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Abstract— This paper presents experimentally realized
bipedal robotic walking using ideal torque controllers via a
novel approach termed the ideal model resolved motion method
(IM-RMM), where a system’s ideal closed-loop dynamics is
integrated forward from the actual state of the hardware to
provide desired positions and velocity commands to a PD
controller. By combining this method with gaits generated using
the Human-Inspired Control framework, walking was realized
experimentally on the DURUS platform, designed and built
by SRI, and achieved with minimal system identification. For
comparison, two controllers, one using feedback linearization
and one using Control Lyapunov Function based Quadratic
Programs (CLF-QP), both realized through IM-RMM, are
compared with a benchmark procedure, the Hybrid Zero
Dynamics reconstruction, that is shown to provide reliable
walking in literature. The results of both simulations and
experiments are presented, with the CLF-QP implemented via
IM-RMM resulting in the lowest experimental specific energetic
cost of transport of cet = 0.63 achieved during sustained
walking on the 31.5 kg bipedal robot.

I. INTRODUCTION

Robotic walking presents a wide variety of challenges
related to nonlinear control, especially in the domain of
underactuation. Underactuated bipedal walking has been
achieved on a variety of platforms, including: RABBIT [1],
ERNIE [2], MABEL [3], ATRIAS [4] (a.k.a. MARLO [5]),
AMBER 1 [6], and during the phase immediately preceding
heel strike in multi-contact walking on AMBER 2 [7]. The
walking controllers realized on many of these robots utilized
an offline nonlinear optimization problem enforcing Hybrid
Zero Dynamics (HZD) constraints [1] and were either imple-
mented in real-time with the HZD reconstruction (HZD-R)
method [6] or PD control on the outputs with a feedforward
torque [5]. For AMBER 1 and AMBER 2, walking was
achieved by taking the assumption of remaining on the zero
dynamics surface, computing the inverse kinematics for the
given point on the surface, and then feeding this command
to position control. For MABEL, walking has been achieved
both using PD control on the outputs and torque control,
through both feedback linearization and Control Lyapunov
Function based Quadratic Programs (CLF-QPs) as described
in [8].

This paper presents human-inspired walking realized on
a new robot, DURUS, shown in Fig. 1, with the hardware
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Fig. 1: A snapshot of the DURUS walking in the AMBER
Lab. The setup used for operating DURUS, labeled as
the following: (1) DURUS with motor power supplied by
batteries onboard, (2) the control workstation, (3) the boom,
used to constrain DURUS to the saggital plane, (4) logic
power supply, and (5) the Emergency-Stop switch.

and control infrastructure designed and built by SRI In-
ternational3, using both HZD-R and ideal model resolved
motion method (IM-RMM). The novel contribution of this
paper is the development and application of IM-RMM in
order to implement both feedback linearzation and CLF-QP
torque controllers to realize dynamically stable underactuated
bipedal walking. In particular, IM-RMM realizes a real-
time ideal torque controller by integrating forward the ideal
closed-loop dynamics starting from the actual state measured
on hardware to produce desired positions and velocities to
send to hardware. The motivation for the development of this
technology is to have a middle ground between simple but
brittle position control and complex but flexible torque con-
trol. Therefore, IM-RMM yields an ideal torque controller’s
second-order behavior while avoiding the extensive system
identification necessary for highly accurate torque control.

The nature of resolving a desired position and velocity
from a torque control model motivates the name inherited
from the resolved motion method [9] used for inverse
kinematics. To the authors’ knowledge, there is no formal
name for a technique such as IM-RMM. In several surveys
of robotic control and locomotion, with topics covering
operational-space task control [9], feedback linearization
[10], ZMP control [9], and local neuromuscular control [11],
there are no simple techniques akin to IM-RMM. In the
experimental setup of [12], there is a mention of integrating
accelerations from a torque controller to yield joint trajecto-
ries, but the phrasing and computation times do not make it
clear if this is done in simulation then played back on the
robot or performed in real-time. There are also methods that
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incorporate the integration of reduced-order models to pro-
duce trajectories for planning. These methods are employed
in spring-loaded inverted pendulum (SLIP) models, such as
in [13], with an example of code implementation published
by Oregon State University’s Dynamic Robotics Laboratory
in the ATRIAS code repository.4 Another example is with the
simplified linear inverted pendulum model (LIPM), which
is used to realize step-based push recovery by planning a
trajectory for the center of pressure (CoP) using Model-
Predictive Control in [14].

This paper is organized as follows: Sec. II provides a
mathematical description of the human-inspired framework
and optimization used to generate walking gaits. Sec. III
provides a brief overview of the idea controllers considered
in this paper: feedback linearization and CLF-QP torque
controllers. Sec. IV provides theory for HZD-R and IM-
RMM for realizing PD controllers on hardware. Sec. V
covers the implementation, with a brief description of the
DURUS platform and the deviations from theory used to
achieve robust walking. The resulting walking realized on
hardware is then discussed in Sec. VI, including the tracking
errors and energetic cost of transport. Conclusions and future
directions are then stated in Sec. VII.

II. HUMAN-INSPIRED CONTROL

Human-inspired control was first introduced in [6], build-
ing upon the framework of hybrid zero dynamics [1], [15],
as a means to define control objectives with canonical rep-
resentations of human-like walking and, with ideal control,
provably realize this walking even on robots undergoing
impacts, i.e., hybrid systems. This section gives a brief
overview of hybrid system models of walking robots, spe-
cific considerations for DURUS, hybrid zero dynamics, and
the human-inspired optimization problem that can be used
to provide the parameters necessary to realize human-like
walking on bipedal robots.

A. Mechanical Hybrid Systems

As shown in [1], [6], [16], symmetric, rigid, underactuated
walking can be modeled as a hybrid system with one domain
consisting of the continuous dynamics and one discrete
transition modeling impacts when the foot strikes the ground.
A mechanical system of state space dimension 2n has a
configuration space Q ⊂ Rn, with coordinates q ∈ Q, and
a tangent bundle TQ ⊂ R2n, where x = (q, q̇)T represents
coordinates describing the state space with x ∈ TQ. The
hybrid system of interest in this paper can be formally
defined as the tuple:

HC = (D,U ,S,∆R, f, g), (1)

where D ⊂ TQ is the domain, U ⊆ Rm is set of admissible
control values for a robot with m actuators, u ∈ U is the
vector of inputs, S ⊂ D is the switching surface, the smooth
map ∆R : S → D is the reset map that occurs at impact,
and ẋ = f(x) + g(x)u is a control system governing the
continuous dynamics of the system [17].
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(a) Coordinates (b) Parameters

Fig. 2: A diagram of the 5-link biped.
TABLE I: Model Parameters

Label L (m) m (kg) cx (m) cz (m) Iy (kg · m2)
Calf (c) 0.46 1.2 0 0.266 0.035

Thigh (t) 0.43 8.8 0 0.218 0.18
Torso (T) 0.13 11.5 0.02 0.16 0.48

The continuous dynamics can be modeled using standard
second-order rigid body dynamics as in [10], [18], [19] by
taking the Lagrangian and computing the Euler-Lagrange
equation, D(q)q̈+H(q, q̇) = Bu, where D(q) is the inertia
matrix, H(q, q̇) is the bias force (the sum of Coriolis terms,
C(q, q̇)q̇, and potential energy gradient, G(q)) and B ∈
Rn×m is the actuation matrix. The first-order dynamics, f(x)
and g(x), are then derived from these dynamics. Discrete
transitions at impact are modeled as a perfectly plastic impact
as in [10], [6] given a contact constraint. For a model where
stance (support leg) and nonstance (swing leg) coordinates
are considered, relabeling is performed after the nonstance
foot impacts the ground, which signifies swapping the stance
and nonstance legs. A discrete transition occurs at foot
strike, i.e., when the system reaches the switching surface
S, at which point the impact map is applied: (q+, q̇+) =
∆R(q−, q̇−), mapping pre-impact to post-impact states.

B. Model Considerations

The DURUS robot is rigidly attached to a boom which
constrains the robot to walk in a circle with a radius assumed
to be large enough to use a planar model, similar to [7]. The
floating-base configuration variables, qe, for this system are
given as qe = (p, q)T , with q = [qsa, qsk, qsh, qnsh, qnsk]T ,
where “s” prefix stands for the stance (supporting) leg, the
“ns” prefix stands for nonstance (swing) leg, and the subfixes
“a”, “k”, and “h” stand for ankle, knee, and hip, respectively,
and p = (px, pz) represents the position of the stance foot
in the world frame. The stance foot is then assumed to be
pinned to the ground, eliminating the need for p and reducing
the configuration space to q with n = 5 degrees of freedom.

The model parameters for DURUS are shown in Table I,
where m is the mass, cx and cz are the x- and z-positions of
the center of mass relative to the joint origin (noting that the
y-axis is the axis of rotation) and Iy is the rotational moment
of inertia about the center of mass for the given link. The
coordinates and the parameters are shown in Fig. 2. The
boom, shown in the setup in Fig. 1, is modeled as in [1] and
[20], by adding its effect on the kinetic energy as an addition
to the inertia matrix. The four motors are the m inputs to
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the system. The motor rotor inertias – reflected through the
gearbox – are incorporated as a decoupled addition to the
inertia matrix as

Dm =

[
0 0
0 N2

mImI×m

]
, (2)

where Im = 3 · 10−7kg · m2 is the inertia, and Nm = 30.7
is the gear ratio.

C. Virtual Constraints

For performing control on the modeled dynamics, one
must select an objective, the error between actual outputs
and desired outputs, with rank equal to the number of inputs
available: m. As in [6], virtual constraints define the control
objective of driving actual outputs to desired outputs. In
particular, actual outputs are chosen, ya : Q → Rm, with
the desired outputs as the canonical walking function:

ycwf (t, b) = e−b4t (b1 cos(b2t) + b3 sin(b2t)) + b5, (3)

where ycwf : R5×R→ R, and b ∈ R5 is a vector of parame-
ters. This desired output is used for all outputs, and combined
into a vector function: yd,t(t, α) = [ycwf (t, αi+1)]i∈O,
where O is an indexing set for the outputs, and α =
(vd, {αi+1}i∈O) is the parameter collection tuple for the
walking gait, where vd is the gait’s desired walking velocity.
Note, in the case of DURUS, m = 4, O = {1, 2, 3, 4},
α = (vd, α2, α3, α4, α5).

In order to make the system autonomous as in [6], a
monotonic function of the system state, τ(q), is chosen as
the phase variable, which is defined as

τ(q) =
δphip,x(q)− δphip,x(q+)

vd
, (4)

where δphip,x(q) =
∂phip,x

∂q

∣∣∣
q=0

q is the linearized position

of the hip and q+ is the configuration at the beginning of the
step. This phase variable is substituted for t in the desired
outputs, yielding yd(q, α) = yd,t(τ(q), α), and subsequently
the state-based output error: y(q) = ya(q)− yd(q, α).

D. Human-Inspired Optimization

Given the formal specification of the control objective
through virtual constraints, the human-inspired optimization
(HIO) [6] can be used to produce a parameter set and
initial condition for steady-state walking. When the control
objective is met such that y = 0 for all time, the system is
said to be on the zero dynamics surface [1], or formally

Zα = {x : y(x, α) = 0, Lfy(x, α) = 0}. (5)

This surface can be rendered invariant utilizing ideal
controllers (and exact models of the system). Yet, due to
the fact that walking robots undergo impacts, the parameters
of the outputs must be chosen so that Zα is invariant
through impact; the end result is hybrid zero dynamics

(HZD) [1]. In particular, hybrid invariance can be enforced
via a constrained nonlinear optimization problem:

α∗ = argmin
α

Cost
c
|·|
mt

(α) (HIO)

s.t. ∆R(S ∩ Zα) ⊂ Zα (HZD)
Phyiscal Constraints,

where Cost
c
|·|
mt

(α) computes the 1-norm mechanical cost of
transport (see discussion in Sec. VI-A) for one step given the
walking gait defined by α. The constraint (HZD) enforces
that the parameters yield a zero dynamics surface invariant
through impact and the physical constraints bound positions,
velocities, and torques of the system to ensure a physically
realizable gait. The initial guess of the parameters, α, are the
values fit to the mean human data presented in [6].

III. IDEAL TORQUE CONTROL

This section covers the control methods used to realize
underactuated bipedal walking. Partial feedback input-output
(IO) linearization is presented as a means to achieve expo-
nential convergence in output tracking. Next, Control Lya-
punov Function based Quadratic Programs (CLF-QPs) are
presented as a method to achieve exponential convergence
while minimizing the control objective error subject to a set
of physical (torque based) constraints.

A. Feedback Linearization

As presented in [21], partial feedback linearization can
be performed using the state-based output errors: y(q). The
outputs are of vector relative degree two (the inputs appear
in the output acceleration), thus we have ẏ(x) = Lfy(x) =
∂y
∂q q̇, and ÿ(x) = L2

fy(x) + LgLfy(x)u(x), with the Lie
derivative operator defined as Lba(x) = ∂a

∂xb(x). The output
dynamics can be made to evolve according to ÿ = µ,
where µ is the output-space input, by utilizing the affine
transformation

µ(x) = Lf (x) +A(x)u(x), (6)

where Lf (x) = L2
fy(x) and A(x) = LgLfy(x). The input

u can then be solved for as

u(x) = A−1(−Lf (x) + µ(x)). (7)

In this case of feedback (IO) linearization, µ is chosen
to produce second-order exponential convergence with the
response of a critically-damped spring-mass-damper system,

µ(x) = −2εẏ(x)− ε2y(x), (8)

where ε > 0 is a single control gain for the dynamics of the
system. This feedback produces exponential convergence to
the control objective as a result of (6) - (8). Note that this
controller only stabilizes the output dynamics; as a result, the
parameters chosen by the optimization problem (HIO) play
an important role in shaping the zero dynamics that govern
the overall stability of the system [1], [6].



B. Control Lyapunov Function
Control Lyapunov Function based Quadratic Programs are

a formal mechanism to provide control inputs that drive a
system toward the control objective, y → 0, in a point-
wise optimal fashion while respecting physical constraints
of the system (see [20]). Define the output coordinates
η(x) = (y(x), ẏ(x))T with the dynamics

η̇ =

[
0 Ip×p
0 0

]
︸ ︷︷ ︸

F

η +

[
0

Ip×p

]
︸ ︷︷ ︸

G

µ. (9)

Next, a Rapidly Exponentially Stabilizing CLF (RES-CLF)
[8] can be defined as follows:

V (η) =
1

2
ηTPεη, (10)

with Pε = MT
ε PMε, where

Mε =

[
εIm×m 0

0 Im×m

]
(11)

P =
1√
3
I2m×2m + F + FT , (12)

where P � 0 satisfies the continuous time algebraic Riccati
equation,

FTP + PF − PGGTP = −Q, (13)

and Q � 0 selected as Im×m. Then V̇ can be computed as
an affine transformation of the input, µ, via

V̇ (η) = LFV (η) + LGV (η)µ (14)

LFV (η) = ηT (FTPε + PεF )η (15)

LGV (η) = 2ηTPεG. (16)

Rapid exponential convergence can then be enforced by
upper bounding V̇ ≤ −εγV , where γ = λmin(Q)

λmax(P ) = 1
1+
√
3

.
The end result of these constructions is an affine inequality

in µ that can, therefore, be realized as a constraint in a
quadratic program. The affine constraint for the CLF can
be reformulated as ACLF (η)µ ≤ bCLF (η), where

ACLF (η) = LGV (η) (17)
bCLF (η) = −εγV (η)− LFV (η). (18)

As shown in [17], relaxations can be added in order to
allow V (η) to grow in order to increase the feasibility in
the presence of other constraints such as torque limits. That
is, relaxations added via an additional optimization variable,
δ, which in this case is a scalar for one CLF. A penalty, W , is
placed on the square of this value for the objective function.
The relaxation, with scaling N , is added to the inequality
yielding V̇ ≤ −εγV +Nδ.

The end result of the previous constructions is a quadratic
program (QP) aimed at minimizing the output-space input,
µ(x, u), where u is now an argument. The final result is a
QP utilizing (6):

(u∗, δ∗) = argmin
(u,δ)

uTATAu+ 2LTf Au+ δTWδ (19)

s.t. ACLFAu−Nδ ≤ bCLF −ACLFLf
umin ≤ u ≤ umax.

That is, this QP achieves the desired control objective via the
CLF constraint subject to conditions on the torque available
on the robot in which to achieve this objective.

IV. HARDWARE CONTROLLERS

This section provides a brief theoretical overview of the
Hybrid Zero Dynamics reconstruction (HZD-R) and the ideal
model resolved motion method (IM-RMM), the controllers
that will be implemented on hardware.

A. HZD-R

For performing initial tests on hardware, it is more con-
ducive to test the behavior by commanding position and
velocity for local, decoupled PD controllers for each motor.
With HZD-R, desired positions and velocities can be deter-
mined using the phase from the actual state of the system
and the walking gait generated from (HIO) [4], [6].

If the system is evolving on the HZD surface, it implies
that ya(x) = yd(x) and ẏa(x) = ẏd(x). Inverse kinematics
can be performed on the linear outputs to solve for the
configuration resulting in

qd(q) = Φ−1
[
δphip,x(τ(q), vd)
yd,t(τ(q), α)

]
(20)

q̇d(q, q̇) = Φ−1
[
δṗhip,x(τ(q), τ̇(q, q̇), vd)
ẏd,t(τ(q), α)τ̇(q, q̇)

]
, (21)

where Φ = [
∂phip,x

∂q ; ∂ya∂q ], δphip,x(τ, vd) = δphip,x(q+) +
vdτ , and δṗhip,x(τ, τ̇ , vd) = vdτ̇ (where τ is given in (4))
These desired positions and velocities, (qd, q̇d)

T , can then be
used as an objective to a PD controller for a physical input,
u, as

u(q, q̇) = −KP (qm − qmd (q))−KD(q̇m − q̇md (q)), (22)

where KP ,KD ∈ Rm×m are diagonal matrices of the
proportional and derivative gains, and qm corresponds to
actuated degrees of freedom. This controller therefore tracks
the desired outputs of the walking controller.

B. Ideal Model Resolved Motion Method

Although the HZD-R methodology has been utilized to
achieve underactuated robotic walking on a variety of robotic
platforms [7], [16], it suffers from some important draw-
backs. At a fundamental level, it utilizes the outputs to
generate the desired positions of the robot, but as a result
it cannot be used to modify the behavior of the robot
away from this desired behavior. That is, it can not use
information related to the model (beyond its use in the
HIO) to modulate the behavior of the robot based upon
advanced ideal torque controllers like the CLF-QP (19).
We address the main shortcomings of HZD-R through the
formulation of an intuitive method, IM-RMM, that allows
for the implementation of ideal controllers experimentally
without the use of exhaustive system identification.

The core idea behind IM-RMM is to produce desired
positions and velocities from an ideal torque controller by
integrating forward the ideal dynamics of the system from
the actual state of the hardware. More concretely, the closed



loop dynamics can be formed by incorporating the input
u(x) into the vector field yielding the autonomous system
ẋ = fcl(x) = f(x) + g(x)u(x). Integration can then be
performed using any valid method for explicitly solving an
ordinary differential equation (ODE) given a fixed time step
∆t, yielding a trajectory for real-time control.

To provide a brief discrete perspective, given the cur-
rent cycle k at time t[k], the current state may be de-
fined as xa[k] = (qa[k], q̇a[k])T , and the desired state
that will be sent corresponding to this frame is defined as
xd[k] = (qd[k], q̇d[k])T . With this notation, the flow of
data can be defined as

xd[k] = ODE(fcl(·), xa[k], t[k],∆t), (23)

which takes the state, xa[k] at time t[k] and integrates it
forward a time step of ∆t, yielding the desired state xd[k]
which is intended to be achieved at t[k + 1] = t[k] + ∆t,
implying the intent that xa[k + 1]→ xd[k].

V. IMPLEMENTATION

A. Simulation

The expressions for kinematics and dynamics of the model
were defined in Mathematica and then ported to MATLAB
code, which were used for the optimization and simulations
using the ode45 integrator, with data sets to test the real-
time control code to be implemented. The simulations results
for IO via torque control are shown in Fig. 5, Fig. 6, and
Fig. 7.

B. Hardware

The robot DURUS, shown in Fig. 1, has four actuators,
geared with novel low-friction transmissions from SRI Inter-
national, placed at both of the knees and both of the hips.
At each of the outputs shafts and at the boom, incremental
encoders are used to measure the joint rotation, and a strain
gauge measured the torque at each of the four joints. There
are a total of five microcontrollers: one per joint, controlling
the motors and processing sensor data from incremental en-
coders, absolute encoders, and load cell sensor data, and one
in order to process encoder information detecting the rotation
of the boom. The microcontrollers and sensors are powered
by an off-board logic power supply, while the motors are
powered by four on-board batteries. The microcontrollers
communicate with a real-time enabled Linux host computer
running a real-time process. The real-time process, designed
by SRI International, is implemented using the EtherLAB
software coupled with MATLAB Simulink Coder, and is set
to run at 1 kHz.

The high-level controllers were implemented using C++.
The Eigen5 library was used with minor modifications of Ben
Stephen’s EQuadProg++6, selected in lieu of CVXGEN7 for
speed improvements (1 - 12 times faster than CVXGEN) and
dynamic resizing. ODEINT8 was used for the fourth-order

5http://eigen.tuxfamily.org/
6http://www.cs.cmu.edu/˜bstephe1/
7http://cvxgen.com/docs/index.html
8http://www.odeint.com/

Fig. 3: Diagram of the continuous-time control.

Runge-Kutta method (runge kutta4) which could run
both IO and the CLF-QP within the 1 kHz duty cycle. For a
more complex controller, the simpler Euler method (euler)
could be employed. The resulting high-level diagram of the
position controller options, HZD-R and IO or CLF-QP via
IM-RMM, with the gait α generated via the HIO, are shown
in Fig. 3.

C. Deviations from Theory

With the three control variants, two different loop rates
were used for the PD control on the hardware. For HZD-
R, a 1 kHz high-level PD controller produced a more
compliant command, minimizing feedback oscillations. For
IM-RMM, the 10 kHz PD controller at the embedded level
was used to achieve tighter tracking at the local position
and velocity level. An important component of hardware
implementation is the calculation of τ as it appears in (20)-
(21). In particular, τ had to be saturated and rate-limited
as in [22], with a monotonic constraint. It was also found
that using the velocity data read from the system produced
desired velocities that caused the system to oscillate. As a
temporary fix, τ̇ was computed as a function of τ itself.
Due to the nature of feedback linearization, if τ and τ̇
were inconsistent with the actual outputs of the system, it
would induce additional oscillations and increase the cost of
transport. To resolve this issue, the states were adjusted to be
consistent to solve for (qsa, q̇sa)T in terms of (τ, τ̇ , qp, q̇p)T .

VI. EXPERIMENTAL RESULTS

Each controller was run at 1 kHz, with IM-RMM realized
using fourth-order Runge-Kutta method, where IO had an
average run time of 60µs and the CLF-QP had an average
run time of 0.13ms. Data were logged at 200 Hz using Ether-
LAB’s TestManager interface and processed in MATLAB. A
video of these experiments are available in [23].

The walking itself shown in Figure 4. A comparison of
the tracking for each trial may be seen in Fig. 5 with
the limit cycles in Fig. 6. The worst joint-tracking error
was found at the nonstance joints with an RMS value of
0.08rad, and the best tracking was found at the stance knee
with an RMS value of 0.04rad. This was due to the large

http://eigen.tuxfamily.org/
http://www.cs.cmu.edu/~bstephe1/
http://cvxgen.com/docs/index.html
http://www.odeint.com/


Fig. 4: Walking tiles of the behavior on hardware and in
simulation.
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Fig. 5: Comparison of tracking where the solid lines are the
actual positions and the dotted lines are the desired positions.

travel for the nonstance joints. For IM-RMM, the joint-
tracking errors were computed for the torque controllers
using inverse kinematics as a means to provide a common
metric for tracking. The tracking error for the resulting PD
command was typically less than 0.005rad. The torques are
shown in Fig. 7, with a similar magnitude for simulation and
experiments.

A. Cost of Transport

The specific cost of electrical transport, cet, is computed
as in [24], where the total energy consumed over the product
of weight and distance traveled is represented for step i as

cet,i =
1

mgdi

∫ t−i

t+i

Pel +

4∑
j=1

Ij(t)Vj(t)dt, (24)

where Pel = 58.25W is the logic power consumed by the
host computer (37.5W, measured using a Kill-a-Watt meter
with the real-time process, the GUI, and data logging) and
five microcontrollers (20.75W), and Ij(t) and Vj(t) are the
currents and voltages recorded for the jth motor. The distance
is computed as di = pnsf,x(q−i ) − pnsf,x(q+i ), where q+i is
the post-impact configuration at the beginning of the step,
and q−i is the pre-impact configuration at the end of the step,
and pnsf,x(q) is the x-position of the nonstance foot for the
given configuration.
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Fig. 6: Comparison of limit cycles. The dotted limit cycles
represent simulation results using feedback linearization.
The lighter solid lines represent the raw experimental limit
cycles, while the darker solid lines represent the average
experimental limit cycles.
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Fig. 7: Comparison of torques measured on the system.

Given that the load cell torques, uj , and velocities, q̇j were
measured for each actuated joint j, the cost of mechanical
transport is computed as

cmt,i =

∫ t−i

t+i

4∑
j=1

Pj(t)dt, (25)

where Pj(t) is mechanical power required for motor j, using
a modification of the three options mentioned in [25]:

1) total power, c±mt, where Pj(t) = regenCm
(uj q̇j),

where regenC(x) = [x]+ − C[−x]+ accounts for
regeneration with loss, [x]+ takes the value of x if
it is positive or zero otherwise, and Cm = 1 is the
coefficient of mechanical energy loss;

2) positive-only power, c+mt, where Pj(t) = [uj q̇j ]
+; and

3) positive and negative power, c|·|mt, where Pj(t) =
|uj q̇j |, resulting in the 1-norm cost.



TABLE II: Experimental costs of transport and energy con-
sumption, where P̄em is the average amount of electrical
power consumed by all of the motors and rem = W−em/W

+
em

is the ratio of negative (regenerated) W−em versus consumed
positive (consumed) W+

em motor electrical work.

Method cet c+mt c
|·|
mt c±mt P̄em(W) rem

HZD 0.73 0.05 0.14 -0.05 71.77 0.06
IO 0.68 0.08 0.18 -0.03 83.38 0.15

CLF-QP 0.63 0.08 0.18 -0.03 67.72 0.13

The computed costs for each experiment are shown in
Table II, with data computed for the inner 80% of the
steps are taken. The CLF-QP provides the best cost of
transport, followed by feedback linearization (IO), and then
the HZD reconstruction. Note that feedback linearization
required more motor power on average, but the ratio of regen-
erated electrical energy for the motors, rem, was significantly
higher. Additionally, the torque controllers implemented us-
ing IM-RMM yielded faster walking which decreased the
amount of logic power consumed while walking. These three
controllers were also implemented for a configuration of
DURUS without a significant torso mass, thus weighing
10 kg less. These controllers also yielded periodic, robust
walking. At one point, walking was tested for approximately
30 to 40 minutes, covering half of a kilometer, and stopping
only due to the authors deciding to end the experiment.

VII. CONCLUSIONS AND FUTURE CHALLENGES

This paper presented a methodology, IM-RMM, that can
be used as a method to prototype ideal torque controllers,
providing a simple method in which to implement these
controllers in a closed-loop fashion that is robust to un-
modeled dynamics. In particular, this framework can be
used to bypass extensive system identification, and thereby
experimentally realize underactuated bipedal walking with
only estimated physical parameters. IM-RMM also has the
potential to produce commands that yield a cost of transport
on the same order of magnitude as existing methods utilize to
achieve underactuated walking, e.g., HZD-R. Further work
will be aimed at improving the tracking error, implementing
true torque controllers to compare performance. Furthermore,
the goal is to extend these results, first to compliant systems
that may more gracefully handle the impacts, and then to
more complex, flat-foot 3D humanoid robots.
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