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Abstract— This paper employs the Human-Inspired Control
framework in the formal design, optimization and implemen-
tation of controllers for 3D bipedal robotic walking. In this
framework, controllers drive the robot to a low-dimensional
representation, termed the partial hybrid zero dynamics, which
is shaped by the parameters of the outputs describing human
locomotion data. The main result of this paper is the use
of partial hybrid zero dynamics in an optimization problem
to compute physical constraints on the robot, without inte-
grating the dynamics of the system, and while simultaneously
yielding provably stable walking controllers for a 3D robot
model. Controllers corresponding to various walking speeds
are obtained through a second speed regulation optimization,
and formal methods are presented which provide smooth
transitions between walking speeds. These formal results are
demonstrated through simulation and utilized to obtain 3D
walking experimentally with the NAO robot.

I. INTRODUCTION

Three-dimensional bipedal robotic walking has been real-
ized experimentally by numerous robotic systems through the
use of various control schemes[1]. One of the most prevalent
control approaches leverages the Zero Moment Point (ZMP)
[2], [3], which is the control scheme included as the default
walking for the NAO1 robot platform used as a testbed
for the controllers designed in this work. From a purely
mechanical point of view, passive walkers [4] employ an
excellent understanding of mechanics and mechanism design
to experimentally achieve robotic walking down small slopes
without the use of control. These ideas have been used to
design passivity-based control laws in 2D [5], [6]. These 2D
control laws have been extended to 3D through geometric
reduction [7], [8], yet these methods have only recently been
realized experimentally [9]. Therefore, there exists a gap
between formal methods and experimental realization for
three-dimensional robotic walking. The goal of this work is
to begin the process of bridging this gap by providing formal
results that provably result in robotic walking which can be
realized in experimentation.

The main idea behind this work is to approach 3D robotic
walking through reductions based upon virtual models and
constraints to create a low-dimensional representation of a
bipedal robot that allows formal properties of the robot
to be proven in a computationally tractable fashion. Low-
dimensional representations have been studied before; see,
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for example, [10]. Similar ideas have been considered in
the past through Hybrid Zero Dynamics [11] (which has
recently been applied to 3D robots [7]) and the spring-loaded
inverted pendulum [12], [13], or SLIP model. Differing
from traditional approaches, the authors’ previous results
[14], [15] show that certain outputs of the human locomo-
tion control system can be represented by the solution to
an under-damped, second-order mass-spring-damper system,
and employed to achieve walking for a 2D robot model of
NAO. Novel to this paper is the application of the human-
inspired control framework to a 3D robot model of NAO,
with computation of constraints necessary to physically re-
alize walking on the actual robot.

This paper proposes a formal human-inspired optimization
(HIO) which provably results in exponentially stable bipedal
robotic walking and satisfies many of the physical constraints
necessary to realize the walking experimentally. Specifically,
the optimization minimizes an objective function which is the
least-squares fit of the output functions of the robot to the
human output data. Constraints are enforced which guarantee
that the zero dynamics surface associated with the certain
output functions is invariant through impact resulting in a
partial hybrid zero dynamics [14]. These constraints, together
with a specific choice of (linear) output functions, allow for
a closed-form approximation of the solution to the dynamics
of the robot over the course of one step, i.e., the behavior of
the robot can be determined without integrating the dynamics
of the system. This allows for the computation of physical
constraints required for experimental implementation, such
as the ZMP and friction, to be added to the HIO as constraints
and computed in a feasible time-frame (as opposed to the
time required to integrate the full dynamics of the system,
which in the case of the robot model considered in this paper
is 20-dimensional).

In addition to walking at a constant speed, formal meth-
ods are presented for obtaining walking at multiple speeds
through speed regulation—in the form of another optimiza-
tion which yields controllers corresponding to a partial
hybrid zero dynamics surface for each walking speed. Motion
Transitions are constructed to smoothly connect two partial
hybrid zero dynamics surfaces. Specifically, parameters of
the extended canonical walking function are obtained through
closed form expressions which satisfy PHZD at the begin-
ning and end of the step. These motion transitions allow
for seamless regulation of the robot’s walking speed, and
as a result, provide the ability to quickly change the robot’s
walking speed, as presented in the final section on simulation
and experimental results.



II. ROBOT MODEL

The NAO robot can be modeled as a hybrid control
system:

H CR = (DR, UR, SR,∆R, fR, gR). (1)

Restrictions are imposed via control which render both feet
flat throughout the gait; for non flat-foot models, more
complex hybrid systems must be considered [7], [8]. The
configuration space,QR, of the system is given in coordinates
by:

q = (ϕsa, θsa, θsk, θsh, ϕsh, ϕnsh, θnsh, θnsk, θnsa, ϕnsa)T ,

where, as illustrated in Figure 1, ϕsa, ϕsh, ϕnsh, and
ϕnsa are the stance ankle, stance hip, nonstance hip
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Fig. 1: Angle conventions
for NAO.

and nonstance ankle roll an-
gles, respectively, and θsa,
θsk, θsh, θnsh, θnsk, and
θnsa are the stance ankle,
stance knee, stance hip, non-
stance hip, nonstance knee
and nonstance ankle pitch
angles, respectively. Note
that the configuration is the
3D version of the com-
monly employed seven-link
biped model [16], [1]. With
the mass, length and inertia
properties of each link of the
robot, the Lagrangian can
be computed which, through
the Euler-Lagrange equation
(see [17]), yields the equations of motion which can be
converted to a set of first order ordinary differential equations
(ODEs) resulting in the affine control system (fR, gR):

fR(q, q̇) =

[
q̇

−D−1(q)H(q, q̇)

]
, gR(q) =

[
0

D−1(q)B(q)

]
,

with UR ⊆ R10 and B : QR → R10×10. For the choice
of coordinates in this paper, B = I10. The domain specifies
the allowable configuration of the system, determined by a
unilateral constraint hR : QR → R; for the biped considered
in this paper, this function is the height of the non-stance
foot. In particular, the domain and guard are given by:

DR =
{

(q, q̇) ∈ TQR : hR(q) ≥ 0
}
. (2)

SR =
{

(q, q̇) ∈ TQR : hR(q) = 0 and dhR(q)q̇ < 0
}
,

where dhR(q) is the Jacobian of hR at q. The reset map
∆R : SR → DR is given by:

∆R(q, q̇) =

[
∆qq

∆q̇(q) q̇

]
, (3)

where ∆q is the relabeling matrix which switches the stance
and non-stance legs at impact (by appropriately changing the
angles). Here, ∆q̇ determines the change in velocity due to
impact (see [18], [7] and [14]).

III. HUMAN-INSPIRED CONTROLLER DESIGN

In the authors’ previous work [14], it was shown that
certain outputs of human locomotion, computed from ex-
perimental locomotion data, can each be represented by a
function termed the canonical walking function (CWF):

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5. (4)

Motivated by the desire to obtain human-like, bipedal robotic
locomotion, the goal is to construct a controller which drives
outputs of the robot to outputs of the human. This goal is
effected formally through a control law u : TQR → UR

which guarantees that ya(q(t)) → yd(t) exponentially as
t → ∞, where ya : QR → R10 is a vector of kinematics
maps on the robot representing the human outputs and yd :
R→ R10 is a vector of canonical human functions.

With the goal of controlling the robot’s walking speed,
define the relative degree 1 actual output as the velocity of
the hip and define the the desired velocity of the hip:

ya1 (q, q̇) = δṗRhip(q, q̇) = dδpRhip(q)q̇, yd1 = vhip, (5)

where δphip(q) is the linearized position of the hip, given by

δpRhip(q) = Lc(−θsa) + Lt(−θsa − θsk). (6)

Furthermore, define the linear (relative degree 2) actual hu-
man outputs and desired outputs represented by the walking
functions:

ya2,L(q) =



δmR
nsl(q)
θsk
θnsk
θRtor(q)
ϕsa
ϕsh
ϕnsh


, yd2,L(t, α) =



yH(t, αnsl)
yH(t, αsk)
yH(t, αnsk)
yH(t, αtor)
yH(t, αsa)
yH(t, αsh)
yH(t, αnsh)


(7)

where ya2,L : QR → R7 are the actual linear outputs of the
robot, and yd2,L : R × R35 → R7 are the desired functions
for these linear outputs, θRtor(q) = θsa + θsk + θsh, and

δmR
nsl(q) = −θsa − θsk − θsh − θnsh +

Lc
Lc + Lt

θnsk. (8)

The first four outputs of (7) were used to obtain walking in
a 2D model of this system[15]; the three additional outputs
ϕsa, ϕsh, ϕnsh corresponding to the roll angles are novel to
this work. Due to the linear form of the outputs considered,
they can be written as:

ya2,L(q) = H q (9)

for H ∈ R7×10 with full row rank (where, for example, the
top row of H is obtained by taking the Jacobian of (8)).
To enforce a flat non-stance foot and complete the set of
controller outputs, two nonlinear, relative degree outputs are
needed:

ya2,N (q) =

[
ψRx
ψRy

]
, yd2,N (t, α) =

[
ψdx(t, αψx)
ψdy(t, αψy)

]
, (10)



where ψRx and ψRy represent the roll and pitch angles of
the non-stance foot frame with respect to the ground frame.
Grouping the linear and nonlinear relative degree two outputs
results in:

ya2 (q) =

[
ya2,L(q)

ya2,N (q)

]
, yd2(t, α) =

[
yd2,L(t, α)

yd2,N (t, α)

]
. (11)

where the parameters of all of the outputs are combined to
yield a single vector α ∈ R46 given by:

α = (vhip, αnsl, αnsk, αsk, αtor, αsa, αsh, αnsh, αψx, αψy).

The goal is for the outputs of the robot to agree with the
outputs of the human, motivating the final form of the outputs
to be used in feedback linearization:

y1(q, q̇, α) = ya1 (q, q̇)− vhip, (12)

y2(q, α) = ya2 (q)− yd2(τ(q), α), (13)

where τ(q) =
δpRhip(q)−δp

R
hip(q

+)

vhip
is a state-based param-

eterization of time with δpRhip(q+) the linearized position
of the hip of the robot at the beginning of a step. This
parameterization is important as it allows for control over
walking speed through the parameter vhip. These outputs can
be used to define a human-inspired controller:

uα,ε(q, q̇) = A(q, q̇)−1
([

0
L2
fRy2(q, q̇)

]
(14)

+

[
LfRy1(q, q̇)

2εLfRy2(q, q̇)

]
+

[
εy1(q, q̇)
ε2y2(q)

])
,

with control gain ε and decoupling matrix A given by

A(q, q̇) =

[
LgRy1(q, q̇, α)

LgRLfRy2(q, q̇, α)

]
(15)

and it follows that for a control gain ε > 0, the control
law uα,ε : TQR × R46 × R+ → UR renders the output
exponentially stable [19].

For the hybrid control system H CR, the human-inspired
control law is applied to obtain the hybrid system

H R
α,ε = (DR, SR,∆R, fRα,ε) (16)

with fRα,ε(q, q̇) = fR(q, q̇) + gR(q, q̇)uα,ε(q, q̇). The end
result of the modeling process is a hybrid system H R

α,ε that
depends on the parameters of the human inspired control α
and ε.
Hybrid Zero Dynamics For the continuous dynamics of
the hybrid system H R

(α,ε), the controller renders the full zero
dynamics surface

FZα =
{

(q, q̇) ∈ TQR : y1(q, α) = 0, y2(q, q̇, α) = 09,

LfRy2(q, q̇, α) = 09

}
, (17)

exponentially stable (where 0n is a vector of n zeros). In
this work, hybrid invariance is enforced only for the relative
degree 2 outputs. The corresponding surface is referred to as
the partial zero dynamics surface (PHZD):

PZα =
{

(q, q̇) ∈ TQR : y2(q, α) = 09, ẏ2(q, q̇, α) = 09

}
.

(18)

Since the only output that is not included in the partial
zero dynamics surface is the output that forces the forward
hip velocity to be constant, enforcing partial hybrid zero
dynamics means, in some respect, that the velocity of the
hip is allowed to compensate for the shocks in the system
due to impact.

IV. HUMAN-INSPIRED CONTROLLER OPTIMIZATION

This section presents the main result of this paper: an op-
timization problem which yields parameters for the human-
inspired controller, uα,ε, that minimize a human data-based
cost function [20] while simultaneously yielding robotic
walking in simulation and satisfying physical modeling con-
straints of the actual robot. A novel method is presented
for computing these constraints in closed form (rather than
explicitly integrating the dynamics) through the interplay
between full and partial hybrid zero dynamics.

Optimization Cost. The cost of the optimization is the least
squares fit of the sagittal plane outputs to the corresponding
mean human data. The mean human data consist of discrete
times, tH [k], and discrete values for the output functions:
δpHhip[k], δmH

nsl[k], θHsk[k], θHnsk[k], and θHtor[k] where here
k ∈ {1, . . . ,K} ⊂ N with K the number of data points.
Represent the mean human output data by yHi [k] and the
canonical walking functions by ydi (t, αi) for i ∈ Output =
{hip,msl, sk, nsk, tor}; for example, yHmsl[k] = δmH

nsl[k]
and ydmsl(t, αmsl) = δmd

nsl(t, αnsl). With these elements
defined, the human data based cost can be written

CostHD(α) =

K∑
k=1

∑
i∈Output

(
yHi [k]− ydi (tH [k], αi)

)2
,

(19)

which is simply the sum of squared residuals.

Partial Hybrid Zero Dynamics Constraints Following
from [14], [15], to compute the constraints needed to ensure
partial hybrid zero dynamics, the outputs and guard functions
are used to explicitly solve for the configuration of the system
ϑ(α) ∈ QR on the guard (hR(ϑ(α)) = 0) in terms of the
parameters α. In particular, let

ϑ(α) = q s.t. y2(∆qq) = 09 and hR(q) = 0 (20)

where ∆q is the relabeling matrix (3). Note that multiple
solutions to ϑ(α) exist because yd2,N (∆qq) and hR(q) are
nonlinear functions of all joint angles; however, restrictions
are placed on ϑ(α) such that only one solution corresponds
to a valid configuration. Using ϑ(α) allows for the explicit
solution of a point (ϑ(α), ϑ̇(α)) ∈ FZα ∩ SR. In particular,
let

Y (q) =

[
dδpRhip(q)

dy2(q)

]
. (21)

and define

ϑ̇(α) = Y −1(ϑ(α))

[
vhip
09

]
, (22)



where Y is invertible because of the choice of outputs. Uti-
lizing these constructions, the constraints needed for partial
hybrid zero dynamics can be written:

y2(ϑ(α)) = 09, (C1)

dy2(∆qϑ(α))∆q̇(ϑ(α))ϑ̇(α) = 09, (C2)

dhR(ϑ(α))ϑ̇(α) < 0. (C3)

Computing approximate solutions: qe(t, α) and q̇e(t, α)
This section utilizes the fact that the human outputs were
specifically chosen to be linear in order to explicitly construct
the partial hybrid zero dynamics. Because of the specific
choice of ya2,L, the following representation of the partial
zero dynamic coordinates is employed:

ξ1 = δpRhip(q) =: c q, (23)

ξ2 = ya1 (q, q̇) = δṗRhip(q, q̇) =: c q̇.

where c ∈ R1×10 is obtained from (6). This motivates the
following time-based approximation of ξ1 and ξ2 (utilizing
the solution to the inverse kinematics):

ξe1(t) := vhipt+ δpRhip(∆qϑ(α)), (24)
ξe2(t) := vhip.

These time-based approximations can be used in the partial
zero dynamics surface to obtain an approximation of the
solution for the full-order system by picking the coordinates

η1 = ya2,L(q) = H q, (25)
η2 = LfRya2,L(q, q̇) = H q̇,

with H as in (9), and defining

Φ(ξ1, α) =

[
c
H

]−1(
ξ1

yd2,L(ξ1, α)

)
, (26)

Ψ(ξ1, α) =

[
c
H

]−1( 1
∂yd2,L(ξ1,α)

∂ξ1

)
. (27)

yields estimates of the first eight angles and corresponding
velocities of the system:

qe1:8(t, α) = Φ(ξe1(t), α), (28)
q̇e1:8(t, α) = Ψ(ξe1(t), α)ξe2(t). (29)

The final four states of the system, (qe9:10, q̇
e
9:10) =

(θensa, ϕ
e
nsa, θ̇

e
nsa, ϕ̇

e
nsa)T , are obtained through inverse kine-

matics with the assumption that the non-stance foot is parallel
to the ground throughout the step.
Model Constraints Standard methods [7] are used to
compute the ground contact forces and torques acting on
the stance foot: Fst = (F fxst , F

fy
st , F

fz
st , F

mx
st , Fmyst , Fmzst ),

where the first three components are the forces and the last
three components are the torques acting on the stance foot.
To prevent rotation about an edge, the following constraints
on the ground reaction moment must hold [21]:

−wf
2
F fzst < Fmxst <

wf
2
F fzst (30)

−lhF fzst < Fmyst < ltF
fz
st , (31)

where wf is the width of the foot, lt is the length of
the toe and lh is the length of the heel. This condition
is known as the Zero Moment Point condition [2], [3].
Furthermore, to prevent the stance foot from slipping, the
following constraint must hold:√

(F fxst )2 + (F fyst )2 < µF fzst , (32)

where µ is the coefficient of static friction for the contact
between NAO’s foot and the ground. Equations (30)-(32)
can be rearranged and stated in terms of inequalities of
the form Ci(u) < 0 for i ∈ {1, . . . , 5}. Moreover, using
the approximation to the solution, (qe(t, α), q̇e(t, α)), an
approximation the torque is computed at each time, t, over
the course of a step:

ueα,ε(t) :=uα,ε(q
e(t, α), q̇e(t, α)). (33)

Therefore, the ZMP and friction constraints on the stance
foot can be stated as the constraint:

max
i∈{1,...,5}

max
t∈[0,τ(ϑ(α))]

Ci(u
e
α,ε(t)) < 0, (C4)

where τ(ϑ(α)) provides an approximation of the duration of
a step (and will converge to the actual step time as ε→∞).

The nonstance foot is kept parallel to the ground via
control, through the following constraints on α:

αψx = 01×5, αψy = 01×5. (C5)

These constraints on αψx and αψy reduce the size of the
optimization search space to R36.
Optimization Problem Statement. The goal of human-
inspired PHZD optimization is to find parameters α∗ which
solve the following constrained optimization problem:

α∗ = argmin
α∈R46

CostHD(α) (HIO)

s.t. (C1)− (C5)

with CostHD the cost given in (19). The main result of
this paper is established by combining the constructions and
results of this section with Theorem 2 of [15]. It particular,
it establishes that solving this optimization problem results
in a exponentially stable periodic orbit for H R

α∗,ε (see [15]
for a formal definition of solutions, and the corresponding
definitions of periodic solutions and exponentially stable
periodic orbits). Furthermore, physically realistic robotic
walking can be ensured without integrating the dynamics.

V. WALKING SPEED REGULATION

The solution, α∗, of the optimization problem (HIO)
corresponds to a partial zero dynamics surface, PZ∗α, and
specifies controller outputs for walking at constant speed
v∗hip. However, as robotic locomotion is not always per-
formed at a constant speed, controllers which provide the
ability to smoothly transition between slow and fast walking
are essential for functional robot operation. Here, a novel
method for transitioning between these different walking
speeds is presented; specifically, through the use of the
extended canonical walking function, we will connect the



Optimized Output Value Nominal Gait Human Data Mean Fitted Output

Fig. 2: Optimization for 80 values of vhip and comparison to human data. The fitted outputs represents the canonical walking
function fit to the mean human model.

PHZD surface corresponding to walking at two different
speeds. This will allow for a smooth transition between these
two walking speeds—one that respects the invariance of the
PHZD surface associated to the walking at each speed.

Speed Regulation Overview. The first step in the procedure
is to obtain optimal walking controller parameters by solving
(HIO). By definition, these parameters, α∗, correspond to a
local minima in CostHD and satisfy the constraints (C1)–
(C5). The remaining steps in the process, therefore, can
be viewed as perturbing and fixing v∗hip and then solving
an optimization problem which effectively searches in a
neighborhood of α∗, subject to the same constraints (C1)–
(C5). Choosing a small perturbation on v∗hip and using α∗

as the seed to the speed regulation optimization results in
rapid convergence. The process is iterated using the solution
to one optimization as the seed to the next until controllers
for the desired maximum or minimum vhip are obtained.

Walking Speed Specification. Starting with v0hip = v∗hip,
discrete walking speeds are specified via the following con-
straint

vl±1hip = vlhip ± δ, (C6)

with l ∈ Z and δ the perturbation magnitude; where δ
is chosen based on velocity resolution and convergence
requirements (smaller δ leads to faster convergence in the
following optimization).

Speed Regulation Cost. The cost function corresponding to
each speed regulation step l is as follows:

CostSR(α, αl) =
∑

i∈Output

∫ T

0

∣∣∣∣ydi (t, αi)− ydi (t, αli)
∣∣∣∣2 dt.

(34)

This is the integral norm of the difference between the
current controller outputs, yd(t, α), and the controller outputs
computed via the solution to the previous speed regulation
step, yd(t, αl). As the initial seed to the speed regulation
procedure, α0 = α∗, is the solution to the human-inspired
PHZD optimization. This objective function serves to both
facilitate fast convergence in the following optimization (α∗

satisfies (C1)–(C5)) and maintain the human-like form of
the resulting walking controller outputs (α∗ corresponds to
a local minima in CostHD).
Speed Regulation Optimization. The goal of the speed
regulation optimization is to find parameters αl+1 that solve
the following constrained optimization problem:

αl+1 = argmin
α∈R46

CostSR(α, αl) (SRO)

s.t. (C1)–(C6)

with CostSR the cost given in (34). The optimization (SRO)
can be iteratively solved to obtain a set of (vMAX

hip −vMIN
hip )/δ

walking control parameters.
Extended Canonical Walking Function. It was found
in [22] that to describe more complex walking motions,
such as going up and down stairs, the canonical walking
function must be augmented to account for the role that the
environment plays on this system. Specifically, the extended
canonical walking function (ECWF) is given by the time
solution to a linear mass-spring-damper system subject to
sinusoidal excitation:

yeH(t, αei ) =e−α
e
i,4t
(
αei,1 cos(αei,2t) + αei,3 sin(αei,2t)

)
+ αei,5 cos(αei,6t) + κ(α) sin(αei,6t) + αei,7,

(35)

where κ(αei ) = (2αei,4α
e
i,5α

e
i,6)/((αei,4)2 + (αei,2)2− (αei,6)2)

and i ∈ Outputs. Note that due to the linearity of the
parameters αei,1, αei,3, αei,5 and αei,7 in (35), we can write:

yeH(t, αei ) = Y eH(t, αei,2, α
e
i,4, α

e
i,6)


αei,1
αei,3
αei,5
αei,7

 (36)

where Y eH(t, αei ) ∈ R1×4 only depends on the parameters
αei,2, αei,4, αei,6. The CWF can naturally be written as a
special case of the ECWF by, given parameters αi ∈ R5

for the CWF (4), defining ιe(αi) := (αi, 0, 0). Through
this embedding, we can therefore consider the same human-
inspired controller that was considered for the CWF by
replacing the CWF with the ECWF in (7). Similarly, we can
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Fig. 3: Simulation results for steady-state walking starting from a perturbed fixed point (top) and speed regulation (bottom),
showing controller outputs (left), phase portraits for pitch angles (middle) and roll angles (right).

consider the PHZD surface for the ECWF which we denote
by: PZαe . Finally, we note that since ξ1 is just the linearized
position of the hip, which is used to parameterize time, we
can write the parameterized ECWF as yeH(ξ1, ξ

0
1 , vhip, α

e
i ) :=

yeH(
ξ1−ξ01
vhip

, αei ), which is now viewed as a function of ξ1.

Motion Transitions. The advantage to the ECWF is that,
given any two PHZD surfaces these surfaces can be con-
nected with the ECWF to ensure that partial hybrid zero
dynamics is maintained, i.e., the ECWF can “glue” together
any two PHZD surfaces; this is not possible with the CWF
as there are not enough parameters present. To see this,
let αl−1 and αl be the parameters of the CWF associated
with walking at two different successive speeds. Associated
with these parameters are the position of the hip at the
beginning and end of a step: ξ0,l1 = δphip(∆qϑ(αl)) and
ξf,l1 = δphip(ϑ(αl)). To construct a surface connecting the
the PHZD surface associated with these two walking speeds,
consider the ECWF at the beginning of a step associated to
αl−1 and the end of a step associated with αl:

y0i = yeH(ξ0,l−11 , ξ0,l−11 , vl−1hip , ιe(α
l−1
i )) (37)

ẏ0i =
d

dξ1
yeH(ξ1, ξ

0,l−1
1 , vl−1hip , ιe(α

l−1
i ))

∣∣∣∣
ξ1=ξ

0,l−1
1

(38)

yfi = yeH(ξf,l1 , ξ0,l1 , vlhip, ιe(α
l
i)) (39)

ẏfi =
d

dξ1
yeH(ξ1, ξ

0,l
1 , vlhip, ιe(α

l
i))

∣∣∣∣
ξ1=ξ

f,l
1

(40)

for i ∈ Outputs.
The goal is to find a parameters, αei , for the ECWF such

that ιe(αl−1i ) and ιe(αli) can be replaced by αei in (37)-(40).
To achieve the goal of determining the parameters αei , we

utilize (36) to form the following matrix:

Y =


Y eH(ξ0,l−11 , ξ0,l−11 , vlhip, α

e
i,2, α

e
i,4, α

e
i,6)

d
dξ1
Y eH(ξ1, ξ

0,l−1
1 , vlhip, α

e
i,2, α

e
i,4, α

e
i,6)
∣∣∣
ξ1=ξ

0,l−1
1

Y eH(ξf,l1 , ξ0,l1 , vlhip, α
e
i,2, α

e
i,4, α

e
i,6)

d
dξ1
Y eH(ξ1, ξ

0,l
1 , vlhip, α

e
i,2, α

e
i,4, α

e
i,6)
∣∣∣
ξ1=ξ

f,l
1


It is easy to verify that picking αei,2 = αli,2, αei,4 = αli,4 and
αei,6 > 0 results in Y being nonsingular. Therefore, the final
four parameters of αei can be determined by picking:

αei,1
αei,3
αei,5
αei,7

 = Y−1


y0i
ẏ0i
yfi
ẏfi


The end result are parameters αei for i ∈ Outputs. The end
result of solving for αe in this manner is that any solution
starting in PZαl−1 which transitions through PZαe for one
step will begin the subsequent step on PZαl . In other words,
we will have connected the PHZD surfaces PZαl−1 and
PZαl through PZαe , and will therefore the control laws
developed will be valid even as the robot transitions between
different speeds. This will be verified through simulation and
experimentally in the next section.

VI. SIMULATION AND EXPERIMENTAL RESULTS

This section presents both simulation and experimental re-
sults for walking at a constant speed and transitions between
multiple walking speeds.
Simulation Results. A simulation of the hybrid system,
H R
α∗,ε, modeling NAO is performed in which the robot



starts on the point on the guard, (ϑ(α∗), ϑ̇(α∗)) and is
controlled via the human-inspired control law, uα∗,ε with
parameters α∗ obtained through optimization (HIO) and
ε = 10 as the control gain. The resulting periodic orbit for
the pitch angles and roll angles of the system are given in
Figure 3. Selected frames from one step of the simulated
walking are shown in Figure 4. Furthermore, the robot can be
started from rest, (q(0), q̇(0)) = (0, 0), and it will converge
to the periodic orbit imply robustness of the walking (in
simulation). Figure 4 also shows the angles of the biped in
simulation and in the experiment described later.

To demonstrate speed regulation, a simulation was con-
ducted using a series of controller parameters αl determined
from solving the optimization problem described above for
various different choices of vhip between 0.14 m/s and 0.32
m/s. Transitions increased speed by 0.03 m/s every four

steps. As shown in Figure 3, the actual outputs converge to
the desired controller outputs on each step.
Experimental Results. The human inspired control approach
is implemented experimentally on the actual NAO robot via
pseudo-feedback control which uses the NAO’s built-in PID
controller is to track the q(t) trajectories from simulation.
Hybrid domain switches are determined via data from the
force sensors in the feet—filtering of this data to effect
“debouncing” induces lag in the experimental system as
compared to simulation. The relative degree 2, actual control
outputs, ya2 , are computed from both simulation and exper-
iment data and compared against one another in Figure 3,
which shows that the experimental outputs agree closely with
the simulated outputs (with minor discrepancies in θsk, θtor
and ϕsa, which are a result of the open-loop controller).
Snapshots of the experimental walking are given with the
simulated gait in Figure 4.

Speed regulation is also implemented experimentally using
a series of controller parameters αl determined from solv-
ing the optimization problem described above for various
different choices of vhip between 0.14 m/s and 0.32 m/s.
Transitions increased speed by 0.03 m/s every four steps.
Without Motion Transitions, the max achievable speed is
0.23 m/s, however, with Motion Transitions computed via
the extended canonical function (35), a max speed of 0.32
m/s is obtained (nearly a 50% increase in top speed!).

A video of the experimental walking achieve on NAO is
available online [23].

VII. CONCLUDING REMARKS

This paper presented the first steps toward defining an
optimization problem that provably results in stable robotic
walking in 3D through the use of human output data and
controllers inspired by these data. The fundamental contri-
bution is in the form of constraints that ensure physically
realizable walking and can be enforced through solutions
obtained through the low-dimensional representation given
by partial hybrid zero dynamics. Speed regulation enables
the rapid development of walking for a variety of speeds,
and with Motion Transitions, yields 9experimentally realized
3D walking with NAO.
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Fig. 4: Comparison of the snapshots of the actual (top row) and simulated (second row) walking gaits over one step, and
experiment and simulation for steady-state walking (left two columns) and speed regulation (right two columns): XS are
from simulation, XEd are desired values from experiment, and XEa are actual values from experiment.


