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Abstract— This paper addresses the problem of controlling
underactuated bipedal walking robots in the presence of ac-
tuator torque saturation. The proposed method synthesizes
elements of the Human-Inspired Control (HIC) approach for
generating provably-stable walking controllers, rapidly expo-
nentially stabilizing control Lyapunov functions (RES-CLFs)
and standard model predictive control (MPC). Specifically, the
proposed controller uses feedback linearization to construct a
linear control system describing the dynamics of the walking
outputs. The input to this linear system is designed to be the
solution of a MPC-based Quadratic Program which minimizes
the sum of the values of a RES-CLF–describing the walking
control objectives–over a finite-time horizon. Future values
of the torque constraints are mapped into the linear control
system using the Hybrid Zero Dynamics property of HIC
and subsequently incorporated in the Quadratic Program. The
proposed method is implemented in a rigid-body dynamics
simulation and initial experiments with the Durus robot.

I. INTRODUCTION

Model-based control of bipedal robotic walking can be
broadly classified into two groups, low-dimensional and
high-dimensional model-based controllers. In the former,
some approaches utilize models related to the dynamics of
the robot’s center of mass in the design of controllers which
dictate the aggregate behavior of the robot. The most com-
mon low-dimensional models incorporated in robot walking
controllers are the Linear Inverted Pendulum [10], [12], [19],
[22], the Spring-Loaded Inverted Pendulum [8], and the full
nonlinear center of mass dynamics [12]. An advantage shared
by most low-dimensional walking controllers is that they
can be implemented in real-time control systems. However,
when formal hybrid stability of the walking controller is
required, as determined through Poincare analysis [15], the
full (high-dimensional) dynamics must be considered and
thus, controller generation cannot generally be solved in real-
time. These methods include direct trajectory optimization
[18], Hybrid Zero Dynamics [9], and the method discussed
in this paper, Human-Inspired Control [1], among others.
Due to the complexity of the high-dimensional model, these
optimization problems generally have to be solved apriori,
or “offline”, producing optimal control parameters that can
then be implemented “online” through local nonlinear con-
trol. This paper presents an alternative, Model-Predictive
Control, approach to the online implementation of walking
gaits obtained apriori through the Human-Inspired Control
framework.
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The goal of the Human-Inspired Control approach is to
produce exponentially stable periodic orbits–corresponding
to stable walking–in a hybrid system model of the robot. This
goal is realized by using constrained nonlinear optimization
to produce parameterized functions of the robot’s state,
termed virtual constraints or outputs, whose corresponding
zero dynamics surface is invariant through impact, i.e. foot
strike. After solving the optimization offline, the walking
gait is implemented online via nonlinear control, in the
form of feedback linearization [20] or rapidly exponentially
stabilizing control Lyapunov functions (RES-CLF) [2], to
locally stabilize the control objectives and in doing so,
stabilize the periodic orbit corresponding to walking.

The nonlinear optimization problem can include additional
constraints, such as actuator torque limits; however, overly
restrictive constraints can render the problem infeasible.
Recent work [7] addresses torque constraints through an
online controller that uses a Quadratic Program (QP) to
solve for torques that achieve rapid exponential stability of
a Lyapunov function describing the walking outputs while
simultaneously satisfying actuator torque limits. However, in
general, convergence constraints and torque limits may not
always be feasible, so a relaxation factor is added to the QP
to allow for violation of the CLF constraint. This produces
a locally optimal solution but does not guarantee behavior
of the controller over an extended period of time. As a step
toward guaranteeing forward horizon behavior of the RES-
CLF under torque saturation, the controller proposed in this
paper uses Model Predictive Control: a control framework
that reasons about future convergence under input saturation.

The main contribution of this paper is an online controller
which combines elements of Human-Inspired Control for
bipedal robotic walking [1], the RES-CLF QP [3], [2], [7]
and standard Model Predictive Control (MPC) [5], [11], [14].
The present MPC setup is most similar to the approach
of [13] in which linear MPC methods are applied to the
linear input/output control system obtained through feedback
linearization of a nonlinear process. In the present method,
elements of [13] are explictly computed in the context of
Human-Inspired Control. In particular, the linear input/output
control system obtained through feedback linearization of
the human-inspired outputs is converted into a discrete-time
system and used to construct a linear MPC-based quadratic
program which minimizes the sum of the values of the RES-
CLF over an extended period of time. Torque constraints
in the nonlinear robot dynamics are mapped into the linear
MPC-based QP through a procedure that uses Hybrid Zero
Dynamics to estimate the future states of the robot. The end
result extends the (local) RES-CLF QP to an MPC problem.



II. CONTROL OF ROBOTIC WALKING

This section presents an overview of the continuous-time
component of the Human-Inspired Control (HIC) approach
for underactuated bipedal robotic walking [1]. The goal
of HIC is to produce exponentially stable periodic orbits–
corresponding to stable walking–in a hybrid system model of
the robot. This goal is realized by producing walking control
objectives, or outputs, whose corresponding zero dynamics
surface is invariant through impact, i.e. foot strike. Nonlinear
control, in the form of feedback linearization [20] or rapidly
exponentially stabilizing control Lyapunov functions [2], is
used to locally stabilize the control objectives and in doing
so, stabilize the periodic orbit corresponding to walking. The
following paragraphs briefly cover the construction of the
continuous-time controller in the context of HIC.

A. Control System Model

Consider a model of an underactuated robot comprised of
n rigid links and m = n − 1 actuated revolute joints. Let
θ = (θb, θa) ∈ Q ⊂ Rn denote a vector of body coordinates
with θa ⊂ Rm a vector of “actuated joint angles” and θb ∈ R
a passive joint angle. Given this choice of coordinates, the
standard robot manipulator dynamics (see [17], [21]) can be
expressed as

D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Bu, (1)

with inertia matrix D(θ), Coriolis matrix C(θ, θ̇), gravity
vector G(θ), actuator torque vector u ∈ Rm and torque
distribution matrix B. For more details on the specific model
considered in this paper, see [4]. These dynamics can be used
to express a general nonlinear control system for the robot:

ẋ = f(x) + g(x)u, (2)

in which x = (θ, θ̇)T ∈ TQ. In the Human-Inspired Control
approach, the goal is to realize exponentially stable periodic
orbits in a hybrid system representation of the robot; the
details of which are given in [1]. In the context of this paper,
it suffices to say that the hybrid system is comprised of
the continuous-time dynamics (2) and a discrete update law
describing the post-impact state, x+ = (θ+, θ̇+)T , following
an inelastic collision of the robot with the ground:

x+ = ∆(x), if x ∈ S, (3)

where S is the guard and ∆ is the reset map of the hybrid sys-
tem. To this end, a parameterized feedback control, u(x, α) is
designed through careful construction of control objectives,
or outputs, as described in the following paragraph.

B. Human-Inspired Control Objectives

In the Human-Inspired Control framework, the goal of
effecting walking on the robot is realizing by driving contin-
uous functions of the robot’s joint angles to corresponding
desired values, whose form is motivated by observations of
human walking data [1]. The process involves constructing
outputs y(θ) ∈ Rm whose zeros correspond to a periodic
orbit in the hybrid system. Continuous-time controllers, are
designed to produce u that exponentially stabilize y(θ)→ 0.
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Fig. 1. Human-Inspired Walking Outputs (Left) and Periodic Orbits (Right).
See [1], [4] for specific definitions of the robot joint angles and constructions
of the walking outputs used in this paper.

The final form (see [4] for specific constructions used for
the simulation and experiment examples in this paper) of
these outputs is

y(θ) = ya(θ)− yd(τ(θ), α), (4)

where ya(θ) is a vector of “actual” outputs and yd(τ(θ), α)
is a vector of “desired” outputs. The actual outputs can be
nonlinear functions, but they most often take a linear form:

ya(θ) = Hθ, (5)

where H ∈ Rm×n has full (row) rank. The desired behaviors
are encoded by the solution of an underdamped second order
system:

ycwf (t, α) = e−α4t (α1 cos(α2t) + α3 sin(α2t)) + α5. (6)

This function is made state-based through the substitution
t→ τ(θ), with τ(θ) given by

τ(θ) =
phip(θ)− phip(θ+)

vd
, (7)

and where phip(θ) := cθ, c ∈ R1×n, is the linearized
forward position of the hip, and vd is the walking speed
of the robot. This particular parameterization of time is
based on the observation that the forward position of the
hip during walking evolves nearly linearly with respect to
time. Substituting (7) into (6), the final form of the desired
outputs, as shown in (4), becomes:

yd(τ(θ), α) = [ycwf (τ(θ), αi)]i∈O, (8)

in which O is an indexing set used to match desired
outputs with corresponding actual values. Associated with
the parameters α is a zero dynamics surface:

Zα = {(θ, θ̇) ∈ TQ : y(θ) = 0, Lfy(θ, θ̇) = 0}, (9)

on which the robot’s actual behavior is identical to the
prescribed desired behavior. In the Human-Inspired Control
method, an optimization problem is solved to obtain param-
eters α∗ that satisfy hybrid invariance of Zα:

∆(S ∩ Zα) ⊂ Zα. (10)

Theorem 3 of [1] gives conditions on α which, when satisfied
in conjunction with (10), result in the existence of an
exponentially stable periodic orbit (a stable walking gait) in
a full-state hybrid system representation of the robot.



C. Local Nonlinear Control

This section describes nonlinear control methods which
can be employed to exponentially stabilize the human-
inspired walking outputs (4) within the robot control system
(2). In particular, feedback linearization [20] can be used to
achieve an arbitrary convergence rate when torque bounds
are not considered. However, in the control of robotic lo-
comotion, torque bounds cannot generally be neglected and
thus a more sophisticated approach, like the one described
in [2], [7], is required.

Input/Output (Feedback) Linearization. As the human-
inspired outputs, y(θ), have vector relative degree two in
the robot control system (2), the input/output linearization
control law for these outputs is

u = A−1(−Lf + µ), (11)

where A := LgLfy(θ) and Lf := L2
fy(θ, θ̇) are Lie

derivatives along the vector fields f(x) and g(x) and the
dependence on (θ, θ̇) has been suppressed for brevity. Here
the decoupling matrix A is assumed to be invertible and can
be made so through proper construction of control outputs
y(θ). Applying (11) to (2) results in ÿ = µ. In the absence of
torque constraints, a common choice of µ places the closed-
loop poles of the output dynamics at −1/ε,

µ = −2

ε
ẏ − 1

ε2
y, (12)

where 0 < ε < 1 determines the output convergence rate.
When torque constraints cannot be neglected, as is often the
case in robot locomotion, a more sophisticated method of
selecting µ is required.

Control Lyapunov Functions. The rapidly exponentially
stabilizing control Lyapunov Function (RES-CLF) frame-
work presented in [2] provides a method of simultaneously
satisfying torque constraints and achieving exponential sta-
bility. Assuming the preliminary feedback (11) has been
applied, and defining the “output” coordinates η := (y, ẏ)T ,
results in the following linear system:

η̇ =

[
0 1
0 0

]
︸ ︷︷ ︸

F

η +

[
0
1

]
︸ ︷︷ ︸
G

µ. (13)

The method of [2] can be employed to construct a RES-CLF
for the system (13) of the form, Vε(η) = ηTPεη,

Vε(η) = ηT IεPIε︸ ︷︷ ︸
Pε

η, Iε := diag

(
1

ε
I, I

)
, (14)

where I is the identity matrix and P = PT > 0 solves the
continuous time algebraic Riccati equations (CARE)

FTP + PF − PGGTP +Q = 0 (15)

for Q = QT > 0. The time-derivative of (14) is given by

V̇ε(η) = LFVε(η) + LGVε(η)µ, (16)

where the Lie derivatives of Vε(η) along the vector fields F
and G are

LFVε(η) = ηT (FTPε + PεF )η, (17)

LGVε(η) = 2ηTPεG. (18)

To achieve rapid exponential stability, and thus meet the
requirements of a RES-CLF, the following inequality on V̇ε
must be satisfied

LFVε(η) + LGVε(η)µ+
γ

ε
Vε(η) ≤ 0 (19)

with γ = λmin(Q)/λmax(P ). In [2], it is shown that by
applying a RES-CLF to the continuous-time robot control
system (2), the corresponding periodic orbit (walking gait) is
exponentially stabilized. The following paragraph describes
an existing method for implementing a RES-CLF controller.
RES-CLF Quadratic Program. In practice, determining a µ
that satisfies the RES-CLF constraint (in an optimal manner)
can be achieved through the solution of a quadratic program
(QP) [2]. Indeed, the structure of a QP facilitates inclusion of
any affine constraint on µ, including actuator torque limits:

u = A−1(−Lf + µ) ≤ umax, (20)

where umax ∈ Rm is a vector of the maximum torques that
the robot’s motors are capable of producing.

However, the linear system of inequalities on µ described
by both the RES-CLF convergence constraints (19) and the
torque bounds (20) is not guaranteed to have a feasible
solution; thus, a “relaxation” term δ > 0 is added to the
RES-CLF constraint:

LFVε + LGVεµ ≤ −
γ

ε
Vε + δ, (21)

to allow Vε to drift (locally) in the presence of active
torque constraints. Using this relaxed form of the RES-CLF
constraint, the torque-bounded, RES-CLF quadratic program
of interest in this paper (first stated in [7], see [3] for
additional related QP constructions), is given by:

(µ∗, δ∗) = argmin
(µ,δ)∈Rm+1

µTµ+ pδ2 (RES-CLF QP)

s.t. LFVε + LGVεµ ≤ −
γ

ε
Vε + δ,

A−1(−Lf + µ) ≤ umax,

−A−1(−Lf + µ) ≤ umax,

where p > 0 penalizes violation of the RES-CLF constraint.
When there exists a µ that satisfies both the RES-CLF and
the torque constraints, the solution of (RES-CLF QP) is
equivalent to the min-norm controller [6]. However, when
the torque constraints become active, δ∗ grows and the RES-
CLF constraint violated. By penalizing δ∗ in the objective
function, the QP finds the minimum RES-CLF violation
needed to satisfy the torque bounds.

The RES-CLF QP solves for the locally optimal balance
between convergence and torque bounds, however, it does
not have the machinery to reason about the current globally
optimal choice. As an intermediate step between the RES-
CLF and re-solving the nonlinear optimization, we propose
the following MPC approach.



III. MPC FOR BIPEDAL ROBOTIC WALKING

This section presents the main contribution of the paper:
a model predictive control scheme which produces a current
value of µ that is consistent with a finite-time forward
horizon plan which minimizes estimated future values of
the RES-CLF describing the walking control objectives and
satisfies future values of the torque constraints. The mapping
from constraints on torque to constraints on µ over the
forward horizon is calculated using a process which leverages
hybrid zero dynamics. The end result takes the form of a
quadratic program with linear constraints.

A. Discrete-Time Representation for Horizon Planning

The continuous-time dynamical system on the outputs
given in (13) can be rewritten in discrete state-space form:

ηk+1 =

[
1 ∆T
0 1

]
︸ ︷︷ ︸

F∆T

ηk +

[
0

∆T

]
︸ ︷︷ ︸
G∆T

µk. (22)

with discrete time-step ∆T > 0. Given an initial con-
dition, η0, and a sequence of control inputs, µ̄ =
{µ0, µ1, µ2, . . . , µk−1}, the value of η after k time-steps,
denoted ηk, can be obtained by successively computing (22).

The corresponding value of the RES-CLF is calculated
using (14):

Vε(ηk) = ηTk Pεηk. (23)

The goal of the model-predictive control method for bipedal
robotic walking is to determine a sequence of control inputs
µ̄ that minimizes the sum of the RES-CLF computed N steps
in the future while satisfying torque constraints over the same
interval. The next section describes the computation of future
values of the torque constraints in the context of human-
inspired control.

B. Estimating Torque Constraints via Hybrid Zero Dynamics

Let xk = (θk, θ̇k)T represent the state of the robot
k time-steps in the future, and Ak := LgLfy(θk) and
Lf := L2

fy(θk, θ̇k) be the corresponding values of the Lie
derivatives of (4). Using the feedback linearization control
law (11), the relationship between µ and u after k time-steps,
denoted µk and uk respectively, is given by

uk = A−1
k (−Lf,k + µk). (24)

The goal of this section is to estimate future values of Ak and
Lf,k so that future torque bounds can be accurately predicted.

From [1], the zero dynamics coordinates corresponding to
the zero dynamics surface Zα given in (9) are

z1 = cθ, (25)

z2 = γ0(θ)θ̇, (26)

with γ0(θ) the first row of the inertia matrix D(θ). Assuming
that we have used the Human-Inspired Optimization to obtain
parameters α∗ corresponding to a stable periodic orbit in the
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Fig. 2. Feedforward torques corresponding to the nominal gait (left) and
RES-CLF QP torques with umax = 20. See [1], [4] for specific constructions
of the walking outputs used in this paper.

hybrid system model of our robot, the dynamics of (25) and
(26) along this orbit are given by:

ż1 = cΨ(z1)z2, (27)

ż2 =
∂V (θ)

∂θsf

∣∣∣∣
θ=Φ(z1)

, (28)

where V (θ) is the potential energy of the robot and

Φ(z1) =

[
c
H

]−1(
z1

yd(z1)

)
, (29)

Ψ(z1) =

[
γ0(Φ(z1))

H − ∂yd(z1)
∂z1

c

]−1(
1
0

)
. (30)

It follows that on the zero dynamics surface, the angles
and velocities can be calculated as functions of z1 and z2,
θ = Φ(z1) and θ̇ = Ψ(z1)z2. Thus, to calculate the Lie
derivatives Ak and Lf,k, the zero dynamics (27) and (28) are
integrated k time steps in the future to produce z1,k and z2,k,
which can be used to calculate angles and velocities through
Φ(z1) and Ψ(z1), which can then be used to calculate Ak :=
LgLfy(Φ(z1,k)) and Lf,k := L2

fy(Φ(z1,k),Ψ(z1,k)z2,k).

C. MPC-QP for Bipedal Robotic Walking

We can now state the main contribution of the paper: a
MPC-based quadratic program which attempts to minimize
the values of the RES-CLF for robotic walking over an N
time-step forward horizon and to satisfy nonlinear torque
bounds over the same horizon (R = RT > 0):

µ̄∗(x) = argmin
µ̄

ηTNPεηN +

N−1∑
k=0

ηTk Pεηk + µTkRµk (31)

s.t. ηk+1 = F∆T ηk +G∆Tµk,

A−1
k µk ≤ umax +A−1

k L2
f,k,

−A−1
k µk ≤ umax −A−1

k L2
f,k,

η0 = η(x),

∀k ∈{0, 1, . . . , N − 1}.

The MPC-QP is implemented in real-time. At each x, the
zero dynamics coordinates are calculated using (25) and (26),
and integrated forward in time to produce Ak and Lf,k. The
optimization problem is then solved, and the first element in
the solution, µ∗0 is used in the feedback linearization control
law (11), i.e. u = A−1(−Lf + µ∗0).
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Fig. 3. Control outputs y (left) and torques u (right) from simulation using
the RES-CLF QP with umax = 20Nm.
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Fig. 4. Control outputs y (left) and torques u (right) from simulation using
the RES-CLF QP with umax = 9Nm.

IV. SIMULATION RESULTS

This section presents a simulation comparison of the
performance of the RES-CLF QP [2], [7] and the proposed
MPC-based control method for achieving bipedal robotic
walking. The dynamic model used in this simulation is
that of Durus, a robot designed and constructed by SRI
International, shown in Figure 7; specifics of the model,
including the coordinates, mass and length properties, can
be found in [4].

As part of a different project, the Human-Inspired Opti-
mization [1], [4] was solved to obtain parameters, α∗, and a
fixed point, x∗, corresponding to a stable walking gait on a
rigid-body dynamics model of the Durus robot. The desired
outputs (8), computed with α∗, are shown in Figure 1, along
with the periodic orbit corresponding to x∗. The nominal
torques (11) along this orbit are shown in Figure 2. Here,
these parameters are used to investigate the performance
properties of the RES-CLF QP and the proposed MPC under
non-trivial torque bounds.

A. RES-CLF QP

The first simulation case investigated is the feed-
back linearization controller (11) with µ obtained from
(RES-CLF QP) under torque bounds of umax = 20Nm,
ε = 1/50 and p = 1. Results from application of this
controller to the robot control system (2) over the course of
one continuous-time stride of walking are shown in Figure 3.
The plot of the outputs y shows divergence during the initial
0.1s of simulation, and the plot of the torques u shows that
one of the torques saturates during the same interval. After
the initial saturation, the outputs converge as expected.
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Fig. 5. Control outputs y (left) and torques u (right) from simulation using
the proposed MPC-based QP with umax = 20Nm.
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Fig. 6. Control outputs y (left) and torques u (right) from simulation using
the proposed MPC-based QP with umax = 9Nm.

In the second simulation of the (RES-CLF QP), more
rigorous torque bounds of umax = 9Nm are enforced, while
the other configuration variables remain at ε = 1/50 and
p = 1. Results from simulation of this controller are given
in Figure 4. The plot of the outputs shows significantly
more divergence in this case, which is to be expected
given the more stringent torque bounds. The plot of the
corresponding torques, however, reveals longer periods of
saturation and a loss of continuity in the torque signal. This
(loss of Lipschitz continuity of the commanded torques) is a
recurring challenge with RES-CLF QP implementation [16].

B. MPC-QP for Bipedal Robotic Walking

The next two simulation case studies investigate the be-
havior of the feedback linearization controller (11) with
µ obtained from the proposed MPC-based QP for bipedal
robotic walking (31) described in Section III. For both
simulations that follow, N = 5, ∆T = 0.01s, ε = 1/200
and R = 0.0001I , with I an identity matrix.

In the first of the two MPC-based QP simulations, the
torque bound is set to umax = 20Nm. Figure 5 shows outputs
and torques from this simulation, in which it can be seen that
(31) performs in a similar manner to (RES-CLF QP) under
the same torque bounds.

In the second of the two MPC-based QP simulations, the
torque bound is set to umax = 9Nm. Figure 6 shows outputs
and torques from this simulation, in which it can be seen
that the outputs y diverge in a similar manner as the outputs
of the (RES-CLF QP) under the same torque bounds, but
the torques produced by the IO-MPC do not lose Lipschitz
continuity.



V. EXPERIMENTAL RESULTS AND FUTURE WORK

The proposed MPC-based controller for bipedal robotic
walking was implemented in C++ on the Durus robot using
an internal dynamics model integration method to convert
the feedback linearization torques into position and velocity
commands [4]. Data from an experiment in which the robot
successfully completed three laps around the room (63 steps)
is shown in Figure 7. The average phase portraits from
experiment agree quite well with the corresponding phase
portraits from simulation, presented earlier in Figure 1. In
the experiment phase portrait, bi-periodicity is apparent: this
is due to the fact that the boom which supports Durus does
not entirely enforce planar motion. A video of the experiment
is available online http://youtu.be/OG-WIfWMZek.

Formal stability of the hybrid periodic orbit as a result
of the proposed MPC control approach is a prime focus
of current research. Existing methods of proving stability
of the orbit rely on exponential stability of the continuous-
time controller, and to the authors’ knowledge, a proof of
stability under nontrivial torque saturation is still an open
problem. To address the hybrid stability problem, it will be
important to note existing methods of proving stability of
MPC controllers, such as those described in [14], impose
conditions on a terminal cost ηTNPεηN . Zero dynamics play
a large part in the current work. Increasing the dimensionality
of the zero dynamics (such as going to 3D) poses significant
challenges that need to be addressed. A note on the method:
the proposed MPC problem is (currently) not intended to
replace the nonlinear optimization that produces the nominal
gait. Associated with the nominal gait is a feedforward
torque profile; deviations from these nominal torques will
necessarily change the gait. The standard approach would
be to re-solve the constrained nonlinear optimization for a
different gait with lower torque bounds; however, this comes
with its own challenges and it has to be done offline. Instead,
the current MPC formulation intends to be a step towards
handling (reasonable) torque bounds at the online control
implementation level, and thus, relieve some of the burden
of the offline optimization.
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