<m
se(n,a) if 7 <tn <7Ts
Se(Ts,a) if Ts<n

fc(anlvTS’a) =

where 71,75 € {1,...,T} are the event times indicating when
the contact point becomes unconstrained, 7; (lift), and con-
strained, 7, (strike)®. To determine the event times that best
fit the data, we solve the following optimization problem:

T
: 1
. minomin o nz::l [fe(n, 7, 7, 0) = ye(n)].

To illustrate this procedure, consider the averaged data
plotted against time for the heel and toe contact point sen-
sors in Fig. 4. Looking at this data, the behavior of the
heel appears to follow a constant, followed by a Gaussian,
followed by a constant; therefore, we claim that the “sim-
plest” function that the heel follows when unconstrained is a
Gaussian. In a similar fashion, the averaged data for the toe
appears to follow a constant, followed by a 4'" order poly-
nomial, followed by a constant. Using these observations,
we fit the averaged heel and toe data to these functions us-
ing the described procedure. The results of this fitting are
drawn in the same figure with the transition points 7; and 7

4Here we assume without loss of generality that 7, < 7.



indicated by vertical lines. The correlation coefficients for
the illustrated heel and toe examples are 0.9968 and 0.9699,
respectively.

Inspecting the data for the angle of the knee over time
given in Fig. 4, one concludes that a human does not lock
their knee through the course of walking, i.e., there is no pe-
riod in which the knee is constant. In fact, there is clearly a
period when the knee swings (the larger “bump”) and a pe-
riod when the knee goes through smaller oscillations. The
smaller oscillations correspond to the period when the hu-
man has their weight on the knee, and the oscillations can be
understood to be the natural spring and damping response
of the muscles and tendons. Robotic bipedal walkers include
a knee-lock domain since in practice it reduces energy con-
sumption. Since we want to quantify how human-like such
robotic walkers are, we do not want to disqualify the exis-
tence of knee-lock in the human data. It is for this reason
that we consider both the case of knee-lock and no knee-lock.

One can view the period of smaller oscillations as the knee
being “locked.” Under this assumption, the “simplest” func-
tion that the knee follows is a constant, followed by a Gaus-
sian, followed by a constant. The results of this fitting are
drawn in Fig. 4 with the transition points 7; and 75 indicated
by vertical lines.

Determining the Domain Breakdown. Given the data
for a contact point ¢ € C = {c1, ¢a, ..., ck}, we determine the
lift and strike times for the contact point, 7;° and 75, over the
time interval of the averaged data using the aforementioned
techniques. Since the data is over at least two steps (one
step with each leg), there may be multiple lift and strike
times over the period of the data. Using the aforementioned
method we make no assumptions about simultaneous con-
tact point enforcement. Denote by J. the period where con-
straints associated with a contact point are enforced, i.e.,
n € Je if fo(n) = constant with f. the fitting function for
the contact point ¢ € C; these intervals are shown in blue
in Fig. 5 over the course of one step (not the entire data
period) in the case of C,, (or no knee-lock). Analogous to the
definition of a domain breakdown (Def. 2), we can define a
binary vector, b(n) € Z|2C‘, encoding which contact points
are in force at any given time by letting b(n); =1 if n € J.,
and b(n); = 0 otherwise. This function only changes value a
finite number of times and denotes these distinct values by
b(m),m=0,1..., M.

To determine the domain breakdown associated with the
walking, we begin by defining the directed cycle I' (if it ex-
ists, which we do not assume). Looking at the data, we
check to see if there exists an integer p € N such that

by = g om0

for 0
Ic|
R= *2°; the matrix that is multiplied by b serves the pur-

pose of reordering the right and left leg. If this p can be
found, periodic walking over the course of two steps exists
with the left leg mirroring the behavior of the right leg. In
this case, one constructs a directed cycle with p domains (as
in Equation (1)) and this is the graph I". Finally, the domain
breakdown B is given by B(vm) = b(m). The application of
this procedure to a single subject in the case of no knee-lock
is illustrated in Fig. 5.

< m < p with I the identity matrix and 0,1 €
4]

Right Toe
Left Heel
Left Toe
—— Right Heel

I I
0 01 02 03 04 05 06 07
Time(s)

‘ Right Heel

Figure 5: An overview of how the domain break-
down is achieved (with no knee-lock). The top row
illustrates the height of the toe and heel of each leg
over one step along with the lifting and strike time
for each constraint (illustrated by vertical lines).
The middle row illustrates which constraints are
active based upon the fitting. The bottom row
shows the resulting domain breakdown where en-
forced constraints are drawn with green circles.

Results. We perform the process outlined in this sec-
tion on the set of contact points C, = {lh,lt,rh,rt} and
Ci = {lh,lt,lk,rh,rt,rk} on the 9 subjects that performed
the walking experiment. The end result is that we find do-
main breakdowns for each subject, i.e., each subject had
periodic walking. The domain breakdowns, along with the
percentage of time spent in each domain in the case of no
knee-lock and knee-lock for each individual, are illustrated
in Fig. 6 and 8, respectively.

When knee-lock is not considered in the domain break-
down, observe that all subjects exhibit a universal domain
breakdown shown in Fig. 1 in spite of great differences in
age, height and weight. This is particularly surprising since
we made no a priori assumptions about the ordering of con-
tact point enforcement and did not demand simultaneous
contact point enforcement. If we include knee-lock during
the determination of the domain breakdown, there is not a
single domain breakdown that is common to all subjects: out
of the 9 subjects, there are 7 different domain breakdowns.
This is probably due to the fact that humans do not actu-
ally lock their knees during walking. Nevertheless, during
the design of a bipedal robot knee-lock can be an important
domain to include since it can simplify the mechanical and
controller development. In this instance, it is still useful to
have a “universal” domain breakdown for the purposes of
robotic design, and we construct such a “universal” domain
breakdown in the next section by defining a distance metric
on the space of domain breakdowns.

4. HUMAN-BASED COST OF WALKING

In this section, we construct a cost function that mea-
sures the anthropomorphic nature of robotic bipedal walking
termed the human-based cost. We do this by first defining
a metric on the space of weighted cycles, the cut distance,
which allows us to compare different walking gaits and to
construct an optimal walking cycle by minimizing the dis-



tance between the weighted cycles observed in the human
walking data. Using the cut distance, we next define the
human-based cost which allows us to compute the distance
from a specific walking gait (either human or robotic) to
the optimal walking cycle. The remainder of this section
is devoted to using the human-based cost to determine the
extent to which popular robotic models from the literature
are anthropomorphic.

Distance Between Cycles. = We employ the notion of
cut (or rectangular) distance between two weighted graphs
to compare different domain breakdowns (the definition in
its general form can be found in [3]). Since we are only in-
terested in the specific domains visited and the correspond-
ing time spent in each of these domains, we define a no-
tion of weighted cycle and a corresponding distance between
weighted cycles that is pertinent to the application being
considered.

Definition 3. A walking cycle is a pair (a, ) where £ =
(V,E) is a cycle and o : £ — RVl is a function such that
a(v) >0 and Y, o a(v) = 1. Denoting a cycle by £ : vo —
vl — -+ — Up, we denote a walking cycle by:

al) : a(ve) = a(vy) = -+ = a(vp).

Example 3. Each of the domain breakdowns presented
i Fig. 6 giwves us a distinct walking cycle. For example,
Subject 1 has a walking cycle S1 = (a1, 1) given by:

4 2 [l l) — ] — [lt,rh] —  [it,rh,rt]
ar(fy) © 265% — 497% — 214% —  2.4%.

Here, and throughout this paper, weightings are stated in per-
centages to indicate the percentage of time the human spends
in a domain through the course of one step.

We now introduce a definition of cut distance that is a
slight modification of the definition presented in [3]. The
only differences are that we do not force the weighted graphs
to have nodes with positive weights, and we require the
weights to sum to one.

Definition 4. Let (a1,¢1) and (a2, f2) be two walking cy-
cles. Viewing both a1 and a2 as functions on Vi U Va by
letting a1(i) = 0 if i € Va\Vi and a2(j) =0 if j € Vi\Va,
the cut distance between two cycles is given by:

d(a1,£1,a2,£2) =

max | Y (aa(D)ar(f)Bu(i, §) — az(i)az(5)B2(i, 5))

I,JCVIUV, | 4—
iel,jed

+ > Joa(k) — as(k)], (5)

keViuVy

where B1(i,7) = 1 for all edges (i,7) € E1 and B=2(i,5) = 1
for all edges (i,7) € Es.

It is straightforward to check that the modified definition
of the cut distance satisfies the requirements of a metric (i.e.,
non-negativity, identity of indiscernibles, symmetry and the
triangle inequality). Intuitively, the cut distance compares
just how different two walking cycles are when considering
all possible “cuts” between the pair of cycles.

Human-Based Cost. The idea for developing a human-
based cost of walking is that human walking data can be

used to develop a cost function in which to judge other non-
human walking. In the context of this paper, we develop a
cost based upon the domain breakdown and resulting walk-
ing cycles associated with a subjects walking gait.

Definition 5. Consider N subjects with associated do-
main breakdowns and walking cycles S; = (i, ;) for i €
{1,...,N}. Letting & = vazl £; be the graph obtained by
combining all of the cycles {;, we define the optimal walking
cycle by:

L X
argmin  — Zd(a,ﬁ, i, 4;). (6)

(a,0)€RII xz N i=1

(04*76*) =

The optimal walking cycle is just the walking cycle through
the graph of all cycles obtained from the walking that best
fits the data under the cut distance. The optimal walking
cycle allows one to describe the extent to which a walking
gait is human-like.

Definition 6. Given a biped (either human or bipedal
robot) with associated domain breakdown and walking cy-
cle R = (ar, L), the human-based cost (HBC) of walking is
defined to be:

H(R) = d(ayr, b, 0", 0).

It is important to note that the optimal walking cycle
may not be unique, and so there may be multiple HBCs of
walking constructed from a single experiment, i.e., the HBC
is not necessarily unique (in this paper, we found a unique
HBC for the case of knee-lock, but multiple HBCs for the
case of no knee-lock.) Unsurprisingly, multiple experiments
might yield different optimal walking cycles and different
HBCs, but if the experiments are carried out consistently
they should be compatible and could be merged into a single
HBC.

4.1 HBC without Knee-Lock

Using the walking cycles constructed from the human data
illustrated in Fig. 6, we now compute the optimal walking
cycle and compute the HBCs for the subjects and bipedal
robots that have appeared in the literature. All subjects
have the same universal cycle £, so S; = (o, £y) for ¢ =
1,...,9. The optimal walking cycle is given by (a*,f.),
where o is computed using Equation (6) yielding:

G o (1] — ] = [it,rh] —  [it,rh,rt]
a’(b) : 59% — 18% — 1% — 6%

If the objective of a robotic biped is to obtain anthropomor-
phic walking, this optimal walking cycle should be followed
as closely as possible. To demonstrate this, we use the opti-
mal walking cycle to compute the HBC in several cases.

Humans. Although all of the subjects have a univer-
sal domain breakdown, this does not imply that they have
identical walking gaits. To quantify the differences in walk-
ing between the different subjects, we compute the HBC
for each subject. The results of this computation are illus-
trated in Fig. 7; for this comparison, the optimal walking
cycle is computed using the data from all of the subjects
and then each subject is compared to the optimal walking
cycle, a*, via the HBC. From these computations, it is clear
that Subject 1 has an unusually high cost when compared
to the other subjects whose costs are fairly uniform. In fact,
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Figure 6: The domain breakdowns without knee lock
for the 9 subjects in the order listed in Tab. 3 par-
ticipating in the experiment, along with the corre-
sponding walking cycle. Each illustration is a snap-
shot of the subject’s configuration at the beginning
of the domain. The green circles indicate the contact
point that is enforced in a particular configuration.

Subject 1 has a history of back problems (herniated disks at
L4-L5 and a pinched nerve at L5-S1) and was taking pain
medication at the time of the experiment. Thus, even at
the level of comparing human subjects, the HBC seems to
identify less “natural” walking.

Due to the high HBC of Subject 1, this subject can be
treated as an outlier in the data set. Therefore, it may be
desirable to not include this subject in the calculation of the
optimal walking cycle. For example, if the HBC were to
be used for the detection of medical conditions, one could
compile a HBC from healthy subjects. A subject with a
suspected medical condition could then be compared to this
HBC (much as existing robotic models are compared via
the HBC below). To illustrate this idea, we compute the
optimal walking cycle from the healthy subjects, or subjects
2-9. This results in the optimal walking cycle:

az(ly) + 60% — 1% — 17% — 6%,

which has slightly different weightings than o* due to the
exclusion of Subject 1. The corresponding healthy HBC
of Subject 1 is computed using a3 resulting in a slightly

Subjects Bipedal Robots Healthy Subjects. Injured Subject
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Figure 7: The HBC for the 9 subjects in the ex-
periment and 5 bipedal robotic models that have
appeared in the literature (the number of domains
in each of the models is illustrated via a subscript)
using o, and the HBC for the 8 healthy subjects and
the “injured” subject using a5.

higher cost than the HBC associated with a* as expected
(0.8628 as opposed to 0.8183). The healthy HBC for all of
the subjects using a3 is illustrated in Fig. 7. Note that due
to the exclusion of the “injured” subject, the costs among
the healthy subjects are even more uniform.

Robots.  We next use the HBC to compute the cost of
walking for bipedal robots that have been considered in the
literature with no knee-lock.

In [19], numerous bipedal modes with different numbers
of domains (between 1 and 3) and walking gaits are con-
sidered. We focus on two with cycles: fp : [lh, U] — [lt]
and ¢35 : [lh,lt] — [It] — [lt,rh,rt]. Associated with the
walking found in that paper, there are three walking cy-
cles: Rza = (aza,fz), RQb = (a2b,£2) and Rga = (aga,ég),
for which the HBC can be computed as shown in Fig. 7.
From the results of the computed HBC, we conclude that
the model R3, produces the most anthropomorphic walking
as it has a dramatically lower cost than the other two mod-
els. Interestingly, the authors of the paper state that this
walking cycle appeared “the closest to human gait” just as
the HBC discerns.

In [16], two bipedal walking gaits are obtained with a
model consisting of a cycle: €5 : [lh,It] — [It] — [rh], where
[rh] is a domain unseen in the human walking wherein the
biped only has a single contact point at the right heel. Asso-
ciated with this cycle are two walking cycles: Ra, = (ass, Eg)
and R3. = (agc,fg) for which the HBC can be computed;
the results are shown in Fig. 7. Interestingly, despite the
fact that both of these models have three domains, they do
not produce an HBC as low as walking cycle R, indicat-
ing that adding more domains does not necessarily result in
more human-like walking.

4.2 HBC with Knee-Lock

For the 9 subjects that performed the walking experiment
with associated walking cycles S; = (o, ¥;) illustrated in
Fig. 8, we minimize Equation (6) to find the optimal walking
cycle. In performing this minimization we find four optimal
walking cycles: L; = (o, ¢;), i = 1,2, 3,4, i.e., four minima
with essentially the same cost (3.69, 3.76, 3.79 and 3.94,
respectively, with the cost of any other cycle being almost
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Figure 8: The domain breakdowns with knee lock
for the 9 subjects in the order listed in Tab. 3 par-
ticipating in the experiment, along with the corre-
sponding walking cycle. In this case, there are 13
vertices traversed by the 9 subjects.

twice as high). These optimal walking cycles are shown in
Fig. 9.

To determine if one of these optimal walking cycles is
preferable to the rest, we can take each of these optimal
walking cycles and compute the HBC of the other optimal
walking cycles with respect to it as illustrated in the right
plot in Fig. 10. Notice that all of the HBCs are nearly
uniform. We claim that the “universal” domain graph for
bipedal walking with knees is illustrated in Fig. 9 in that
any cycle taken in this graph is optimal. The interesting
aspect of this domain graph is that, as pointed out ear-
lier, walking with knee-lock is more suited to robots than
humans. As such, the domain graph chosen is a design deci-
sion in the modeling of the robot so the specific cycle chosen
in the “universal” domain graph can be guided by the robot
being designed.

Humans. The human-based cost associated with each of
the optimal walking cycles computed for each subject in the
experiment is illustrated in Fig. 10. One can see that each
optimal gives a very similar HBC, which is both consistent
with the fact that they are all optimal and points to the fact
that we do, in fact, get a “single” human-based cost for all in-
tents and purposes. Looking at the computed human-based

-4%
t, rk]

Figure 9: The “universal” domain graph for bipedal
walking with knee-lock, consisting of the four opti-
mal walking cycles, with the weight of each cycle on
each domain taking values in the indicated interval
and the path traversed by the cycle indicated by the
edge labels.

costs, Subject 1 again has the largest cost, again consistent
with the previously mentioned medical conditions. Inter-
estingly, notice that Subject 8 has the lowest cost. This
subject is the oldest, at 77 years of age. Since older individ-
uals tend to walk with a “stiffer” gait, and because knee lock
does not appear to naturally occur during human walking,
we postulate that the low HBC is identifying this additional
stiffness. This observation could have important health care
ramifications.

Robots. We also can use the HBC to compare the an-
thropomorphic nature of different walking gaits for robots
with knees-lock that have appeared in the literature consist-
ing of a single domain, Ry (corresponding to the straight-leg
walking of the compass gait biped [9, 12]), two domains, Rs
(corresponding to bipeds with knees that are both unlocked
and locked throughout the walking [1, 7, 13]) and both four
and five domain models with both knees and feet, R4 and
Rs, respectively [11, 17]. We can compute the HBC for these
different robotic walking gaits with respect to the 4 optimal
walking gaits as illustrated in Fig. 10. From the computed
cost it is clear that as the number of domains increases to
better represent the universal domain breakdown in Fig. 9,
the HBC decreases accordingly. In particular, R4 and Rs
have substantially lower HBC than the other robotic walk-
ing cycles due to the additional domains, all of which can
be found in the “universal” domain breakdown for knee-lock
as shown in Fig. 9. In fact, the only domain found in these
two walking cycles that is not found in the “universal” do-
main breakdown is [lh,[t, Ik, rk], and the time spent in this
domain is small enough, while the time spent in the other do-
mains (which is startlingly similar to the time spent in these
domains for the optimal walking cycles) is large enough to
deliver a low HBC.

5. CONCLUSION

This paper presented a “universal” domain breakdown and
corresponding optimal walking cycle, both without and with
knee-lock, obtained from human walking data. From this,
the human-based cost was constructed. It was demonstrated



Subjects Bipedal Robots Optimal Cycles

1.8 4 18

1.6 4 16

14 4 14

1.2+ 4 12t

Distance

4 osf 4 osf

4 osef 4 o6
4 o.a4af 4 o4t

4 ozt 4 ozt

aahdlil

L1 L2 L3 L4

o

o

S1 S2 S3 S4 S5 S6 S7 S8 S9 R5 R4 R2 R1

Figure 10: The HBC for the 9 subjects in the ex-
periment computed with the 4 optimal walking cy-
cles found (left), 4 bipedal robotic models that have
appeared in the literature (middle) (the number of
domains in each of the models is the subscript), and
the HBC of each optimal walking cycle computed
with the remaining 3 optimal walking cycles (right).

that when the HBC was computed for the human-subjects
preexisting medical conditions were successfully identified.
When the HBC was computed for existing bipedal walk-
ing robots, the robots with more “human-like” walking gaits
were correctly identified. This points to the usefulness of the
HBC both in identifying medical conditions in humans, and
obtaining anthropomorphic walking in bipedal robots. The
results of this paper are also applicable to future bipedal
robot design. If the universal domain breakdown is used
for the robotic model, and the parameters of the controller
used to achieve walking are chosen so as to minimize the
HBC, we claim that the end result promises to be natural
and human-like walking.
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