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ABSTRACT
This paper studies the walking behavior of kneed bipedal
robots with knee-lock and knee-bounce, formally demon-
strating that if knee-locking results in stable bipedal walk-
ing, then small amounts of knee-bounce still will result in
a walking gait for the robot. To achieve this result, hybrid
system models of bipeds are considered wherein knee-bounce
corresponds to Zeno behavior. Using results on Zeno stabil-
ity, we propose a notion of generalized completion that allows
solutions to be carried beyond the Zeno point, i.e., carried
beyond knee-bounce. We assume that the completed hy-
brid system has a periodic orbit when the impacts are per-
fectly plastic—a plastic periodic orbit, or walking gait with
knee-lock. The main result of this paper is that when the as-
sumption of perfectly plastic impacts is relaxed, if the plastic
periodic orbit is stable and the Zeno point is Zeno stable,
then there exists a periodic orbit in the case of non-plastic
impacts, i.e., a Zeno periodic orbit corresponding to walking
with knee-bounce. This formal result is applied to a specific
example of a bipedal robot with knees.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Stability (and in-
stability); I.6.8 [Simulation and Modeling]: Types of
Simulation—Continuous, Discrete Event

General Terms
Theory

Keywords
Hybrid mechanical systems, Bipedal robotic walking, Zeno
behavior, Stability, Periodic orbits.
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1. INTRODUCTION
Mechanical knees are an important component of achiev-

ing natural and “human-like” walking in bipedal robots [6,
17]. Mechanical “knee-caps”, i.e., mechanical stops, are typi-
cally added to these mechanical knees to prevent the leg from
hyper-extending (see the figure on the right for a bipedal
robot with mechanical knees that lock built by Cornell1,
replicating the passive biped with knees of McGeer [1, 17]).
Yet with this benefit comes a cost: knee-bounce, which oc-
curs when the shin bounces off the mechanical stop repeat-
edly as the leg attempts to lock. It has been shown that this
behavior can destabilize the robot in certain situations; see
[1] for a passive bipedal robot that falls due to knee-bounce.
To address this problem, mechanical catches are often added
to the knees to prevent bouncing behavior, i.e., knee-lock is
enforced through mechanical means. It can be seen in [1]
that adding knee-lock to the robot resulted in stable walk-
ing. Although the addition of knee-lock to a robot can result
in walking where it would not be present with knee-bounce,
it comes at the cost of additional mechanical complexity.

This motivates the question: is it necessary to add me-
chanical catches that enforce knee-lock to bipedal robots to
obtain walking? This paper for-
mally shows that mechanical
catches are not always neces-
sary to achieve bipedal walk-
ing, i.e., that if stable walking
exists for a robot with knee-
lock, then walking will also ex-
ist with knee-bounce as long as
the knee-bounce is sufficiently
small. To achieve this re-
sult, it is necessary to under-
stand what knee-lock and knee-
bounce correspond to in a formal setting.

Bipedal robots are naturally modeled by systems with dis-
crete and continuous behavior: hybrid systems. The con-
tinuous component consists of dynamics dictated by La-
grangians modeling the robot with the number of contact
points (such as foot and knee contact) enforced through
holonomic constraints. The discrete behavior occurs when
the number of contact points changes, e.g., the knee locks or
unlocks or the foot strikes the ground, resulting in an instan-
taneous change in the velocity of the system. In the setting
of hybrid systems, knee-bounce and knee-lock can be for-
mally understood to be, respectively, a result of non-plastic

1Photo credit: Rudra Pratap,
http://ruina.tam.cornell.edu/hplab/pdw.html



and plastic impacts at the knee. In this setting, knee-bounce
corresponds to Zeno behavior—when an infinite number of
discrete transitions, or impacts, occur in a finite amount of
time—where the point to which the Zeno solution converges,
the Zeno point, corresponds to the leg being straight. The
behavior of knee-bounce can thus be compared to the be-
havior of knee-lock, where the Zeno point is reached instan-
taneously due to the plastic impact.

Using the formalisms of hybrid systems and Zeno be-
havior, we can approach the problem of knee-bounce rig-
orously. In particular, we consider Lagrangian hybrid sys-
tems which model mechanical systems undergoing impacts
as dictated by unilateral constraints on the configuration
space; the amount of energy lost through impact is dictated
by the coefficient of restitution. Hybrid systems of this form
have a single discrete domain and can display Zeno behavior.
Easily verifiable conditions on the existence of this behavior
based upon the coefficient of restitution and the unilateral
constraint function have been proven [13, 14, 15]. The first
result of this paper is a bound on the distance between the
Zeno point—the limit point of a Zeno solution—for plastic
and non-plastic impacts. This result is essential in estab-
lishing the main result of this paper.

When there exists Zeno behavior, the hybrid system can
be completed to allow for solutions to extend beyond the fi-
nite Zeno time. In particular, this paper presents a notion
of generalized completion, extending previous notions of hy-
brid system completion [3, 4, 18, 22, 23] to a setting that
will be applicable to bipedal robot models. Specifically, an
additional domain is added to the hybrid system—the post-
Zeno domain—which enforces the unilateral constraint as a
holonomic constraint. A solution transitions to this domain
when the Zeno point is reached, and transitions back when
conditions in the post-Zeno domain are reached (generaliz-
ing the traditional transition back to the pre-Zeno domain
based upon the Lagrange multipliers associated to the holo-
nomic constraint). For a bipedal robot, the pre-Zeno do-
main is when the leg is bent, the post-Zeno domain is when
the leg is straight, a transition to the post-Zeno domain oc-
curs when the knee locks (in finite time for knee-bounce and
instantaneously for knee-lock), and a transition to the pre-
Zeno domain occurs when the foot strikes the ground.

The objective of this paper is to consider periodic orbits in
completed hybrid systems and to show that the existence of
periodic orbits in the case of plastic impacts—termed plastic
periodic orbits—implies the existence of periodic orbits for
non-plastic impacts—termed Zeno periodic orbits. Begin-
ning with a plastic periodic orbit, the assumption of plastic
impacts is relaxed, i.e., the coefficient of restitution is no
longer assumed to be zero. In this case, the hybrid sys-
tem will display non-trivial Zeno behavior. The main result
is that if the plastic periodic orbit is stable and the Zeno
point is Zeno stable, then for sufficiently small coefficients
of restitution there exists a Zeno periodic orbit. In order
to demonstrate the practical usefulness of the results of this
paper, we apply them to a bipedal robot model with knees.
In this setting plastic periodic orbits correspond to knee-
lock and Zeno periodic orbits correspond to knee-bounce.
We show numerically that the conditions of the main result
are satisfied, and we confirm through simulation that the
existence of a stable walking gait with knee-lock implies the
existence of a stable walking gait with knee-bounce.

This paper, therefore, provides the first steps towards un-

derstanding Zeno behavior–and more general phenomena
unique to hybrid systems—in complex hybrid mechanical
systems. Due to the relationship between knee-bounce in
robotic walkers and Zeno behavior shown in this paper, it
is evident that understanding the abstract formalisms used
to model physical mechanical systems can lead to important
insights into the behavior of these systems; moreover, these
insights can be used to aid in the design of these systems
through the knowledge that design decisions can affect the
behavior of the system. For example, the results of this
paper imply that mechanical knee-locks are not necessarily
when constructing physical bipedal robots as long as the
knee bounce (or coefficient of restitution) is kept small.

2. HYBRID MECHANICAL SYSTEMS
Bipedal walkers are naturally modeled by hybrid systems.

This section, therefore, introduces the basic terminology of
hybrid systems in a general enough setting so as to formally
describe both bipedal robotic models and completed hybrid
systems.

Definition 1. A hybrid system is a tuple

H = (Γ, D,G,R, F ),

where

• Γ = (V,E) is an oriented graph, i.e., V and E are a
set of vertices and edges, respectively, and there exists
a source function sor : E → V and a target function
tar : E → V which associates to an edge its source and
target, respectively.

• D = {Dv}v∈V is a set of domains, where Dv ⊆ Rnv is
a smooth submanifold of Rnv ,

• G = {Ge}e∈E is a set of guards, where Ge ⊆ Dsor(e),

• R = {Re}e∈E is a set of reset maps, where Re : Ge →
Dtar(e) is a smooth map,

• F = {fv}v∈E, where fv is a smooth dynamical system
on Dv, i.e., ẋ = fv(x) for x ∈ Dv.

Definition 2. An execution of a hybrid system H is a
tuple χ = (Λ, I, ρ, C), where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing
set,

• I = {Ii}i∈Λ where for each i ∈ Λ, Ii is defined as fol-
lows: Ii = [ti, ti+1] if i, i+1 ∈ Λ and IN−1 = [tN−1, tN ]
or [tN−1, tN ) or [tN−1,∞) if |Λ| = N , N finite. Here,
for all i, i + 1 ∈ Λ, ti ≤ ti+1 with ti, ti+1 ∈ R, and
tN−1 ≤ tN with tN−1, tN ∈ R,

• ρ : Λ → V is a map such that for all i, i + 1 ∈ Λ,
(ρ(i), ρ(i+ 1)) ∈ E. This is the discrete component of
the execution,

• C = {ci}i∈Λ is a set of continuous trajectories, and
they must satisfy ċi(t) = fρ(i)(ci(t)) for t ∈ Ii.

We require that when i, i+ 1 ∈ Λ,

(i) ci(t) ∈ Dρ(i) ∀ t ∈ Ii
(ii) ci(ti+1) ∈ G(ρ(i),ρ(i+1))

(iii) R(ρ(i),ρ(i+1))(ci(ti+1)) = ci+1(ti+1).
(1)

When i = |Λ| − 1, we still require that (i) holds. The initial
condition for the hybrid execution is c0(t0) ∈ Dρ(0).



Simple hybrid systems. A simple hybrid system is a hy-
brid system with a single domain and edge. Systems of this
form have been widely studied, especially with respect to
Zeno behavior [3, 14, 22]. In addition, the model with non-
plastic impacts to be considered later will be represented by
a simple hybrid system.

Formally, a simple hybrid system is a hybrid system with
Γ = ({v}, {e = (v, v)}). Since in this case there is only a
single domain, guard, reset map and vector field, we write a
simple hybrid system as a tuple:

SH = (D,G,R, f),

where D is a domain (not a set of domains), G is a guard,
R is a reset map and f is a vector field.

Consider an execution of a simple hybrid system χSHL =
(Λ, I, ρ, C). Since there is only one domain, the only choice
for the discrete component of the execution is ρ(i) ≡ v
Therefore, we can write an execution of a simple hybrid
system as χSHL = (Λ, I, C).

We now consider simple hybrid systems modeling mechan-
ical systems: Lagrangian hybrid systems. These systems are
obtained from hybrid Lagrangians which consist of a con-
figuration space, a Lagrangian and a unilateral constraint
(systems of this form have been well-studied in the mechan-
ics literature [4, 5, 18, 19, 27]).

Dynamical systems from Lagrangians. Let q ∈ Q
be the configuration of a mechanical system.2 In this pa-
per, we will consider Lagrangians, L : TQ → R, describing
mechanical or robotic systems, which are of the form

L(q, q̇) =
1

2
q̇TM(q)q̇ − V (q), (2)

with M(q) the (positive definite) inertial matrix, 1
2
q̇TM(q)q̇

the kinetic energy and V (q) the potential energy. Assume
there is a feedback control law Υ(q, q̇), which is a given
smooth function Υ : TQ → Q. In this case, the Euler-
Lagrange equations yield the (controlled) equations of mo-
tion for the system given in coordinates by:

M(q)q̈ + C(q, q̇) +N(q) = Υ(q, q̇), (3)

where C(q, q̇) is the vector of centripetal and Coriolis terms
(cf. [21]) and N(q) = ∂V

∂q
(q). Defining the state of the sys-

tem as x = (q, q̇), the Lagrangian vector field, fL, associated
to L takes the familiar form:

ẋ = fL(x) (4)

=

(
q̇

M(q)−1(−C(q, q̇)−N(q) + Υ(q, q̇))

)
.

Holonomic constraints. We now define the holonom-
ically constrained dynamical system with a Lagrangian L
and a holonomic constraint η : Q → R. For such systems,
the constrained equations of motion can be obtained from
the equations of motion for the unconstrained system (3),
and are given by (cf. [21])

M(q)q̈ + C(q, q̇)q̇ +N(q) = dη(q)Tλ+ Υ(q, q̇), (5)

where λ is the Lagrange multiplier which represents the con-

tact force and dη(q) =
(
∂η
∂q

(q)
)T

.

2For simplicity, in the models considered, we assume that
the configuration space is identical to Rn

Differentiating the constraint equation η(q) = 0 twice with
respect to time and substituting the solution for q̈ in (5),
the solution for the constraint force λ is obtained (see [21]).
From the constrained equations of motion (5) and (3), for
x = (q, q̇), we get the vector field

ẋ = fηL(x) = fL(x) +

(
0

M(q)−1dη(q)Tλ(q, q̇)

)
. (6)

Unilateral Constraints. The domain, guard and reset
map (for knee lock) will be obtained from unilateral con-
straint h : Q → R which gives the set of admissible con-
figurations of the system; we assume that the zero level set
h−1(0) is a smooth manifold.

Define the domain and guard, respectively, as

Dh = {(q, q̇) ∈ TQ : h(q) ≥ 0}, (7)

Gh = {(q, q̇) ∈ TQ : h(q) = 0 and dh(q)q̇ ≤ 0}.

The reset map associated to a unilateral constraint is ob-
tained through impact equations of the form (see [5, 19]):

Rh(q, q̇) = (8)(
q

q̇ − (1 + ε) dh(q)q̇

dh(q)M(q)−1dh(q)T M(q)−1dh(q)T

)
.

Here 0 ≤ ε ≤ 1 is the coefficient of restitution, which is
a measure of the energy dissipated through impact; for a
perfectly plastic impact ε = 0 and for a perfectly elastic
impact ε = 1. This reset map corresponds to rigid-body
collision under the assumption of frictionless impact. Ex-
amples of more complicated collision laws that account for
friction can be found in [5] and [27].

Definition 3. A simple hybrid Lagrangian is defined to
be a tuple L = (Q,L, h), where

• Q is the configuration space (assumed to be Rn),

• L : TQ→ R is a Lagrangian of the form (2),

• h : Q→ R is a unilateral constraint.

Simple Lagrangian hybrid systems. For a given La-
grangian, there is an associated dynamical system. Simi-
larly, given a hybrid Lagrangian L = (Q,L, h) the simple
Lagrangian hybrid system (SLHS) SHL, associated to L is
the simple hybrid system: SHL = (Dh, Gh, Rh, fL).

Remark 1. We often will want to make clear the depen-
dence of the reset map on the coefficient of restitution ε,
in which case we will write Rεh. Therefore, in the case of
perfectly plastic impacts, the reset map is given by R0

h. In
the case of SLHS’s, we will use the same convention writing
SH ε

L .

3. ZENO BEHAVIOR
We now introduce Zeno behavior and the correspond-

ing notion of Zeno equilibria, and we consider the stabil-
ity of these equilibria. The first result of the paper is then
presented; this gives bounds in the distance between Zeno
points for plastic and non-plastic impacts—a result that is
vital in proving the main result of this paper.



Definition 4. An execution χH is Zeno if Λ = N and

t∞ := lim
i→∞

ti − t0 =

∞∑
i=0

ti+1 − ti <∞.

Here t∞ is called the Zeno time.

Zeno behavior in SLHS’s. If χSHL is a Zeno execution
of a SLHS SHL, then its Zeno point is defined to be

x∞ = (q∞, q̇∞) = lim
i→∞

ci(ti) = lim
i→∞

(qi(ti), q̇i(ti)). (9)

These limit points are intricately related to a type of equilib-
rium point that is unique to hybrid systems: Zeno equilibria.

Definition 5. A Zeno equilibrium point of a simple hy-
brid system SH is a point x∗ ∈ G such that R(x∗) = x∗

and f(x∗) 6= 0.

We also can consider the stability of Zeno equilibria (see
[7, 8] for complementary notions of stability as it relates to
Zeno behavior).

Definition 6. A Zeno equilibrium x∗ of a simple hybrid
system SH is bounded-time locally Zeno stable if for every
U ⊂ D and every ε > 0, there exists an open set W ⊂ U with
x∗ ∈ W such that for every x0 ∈ W , there exists a unique3

execution χ with c0(t0) = x0 and Λ = N. This execution is
Zeno with t∞ < ε and ci(t) ∈ U for all i ∈ N and t ∈ Ii.

Zeno stability in simple Lagrangian hybrid systems.
If SHL is a SLHS, then due to the special form of these
systems we find that the point (q∗, q̇∗) is a Zeno equilibria
iff q̇∗ = Ph(q, q̇∗), with Ph given in (8). In particular, the
special form of Ph implies that this holds iff dh(q∗)q̇∗ = 0.
Therefore the set of all Zeno equilibria for a SLHS is:

Z = {(q, q̇) ∈ Dh : h(q) = 0 and dh(q)q̇ = 0}. (10)

Note that if dim(Q) > 1, the Zeno equilibria in Lagrangian
hybrid systems are always non-isolated.

Let ḧ(q, q̇) be the acceleration of h(q) along trajectories
of the unconstrained dynamics (3), given by:

ḧ(q, q̇) = q̇TH(q)q̇ + dh(q)M(q)−1(−C(q, q̇)q̇ −N(q)),

where H(q) is the Hessian of h at q. The following theorem,
which was presented in [13, 14, 15], provides sufficient con-
ditions for existence of Zeno executions in the vicinity of a
Zeno equilibrium point.

Theorem 1 ([13, 15]). Let SHL be a simple Lagrangian
hybrid system and let x∗ = (q∗, q̇∗) be a Zeno equilibrium

point of SHL. If 0 ≤ ε < 1 and ḧ(q∗, q̇∗) < 0, then (q∗, q̇∗)
is bounded-time locally Zeno stable.

Note that Thm. 1 was proven in [13, 15] using“Lyapunov-
like” functions which mapped hybrid systems to first quad-
rant interval hybrid systems which can be viewed as the
“simplest Zeno stable systems.” In particular, in the case of
mechanical systems, the following function was considered:

ψ(q, q̇) =

 ḣ(q, q̇) +
√
ḣ(q, q̇)2 + 2h(q)

−ḣ(q, q̇) +
√
ḣ(q, q̇)2 + 2h(q)

 ,

3This is just the maximal execution with initial condition
c0(t0) = x0.

which has the following properties (as proven in [15]) for a
Zeno execution χ with initial condition c0(t0) = x0 ∈ Gh:

(P1) From the definition of the reset map Rεh

ψ(ci(ti))1 = εψ(ci−1(ti))2.

(P2) From the proof of Thm. 2 in [15] (from combining
equations (4) and (5) and using (P1)), the Zeno time
has an upper bound:

t∞ <
ε

1− εψ(x0)2
1

|α|

where α = maxx∈U dψ(x)1fL(x).

(P3) Again from the proof of Thm. 2 in [15] (specifically
by combining equations (5) and (6) with (P1))

∞∑
i=1

ψ(ci(ti+1))2 ≤
ε

1− εψ(x0)2

∣∣∣∣βα
∣∣∣∣

where β = maxx∈U dψ(x)2fL(x).

These properties will be utilized in proving the first result
of this paper, but first some set-up is necessary.

Zeno points for plastic and non-plastic impacts. Let
SH ε

L be a SLHS with a coefficient of restitution ε > 0. For
x0 ∈ Gh, if there is a Zeno execution χ with this point as
its initial condition then it has a well-defined Zeno point
xε∞(x0). We are interested in comparing this Zeno point
with the point obtained by applying a perfectly plastic im-
pact x0

∞(x0) = R0
h(x0), which is just the Zeno point of an

execution of SH 0
L with initial condition x0. Necessarily, it

follows that x0
∞(x0) is a Zeno equilibrium point.

We are interested in comparing xε∞(x0) and x0
∞(x0) =

R0
h(x0). Intuitively, these two points should converge toward

one another in a continuous fashion as ε→ 0. This is what
the following proposition verifies.

Proposition 1. Let SH ε
L be a simple Lagrangian hybrid

system with a coefficient of restitution ε > 0. Let x∗ =
(q∗, q̇∗) be a Zeno equilibrium point of SH ε

L that is bounded-
time locally Zeno stable, and let W , U and ε be as in Def. 6.
If x0 = (q0, q̇0) ∈ Gh∩W , then there exist positive constants
A1, A2 and A3 such that:

||xε∞(x0)− x0
∞(x0)|| (11)

< ε

(
A1 +

1

1− εA2 +
1 + ε

1− εA3

)
|dh(q0)q̇0|.

Note that the constants A1, A2 and A3 in this lemma
simply give bounds on the growth of the vector field and
reset map over the region U . As a result, this lemma has a
clear physical intuition. Basically the distance between the
Zeno point for a plastic and non-plastic impact is determined
by two main factors: the coefficient of restitution and the
speed when the guard is reached, |ḣ(q0, q̇0)| = |dh(q0)q̇0|.

Proof. Since x0 ∈ Gh, it follows that t0 = t1 and c0(t1) =
c0(t0) = x0 and so by the definition of Rεh and ψ

||c1(t1)− x0
∞(x0)|| = ||Rεh(x0)−R0

h(x0)|| ≤ εKψ(x0)2

where

K = max
x=(q,q̇)∈U

1

2

||M(q)−1dh(q)T ||
dh(q)M(q)−1dh(q)T

.



More generally, for x ∈ Gh, again from the definition of Rεh
and ψ,

||Rh(x)− x0
∞(x0)|| ≤ ||x− x0

∞(x0)||+ (1 + ε)Kψ(x)2.

Therefore, for i ≥ 2,

||ci(ti)− x0
∞(x0)|| ≤

||ci−1(ti)− x0
∞(x0)||+ (1 + ε)Kψ(ci−1(ti))2

and

||ci−1(ti)− x0
∞(x0)||

= ||ci−1(ti−1)− x0
∞(x0) +

∫ ti

ti−1

fL(x(τ))dτ ||

≤ ||ci−1(ti−1)− x0
∞(x0)||+ F (ti − ti−1)

where F = maxx∈U ||fL(x)||. It follows that

||ci(ti)− x0
∞(x0)|| ≤ ||ci−1(ti−1)− x0

∞(x0)||
+F (ti − ti−1) + (1 + ε)Kψ(ci−1(ti))2.

By induction, or through simple iteration, we thus have that

||ci(ti)− x0
∞(x0)|| ≤ εKψ(x0)2

+F

i−1∑
j=1

(tj+1 − tj) + (1 + ε)K

i−1∑
j=1

ψ(cj(tj+1))2.

It follows from (P1), (P2) and (P3), together with the fact
that t0 = t1, that

||xε∞(x0)− x0
∞(x0)|| = lim

i→∞
||ci(ti)− x0

∞(x0)||

≤ εKψ(x0)2

+F

∞∑
j=1

(tj+1 − tj) + (1 + ε)K

∞∑
j=1

ψ(cj(tj+1))2

≤ εKψ(x0)2

+F
ε

1− εψ(x0)2
1

|α| + (1 + ε)K
ε

1− εψ(x0)2

∣∣∣∣βα
∣∣∣∣

Since ψ(x0)2 = 2|dh(q0)q̇0| by definition, picking

A1 = 2K, A2 = 2F
1

|α| , A3 = 2K

∣∣∣∣βα
∣∣∣∣

gives the desired result.

4. COMPLETED HYBRID SYSTEMS
& ZENO PERIODIC ORBITS

Completed hybrid systems allow Zeno executions to be
carried past the Zeno point. Let SHL be a SLHS then, as
the execution converges toward the Zeno point, h→ 0. This
implies that after the Zeno point is reached, there should be
a switch to a holonomically constrained dynamical system
with holonomic constraint η = h. Let Dh = (Z, fhL) be the
dynamical system obtained from this unilateral constraint
as in (5) with Z the set in (10).

Traditionally, completed hybrid systems have been defined
in the following manner [3, 4, 18, 22, 23, 24] (and are often
termed complementary Lagrangian hybrid systems): if L
is a simple hybrid Lagrangian and SHL the corresponding
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Pre-Zeno
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Pre-Zeno Post-Zeno
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Impact 0 

Zeno Point

Release

ze
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p z
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Figure 1: A graphical representation of a SHS and
its associated completed hybrid system.

SLHS, the corresponding completed Lagrangian hybrid sys-
tem4 is:

SH L :=

 Dh if h(q) = 0 , dh(q)q̇ = 0,
and λ(q, q̇) > 0

SHL otherwise

where λ is the Lagrange multiplier obtained from h. Systems
of this form have been well-studied in the above references,
and conditions have been given on how to practically simu-
late completed hybrid systems by truncating the executions
in a formal manner (see [23, 24]).

While the notion of a completed hybrid system has proven
very useful, we wish to extend it to include the possibility
of unilateral constraints in the “post-Zeno” domain Dh that
would cause the lagrange multiplier to switch sign (causing
a switch back to the pre-Zeno domain). The second con-
sideration is that we want this more general definition of
a completed hybrid system to include as a special case the
previous definition while simultaneously being able to model
physical situations that occur with bipeds.

With this in mind, we consider the following definition of
a generalized completed hybrid system (see Fig. 1).

Definition 7. Let SHL be a SLHS associated to a hybrid
Lagrangian L = (Q,L, h). A completed SLHS5 is a tuple:

SH
ε
L := (Γ, D,G,R, F ), where

• Γ = {(p, z), es = (p, p), ez = (p, z), ep = (z, p)},

• D = {Dp, Dz} where Dp = Dh and Dz ⊂ Z satisfying:

λ(q, q̇) ≥ 0 if (q, q̇) ∈ Dz, (12)

• G = {Ges , Gez , Gep} where Ges = Gh\Z, Gez = Z
and Gep ⊂ Dz,

• R = {Res , Rez , Rep} where Res = Rh (which depends

on the coefficient of restitution ε), Rez = I and Rep :

Gep → Dp satisfying:

λ(Rep(q, q̇)) ≤ 0 for (q, q̇) ∈ Gep , (13)

• F = {fp, fz} where fp = fL and fz = fhL.

4As was originally pointed out in [3], this terminology (and
notation) is borrowed from topology, where a metric space
can be completed to ensure that “limits exist.”
5We make the dependence of the system on the coefficient
of restitution ε explicit since it is the main object of interest.



Note that the guard that forces a transition from the “pre-
Zeno” domain Dp to the “post-Zeno” domain Dz is just the
set of Zeno equilibria for the simple hybrid system SHL, i.e.,
a transition only occurs at the limit point of a Zeno execu-
tion. Also note that conditions (12) and (13) are consistency
conditions that ensure that the constraint force has the right
sign through the “post-Zeno” domain, and that when a tran-
sition back to the “pre-Zeno” domain occurs the constraint
will no longer be enforced. Finally note that the traditional
notion of completion is just a special case of Def. 7 with:

Dz = {(q, q̇) ∈ Z : λ(q, q̇) ≥ 0},

(the largest domain satisfying (12)),

Gep = {(q, q̇) ∈ Dz : λ(q, q̇) = 0},

and Rep = I (which therefore satisfies (13)).
To better understand the motivation for the definition of

a generalized completed hybrid system, and why the tradi-
tional definition must be extended, the specific application
of bipedal robots must be considered. In this case, the tradi-
tional case where the solution switches back to the post-Zeno
domain with an identity reset map would not be consistent
with the bipedal robotic model. In particular, in the case
of a biped the reset map Rep is the reset map associated
with foot impact (see Fig. 4 for a graphical representation).
The specifics of how a generalized completed hybrid system
is obtained in bipedal walking will be presented in detail in
Sec. 6, but before studying these systems in the context of
walking, their properties must be studied.

Zeno points in completed systems. If SH
ε
L is a com-

pleted SLHS, then for executions with initial conditions in
the pre-Zeno domain we again can consider the Zeno point
of these executions in the case when the coefficient of restitu-
tion ε > 0. Specifically, let χ = (Λ, I, ρ, C) be an execution

of SH
ε
L with c0(t0) ∈ Dp. By the definition of the com-

pleted system and because ε > 0, the solution is Zeno and
will never leave the pre-Zeno domain Dp. Therefore, for this
execution ρ(i) ≡ p. The Zeno point is thus given in (9) as
in the case of simple hybrid systems.

In the case when ε = 0, the completed system SH
0
L is

“instantaneously Zeno.” That is, the system displays the fol-
lowing behavior: when the guard Ges is reached, there is a
perfectly plastic impact Res which causes the execution to
land directly on the guard Gez and thus there is an instan-
taneous transition to the post-Zeno domain Dz. This will
imply, for example, that periodic orbits for systems of this
form are 3-periodic.

Periodic orbits of completed systems. Let SH
ε
L be

a completed SLHS.
In the special case of plastic impacts (ε = 0), a plastic pe-

riodic orbit is an execution χ of SH
0
L with initial condition

x∗ = c0(t0) ∈ Dz satisfying:

• Λ = N,

• limi→∞ ti − t0 =∞,

• ρ(i) =

{
z if i = 0, 3, 6, 9, . . .
p if i = 1, 2, 4, 5, . . .

,

• c3i(t3i) = c3(i+1)(t3(i+1)).

The period of the orbit is T = t3 − t0.

For non-plastic impacts (ε > 0), a Zeno periodic orbit is an

execution χ of SH
ε
L with initial condition x∗ = c0(t0) ∈ Dz

satisfying:

• Λ = N,

• limi→∞ ti − t0 = t∞ <∞,

• ρ(0) = z and ρ(i) ≡ p for all i ≥ 1,

• x∞ = limi→∞ ci(ti) = c0(t0) = x∗.

The period of the orbit is T = t∞.

Stability of hybrid periodic orbits. We now define
the stability of plastic periodic orbits. Note that we also
could define the stability of Zeno periodic orbits, but as this
definition is sufficiently more complicated and not necessary
to the results presented here, we restrict our attention to the
definition of the stability of plastic periodic orbits.

Definition 8. A plastic periodic orbit χ of SH
0
L with

initial condition x∗ ∈ Dz ⊂ Z is locally exponentially stable
if there exists a neighborhood X ⊂ Dz of x∗ and positive con-
stants M and µ ∈ (0, 1) such that for any initial condition
x0 = c0(t0) ∈ X, the execution χ′ with this initial condition
satisfies ‖c′3k(t3k)− x∗‖ ≤M‖x0 − x∗‖µk for k ∈ N.

4.1 Main Result
The main result of this paper is that if there exists an

exponentially stable plastic periodic orbit, then there exist
Zeno periodic orbits for small coefficients of restitution. It
is important to note that this result is in the spirit of [22]
with three major differences: (1) it is more general in that
we do not require M ≤ 1 as was the case in [22] allowing it
to be applied to bipedal robotic controllers which usually do
not satisfy the assumption that M ≤ 1, (2) the conditions
of the theorem are easier to verify from a computational
perspective (again, important for bipedal robots), and (3)
the techniques used to prove the result are fundamentally
different.

Theorem 2. Let SH
0
L have a plastic periodic orbit χ

with initial condition x∗ = (q∗, q̇∗) ∈ Dz ⊂ Z that is locally

exponentially stable. If ḧ(q∗, q̇∗) < 0, then there exists a
positive constant r such that for any coefficient of restitution
0 < ε < r there exists a Zeno periodic orbit of SH

ε
L.

The proof of this theorem will rely extensively on Poincaré
maps associated to periodic orbits in hybrid systems (space
constraints prevent a detailed introduction, but a complete
definition can be found in [28]). For a completed hybrid
system, let ϕiτ (x) = ϕi(τ i(x), x), for i = p, z, be the flow
associated to the vector field f i, where here τ i : Rei(Gei)→
R is the time to impact function which gives the time it takes
to reach a guard from the image of another guard.

For a plastic periodic orbit, the Poincaré map is the par-
tial function given by: P : Z = Gez → Z, where P (x) =
Res(ϕpτ (Rep(ϕzτ (x))). The fixed point of the Poincareé map,
x∗ = P (x∗) is just the point at which the periodic orbit in-
tersects the surface Z, i.e., it is simply the point x∗ given
in Def. 8. As with smooth dynamical systems [25], the (ex-
ponential) stability of a plastic periodic orbit (or periodic
orbits in hybrid systems in general [20]) is equivalent to the
(exponential) stability of the discrete-time dynamical sys-
tem obtained through the Poincaré map, xk+1 = P (xk), at
the equilibrium point x∗. This can be best understood by
noting that in Def. 8 c′3k(t3k) = P (c′3(k−1)(t3(k−1))).



Proof. Since x∗ ∈ Dz, it is by definition a Zeno equi-
librium point, and because ḧ(q∗, q̇∗) < 0 it is bounded-time
locally Zeno stable by Thm. 1. Let W and U be the neigh-
borhoods in Gh given in Def. 6. Note that here we implicity
assume (without loss of much generality) that both W and
U do not intersect Gep (this condition can be guaranteed as

long as x∗ is not in Gep and the coefficient of restitution is
picked to be sufficiently small); that is, we assume that the
Zeno point is reached before foot-strike, or that knee-lock
occurs before foot-strike. In addition, let X be the neigh-
borhood of x∗ in Z given in Def. 8 which exists due to the
assumption of local exponential stability of the plastic peri-
odic orbit. Note that we can suppose6 that for any execution

χ0 or χε of SH
0
L or SH

ε
L, respectively, with initial condi-

tion x0 ∈ X, it follows that c01(t2) = cε1(t2) ∈ W . Finally,
for the sake of notational simplicity, assume that x∗ = 0.

Since χ is a locally exponentially stable plastic periodic
orbit, P is locally exponentially stable at 0, and because P is
smooth (since it is given by composing smooth functions), it
follows by the converse Lyapunov theorem for discrete-time
dynamical systems (see [11]) that there exists a function
V : X → R satisfying

c1||x||2 ≤ V (x) ≤ c2||x||2 (14)

∆V (x) = V (P (x))− V (x) ≤ −c3||x||2 (15)

|V (x)− V (y)| ≤ c4||x− y||(||x||+ ||y||) (16)

for all x, y ∈ X and positive constants c1, c2, c3 and c4.
Let α = minx∈∂X V (x), and take β ∈ (0, α). Then the set
Ωβ = {x ∈ X : V (x) ≤ β} is in the interior of X and is
invariant under P since ∆V (x) < 0, i.e., if x0 ∈ Ωβ then
P (x0) ∈ Ωβ .

The goal is to show that if an execution of SH
ε
L has an

initial condition x0 ∈ Ωβ then the Zeno point xε∞(x0) ∈ Ωβ
for a sufficiently small coefficient of restitution. To see this,
let y0 = c01(t2) = cε1(t2) wherein it follows that xε∞(x0) =
xε∞(y0) and P (x0) = x0

∞(y0). From (15) and (16),

V (xε∞(x0))− V (x0)

= V (xε∞(x0))− V (P (x0)) + V (P (x0))− V (x0)

≤ |V (xε∞(x0))− V (P (x0))|+ V (P (x0))− V (x0)

≤ c4||xε∞(y0)− x0
∞(y0)||(||xε∞(y0)||+ ||xε∞(y0)||)

−c3||x0||2.

Now, by Prop. 1, it follows that ||xε∞(y0)−x0
∞(y0)|| goes to

zero continuously as ε → 0. As a result, for all 0 < ε < r
(with r sufficiently small), V (xε∞(x0))− V (x0) ≤ 0. There-
fore, x0 ∈ Ωβ implies that V (x0) ≤ β and V (xε∞(x0)) ≤
V (x0) ≤ β so xε∞(x0) ∈ Ωβ .

We have established that Ωβ is invariant under the con-
tinuous7 map xε∞ : Ωβ → Ωβ associating to a point its Zeno
point. By the fixed point theorem [10], there exists a fixed
point xz such that xε∞(xz) = xz. By the definition of Zeno
periodic orbits, this implies the existence of such an orbit,
i.e., the execution of SH

ε
L with initial condition xz.

6This supposition can be enforced by considering a subset
of X if needed.
7Continuity is guaranteed as long as the neighborhood X
does not intersect the guard Gep ; space constraints prevent
a proof of this fact, but the reasoning is similar to the jus-
tification of continuity for hybrid systems with a single con-
straint [5].
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Figure 2: The configuration space of the 2D biped
with knees (left) and a graphical representation of
the domains of the hybrid system H B (right).

5. BIPEDAL MODEL WITH KNEE-LOCK
We begin by studying the case when a bipedal robot has

knees that lock, i.e., knees in which the impact is perfectly
plastic; this could be achieved physically by, for example,
using knees with mechanical catches [17]. This section in-
troduces the hybrid model for this system along with con-
trollers that result in stable walking. The specific control
laws that will be used are based upon the idea of controlled
symmetries which mimic the gait of passive walkers walking
down shallow slopes [16, 12, 6] by shaping the potential en-
ergy of the system [26]. The biped that will be considered
has been studied in both 2D and 3D in [2].

The model of interest is a controlled bipedal robot with
knees that walks on flat ground for which we will explicitly
construct the hybrid system:

H B = (ΓB, DB, GB, RB, FB).

We now introduce the elements of this hybrid system in a
step-by-step fashion.

Discrete Structure The discrete structure for the model
is given by ΓB = ({u, l}, {eu = (u, l), el = (l, u)}). That is,
there are two domains u, l and two edges eu, el (see Fig. 2).
In the first domain the biped’s non-stance knee is unlocked
and in the second domain the biped’s knee is locked. Transi-
tions occur from domain u to domain l when the knee locks,
and from l to u when the foot strikes the ground. Note that
the discrete structure of this model enforces temporal or-
dering to events (kneelock and footstrike) and this discrete
structure implies that DB = {DB

u , D
B
l }, GB = {GB

eu
, GB

el
},

RB = {RB
eu
, RB

el
} and FB = {fB

u , f
B
l }.

Configuration space and Lagrangian. Consider the
configuration QB = R3 with coordinates q = (θl, θh, θk),
where θl is the angle of the leg from vertical, θh is the angle
of the hip and θk is the angle of the knee (see Fig. 2). The
Lagrangian for this system is of the form:

LB(q, q̇) =
1

2
q̇TMB(q)q̇ − V B(q)

which is computed in the standard way.

Unilateral constraints. We will consider two unilateral
constraints for this system. The first unilateral constraint
enforces the knee being unlocked. It is therefore given by:
hB
u (q) = θk. The second unilateral constraint is the con-

straint that the foot is above the ground, and it is therefore
given by:

hB
l (q) = 2` cos

(
−θl −

1

2
θh

)
cos

(
1

2
θh

)
,

with ` the length of the leg.



Figure 3: A walking gait of the 2D biped with plastic
impacts at the knee.

Domain 1 (knee unlocked). The domain DB
u is obtained

as in (7) from hB
u . The vector field fB

u is obtained as in (4)
from the Lagrangian LB and the feedback control law:

ΥB(q, q̇) =
∂V B

∂q
(q)− ∂V B

∂q
(q + (γ, 0, 0)T )

where γ is a control gain that can be viewed as the “slope”
that would yield walking for passive biped walking down
a slope of γ radians. Note that applying this control law
implies that fB

u is just the dynamical system associated with
the Lagrangian:

LB
γ (q, q̇) =

1

2
q̇TMB(q)q̇ − V B(q + (γ, 0, 0)T )

with no feedback control law. Also note that this control
law uses full actuation at all joints, including the knee.

Domain 2 (knee locked). The domain DB
l is obtained as

in (7) from hB
l . The vector field fB

l is obtained by imposing
the holonomic constraint η = hB

l in fB
u (as outlined in (6));

this enforces the condition that the knee is locked in this
domain. In particular, the control law in this domain is again
the controlled symmetries control law enforced in Domain 1
since we use the vector field fB

u (which includes this control
law) to obtain the constrained dynamics on this domain.
This implies that there is again a torque at the knee.

Edge 1 (knee locking). The guard GB
eu

is obtained as in

(7) from hB
u . The reset map RB

eu
is also obtained from hB

u as
in (8). Note that for this model we assume the knee impact
is perfectly plastic, i.e., ε = 0. The rest of this paper will be
devoted to understanding what happens if this assumption
is not satisfied.

Edge 2 (Foot impact). The guard GB
el

is obtained as in

(7) from hB
l . The reset map RB

el
models a perfectly plastic

impact at the foot which also relabels the stance and non-
stance leg to account for the two legs switching roles. This is
obtained through the same process outlined in [9], but space
constraints prevent the inclusion of this equation.

Walking gait. For the model under consideration: mc =
0.05kg, mt = 0.5kg, Mh = 0.5kg, ` = 1m, rc = 0.372m,
rt = 0.175m. For a control gain of γ = 0.0504, the result is
stable walking, i.e., there is a stable periodic orbit (see Fig.
5). For the purpose of illustration, the walking gait for these
parameters and control gain can be seen in Fig. 3.

6. BIPEDAL MODEL WITH
KNEE-BOUNCE

We now consider the case when the assumption of per-
fectly plastic impacts at the knee does not hold, i.e., the

Knee-Bounce

se

ze

pe
p z

Knee-Bounce

se

Figure 4: A graphical representation of (a) the sim-
ple hybrid system modeling knee-strike with a non-
plastic impact, i.e., knee-bounce, and (b) the com-
pleted hybrid system in which the knee locks after
the Zeno point is reached.

case where there is knee-bounce. Relaxing this assumption
implies that the transition to domain 2 (knee locked) never
formally takes place since this would involve an infinite num-
ber of discrete jumps, i.e., there is Zeno behavior. Therefore,
relaxing this assumption results in a completely different hy-
brid system.

Non-plastic impacts at the Knee. We now relax the
assumption that ε = 0 for the reset map obtained from the
impact equations for knee impact.

Consider the hybrid Lagrangian LB
u = (QB, LB, hB

u ) with
QB, LB and hB

u defined as in Sect. 5. From this hybrid
Lagrangian we obtain a simple Lagrangian hybrid system

SH B = (DB
u , G

B
eu
, RhB

u
, fB
u ), (17)

where DB
u , GB

eu
and fB

u are the same continuous domain,
guard and vector field for Domain 1 and Edge 1 of the hybrid
system H B given in Sect. 5. The reset map RhB

u
is obtained

from hB
u as given in (8) where now 0 < ε < 1, i.e., it is a

non-plastic impact (that also is not allowed to be perfectly
elastic). See Fig. 4(a) for a graphical representation of this
model, where the discrete transition occurs at knee strike
not knee lock, i.e., the knee never locks because the impacts
are non-plastic.

Zeno Behavior. Due to the non-plastic impacts, the
hybrid system SH B is Zeno (by Thm. 1).

First, due the simple form of the unilateral constraint
function on this domain (hB

u (q) = θk), the set of Zeno equi-

libra is ZB = {(q, q̇) ∈ R6 : θk = 0 and θ̇k = 0}. That is,
the Zeno equilibria are the set of points such that the knee
angle is zero with zero velocity, i.e., the set of points where
the leg is straight.

To check for Zeno behavior, it is necessary to consider ḧB
u ,

which in this case is given by: ḧB
u (q, q̇) = (fB

u (q, q̇))6. Note
that this is a complex function, and so it is not possible to
give a simple characterization of the points (q∗, q̇∗) ∈ ZB

such that ḧB
u (q∗, q̇∗) < 0.

Completion of bipedal model. From the hybrid system
SH B we obtain a completed hybrid system SH

ε
B, where ε is

the coeficent of resolution. This is given by “combining” the
hybrid system H B given in Sect. 5 and the simple hybrid
system SH B (Fig. 4(b)). Let SH

ε
B = (Γ, D,G,R, F ),

where Γ is given as in Def. 7 and



5

10  

−10

−5

0

Pl
as

tic

−1 −0.5 0 0.5 1 1.5
−20

−15

−10

 
θ θ θθ θθ

P

10  

−1 −0.5 0 0.5 1 1.5
θsl θnst θnsc
θsl θnst θnsclθ kθhθ

−5

0

5

no

−15

−10

−5

Ze
n

−1 −0.5 0 0.5 1 1.5
−20  

θsl θnst θnsc
θsl θnst θnsclθ kθhθ

5

10  

−10

−5

0

Pl
as

tic

−1 −0.5 0 0.5 1 1.5
−20

−15

−10

 
θ θ θθ θθ

P

10  

−1 −0.5 0 0.5 1 1.5
θsl θnst θnsc
θsl θnst θnsclθ kθhθ

−5

0

5

no

−15

−10

−5

Ze
n

−1 −0.5 0 0.5 1 1.5
−20  

θsl θnst θnsc
θsl θnst θnsclθ kθhθ

Figure 5: The periodic orbit associated to the walk-
ing gait for H B, i.e., walking with knee-lock, which

is equivalent to the plastic periodic orbit for SH
0
B

(left). The Zeno periodic orbit for SH
ε
B with ε =

0.25, i.e., walking with knee-bounce (right).

• D = {Dp, Dz} where Dp = DB
u and Dz = DB

l ,

• G = {Ges , Gez , Gep} whereGes = GB
eu
\ZB, Gez = ZB

and Gep = GB
el

,

• R = {Res , Rez , Rep} where Res = RhB
u

(which de-

pends on ε), Rez = I and Rep = RB
el

,

• F = {fp, fz} where fp = fB
u and fz = fB

l .

Note that SH
0
B and H B have the same qualitative behavior

although they have slightly different structures. That is, the
completion of SH B when ε = 0 is just the hybrid system
H B. We are, of course, interested in what happens when
the assumption that ε = 0 is relaxed for the biped and its
effect on walking gaits.

Application of Theorem 2 and Simulation Results.
We now apply Thm. 2 to the completed hybrid system mod-
eling the biped with non-plastic impacts at the knee SH

ε
B

to show that a plastic periodic orbit for ε = 0 implies the
existence of a Zeno periodic orbit for ε > 0, i.e., that walk-
ing with knee-lock implies walking with knee-bounce when
the knee-bounce is sufficiently small.

Due to the equivalence of SH
0
B and H B, and since there

was a periodic orbit for H B, there is a plastic periodic orbit

for SH
0
B as pictured in Fig. 5. The exponential stability of

this control law can be verified by considering the Poincaré
map; the exponential stability of this map implies the ex-
ponential stability of the plastic periodic orbit. Moreover,
the exponential stability of the Poincaré map can be verified
by considering the eigenvalues of its linearization and ensur-
ing that none have magnitude greater than 1. In this case,
the largest eigenvalue has magnitude 0.7329 indicating ex-
ponential stability of the plastic periodic orbit. Finally, the
value of ḧ at the Zeno equilibria point is ḧ(x∗) = −50.135.
Therefore, the assumptions of Thm. 2 are satisfied.

As a result of Thm. 2, there exists a Zeno periodic orbit
for SH

ε
B for a range of coefficients of restitution 0 < ε ≤ r.

Of course, there is not an explicit value for r stated in the
theorem, but we were able to find a rather large range of
coefficients of restitution resulting in Zeno periodic orbits.
One of these orbits can be seen in Fig. 5 for ε = 0.25. The
effect of Zeno behavior on the biped can be clearly seen in
this figure due to the “bouncing” behavior of θk, i.e., the
Zeno periodic orbit clearly displays knee-bounce. The effect
of knee-bounce on the behavior of the biped can be better
seen when comparing the positions and velocities of the knee
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Figure 6: The positions and velocities over time for
the walking gait in the case of plastic impacts (left)
and non-plastic impacts (right) at the knee.

over time in the case of a zero and nonzero coefficient of
restitution as seen in Fig. 6.

It is important to note that, although Thm. 2 implies the
existence of a Zeno periodic orbit, it does not give any guar-
antees on the stability of this orbit. While a formal result of
this nature would be interesting, for all practical purposes
the stability of the Zeno periodic orbit can be checked the
same way that the stability of the plastic periodic orbit was
checked: by numerically computing the eigenvalues of the
linearization of the Poincaré map. In the case of the Zeno
periodic orbit in Fig. 5 we find that the largest eigenvalue
has magnitude 0.2245, implying that we in fact get a stable
walking gait in the case of knee-bounce.

Videos of the walking gait with both knee-lock and knee-
bounce can be found at [1]. It is interesting to compare these
walking gaits with the behavior of the passive dynamic walk-
ing with knees by McGeer (videos of this can also be found
at [1]). In the case of knee lock, it can be seen that the be-
havior of the simulated and actual robotic walking are very
similar. In the case of knee-bounce, we postulate that the
McGeer biped falls due to there being a larger coefficient of
restitution associated with knee-bounce than is the case with
the simulated biped with knee-bounce, i.e., we found simi-
lar behavior in the simulated system when ε was taken to
be larger than about 0.4. Yet, despite the differences in the
coefficient of restitution between the physical and simulated
system, the similarity between knee-bounce in simulation
and reality is quite remarkable. This indicates that mod-
els with Zeno behavior can effectively simulate real physical
systems in order to say useful things about the behavior of
these systems.

7. CONCLUSION
Motivated by the issue of knee-bounce in bipedal robotic

walking, this paper shows that knee-bounce may not always
negatively affect the stability of bipedal walking as long as
the bounce is kept sufficiently small. This is demonstrated
through the observation that knee-bounce in walking is just
an example of Zeno behavior in hybrid systems. Conditions



on when Zeno behavior exists are used to characterize the
difference between orbits in hybrid systems with plastic and
non-plastic impacts. With this in hand, the notion of gener-
alized completion of a hybrid system is introduced, extend-
ing the traditional notion of completion to a setting that
allows bipedal robots to be modeled with this formalism.
The main result of this paper is that if a plastic periodic
orbit is stable (the biped has stable walking with knee-lock)
then under easily verifiable conditions a Zeno periodic or-
bit exists (the biped has stable walking with knee-bounce as
long as the knee-bounce is sufficiently small). These results
are applied to a specific example of a bipedal robot with
knees, and walking gaits are presented in the case of both
knee-lock and knee-bounce.

Since this paper considered Zeno behavior that occurs at
the knee, the natural question to ask is: what happens if
Zeno behavior occurs at the foot, or the foot and knee si-
multaneously? Addressing this question will be surprisingly
difficult due to the differences between the impact equations
at the knee and foot. At the knee, the impacts are a result of
unilateral constraints, and impacts related to these types of
constraints have been well-studied; it was by building upon
previous results from the author and other researchers that
the main results of these paper were able to be shown. This
preexisting work was non-trivial, taking years to establish.
The first step in extending this work to more interesting
types of impacts, such as those that occur at the feet, is to
study Zeno behavior in the context of these impacts.
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