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Abstract— Hybrid zero dynamics (HZD) has emerged as a
popular framework for the stable control of bipedal robotic
gaits, but typically designing a gait’s virtual constraints is
a slow and undependable optimization process. To expedite
and boost the reliability of HZD gait generation, we borrow
methods from trajectory optimization to formulate a smoother
and more linear optimization problem. We present a multiple-
shooting formulation for the optimization of virtual constraints,
combining the stability-friendly properties of HZD with an
optimization-conducive problem formulation. To showcase the
implications of this recipe for improving gait generation, we
use the same process to generate periodic planar walking gaits
on two different robot models, and in one case, demonstrate
stable walking on the hardware prototype, DURUS-R.

I. INTRODUCTION

Hybrid zero dynamics (HZD) [22] is a framework that
has been at the core of many successful bipedal robot control
implementations [7], [20], [23], especially in the analytically
tricky domain of underactuated machines. By properly de-
signing a set of virtual constraints to enforce via feedback
control, hybrid invariance can be achieved, assuring stability
despite periodic leg impacts and support changes. This key
task of finding an appropriate set of virtual constraints is
typically relegated to an optimization. However, given the
nonlinearity of bipedal robot dynamics, it can be difficult
to achieve reliable convergence via this optimization and
often relies upon expert users to seed it. By borrowing tools
from the trajectory optimization community, we claim that a
thoughtful recipe for problem formulation can make virtual
constraint optimization a sufficiently reliable, and therefore
automatable, process.

The most intuitive approach to formulating optimal control
problems is arguably the direct shooting method. A subset of
direct optimization methods [18], the direct shooting method
parameterizes the control inputs with certain basis functions,
either linear [17] or nonlinear [1], simulates the dynamics
via a single time-marching numerical integration, and then
evaluates the objective and all constraints. Such “single
shooting” is the most prevalent formulation for optimizing
virtual constraints in the context of HZD. This approach
of optimizing only parameters and boundary state values
reflects an instinctive desire to reduce the number of design
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Fig. 1: DURUS series prototype robots.

variables for the optimization. Intuitively, one might assume
that such minimization of the nonlinear programming prob-
lems (NLPs) dimensionality would be an advisable practice
for maximizing an optimization’s speed and reliability.

However, not all design variables are equally complicated
for an NLP solver to navigate, a fact which multiple-shooting
methods exploit. For common NLP-solving methods like
interior point and sequential quadratic programming, conver-
gence is more reliable when the objectives and constraints are
smooth and relatively linear. In a single shooting formulation,
a change to a parameter or boundary state value can have
a very nonlinear effect on the final state, after integrating
nonlinear dynamics over non-trivial time scales. This type
of nonlinearity can cause an optimizer to fail to converge or
be uncertain if it has found a solution.

Multiple shooting is designed to ameliorate this manner of
nonlinearity [6], [9]; specifically it splits each discretization
segment of the input tape into its own small trajectory
optimization problem, each with its own set of control inputs
and of initial state conditions, but a shorter horizon for
integration. With finer discretization, this integration horizon
approaches zero, rendering the relationship between control
inputs and the post-integration state increasingly linear. This
property has made multiple shooting methods (and conceptu-
ally similar direct collocation methods [21]) fast and reliable
for planning gaits for high-dimensional robots.

The goal of this paper is to provide a general optimiza-
tion formulation for the optimal control of multi-domain
hybrid systems that effectively incorporates and combines
the dimension reduction and formal establishment of sta-
bility enjoyed from HZD and optimization advantages of
multiple shooting methods. Virtual constraints parameterized
by canonical walking functions are used to construct the
zero dynamics for the multi-domain hybrid control system,



then the proposed HZD based multiple shooting optimization
method is applied to generate optimal trajectories for the
system. We then apply the formulation to two underactuated
bipedal robots, DURUS-R and DURUS-C shown in Fig. 1, to
demonstrate the effectiveness and reliability of this method.

II. OVERVIEW OF CURRENT APPROACHES

We start with a brief overview of the prevalent HZD
based optimization framework. Most of these optimization
problems use direct shooting methods (heretofore referred
to as single shooting methods1) which are often unlikely to
converge or are very sensitive to initial guesses. On the other
hand, direct multiple shooting methods (multiple shooting
for brevity) are designed to mitigate this NLP nonlinearity,
without approximation, by discretizing both control inputs
and states.
HZD based Optimization. As discussed in [22], [15],
with a set of properly designed virtual constraints, the full
order bipedal robot dynamics can be projected to a reduced
dimensional dynamics, called zero dynamics. The main goal
of HZD based optimization problems is to obtain a parameter
set for virtual constraints that results in a hybrid invariant
zero dynamics. Most optimization problems for hybrid zero
dynamics are formulated to find to find the optimal parameter
set α∗ and the fixed point z∗ of the zero dynamics:

argmin
α,z−

J(z(t), α) (1)

s.t h(z(t), α) ≤ 0, (path constraints)

g(z−) = 0, (guard constraints)

where Jv(z(t), α) is the cost function with z(t) the solution
of zero dynamics with initial condition determined from the
fixed point z−. Moreover, an additional constraint is also
imposed to ensure hybrid invariance of the zero dynamics.
The path constraints and the objective function are evaluated
by integrating the zero dynamics with the given initial con-
ditions. Though this single-shooting formulation has fewer
optimization variables, any small changes in the optimization
variables will propagate (in ways that are possibly highly
nonlinear) as the dynamics is integrated over the full course
of one step.
Multiple Shooting Optimization. Instead of using parame-
terized controllers like an HZD based optimization, a mul-
tiple shooting approach discretizes both control inputs and
states, which gives the optimizer the ability to more directly
shape the evolution of the state. Here, we consider a typical
optimal control problem that finds the control input u(t) of
a control system determined by the ODE

ẋ(t) = f(x(t), u(t)), t0 ≤ t ≤ tf , (2)

1In a detailed survey paper, [18] makes a clear conceptual distinction
between indirect methods (such as indirect shooting, indirect multiple
shooting) and direct methods (e.g. the direct shooting and direct multiple
shooting methods addressed in this paper). In practice, direct methods are
significantly more common in legged robot control than indirect methods.
So for ease of communication, we both drop the “direct” adjective and
rename “direct shooting” to “single shooting” [14] to verbally distinguish
it from “multiple shooting.”

while minimizing the objective function J(x(t), u(t)). The
integration time scale [tn, tf ] is often discretized as

t0 = t0 < t1 < t2 · · · < tn = tf , n ≥ 1, (3)

and the multiple shooting optimization is formulated as:

argmin
w

J(w) (4)

s.t xi+1 − x(xi, ui; ti+1) = 0, (continuity condition)
h(xi, ui) ≤ 0, (path constraints)
g(xn, un, tf ) = 0, (terminal constraints)

where w = (x1, u1, . . . , xn, un, tf ) is a vector of opti-
mization variables with xi = x(ti) and ui = u(ti), and
x(xi, ui; ti+1) is the solution of system (2) at ti+1 starting
from xi with the control input ui. Though this formulation
makes the convergence more reliable by discretization, it
lacks a necessary feedback relationship between system
states and control inputs.

III. HZD BASED MULTIPLE SHOOTING OPTIMIZATION

In this section, we present a combined approach, hybrid
zero dynamics based multiple shooting optimization, which
commingles the underlying advantages of multiple shooting
methods with zero dynamics. To begin with, we introduce
the formal definition and theory of the multi-domain hybrid
control system and the hybrid zero dynamics.

A. Hybrid Control System

Hybrid systems are systems that consist of both smooth,
continuous dynamics and discrete dynamics, and thus have
a wide range of applications to various types of physical
systems [11]. A typical example of these applications is
bipedal robotic walking. In the case of multi-contact bipedal
locomotion, we consider a multi-domain hybrid control sys-
tem, which is given as a tuple [4], [19]:

H C = (Γ,D,U , S,∆,FG), (5)

where Γ = {V,E} is a directed cycle with vertices V and
edges E, D = {Dv}v∈V is a set of domains of continuous
dynamics, U = {Uv}v∈V is a set of admissible controls,
S = {Se ⊂ Dv}e∈E is a set of guards or switching surfaces,
∆ = {∆e}e∈E is a set of smooth reset maps that maps
system states x ∈ Se to the next domain Dv+ in the cycle,
and FG = {FGv}v∈V is a set of control systems defined
on Dv . Given the configuration space Q, let q ∈ Q be
the generalized coordinates of a robot model. The equation
of motion (EOM) for a domain Dv is determined by the
classical Euler-Lagrange equation and holonomic constraints
[10]:

D(q)q̈ +H(q, q̇) = Bvuv + JTv (q)Fv, (6)

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0, (7)

where D(q) is the inertia matrix, H(q, q̇) is the vector
containing the Coriolis and gravity term, Bv is the actuator
distribution matrix, Jv(q) is the Jacobian of the holonomic



constraints ηv(q), and Fv is a wrench containing the con-
straints’ external forces and/or moments. Fv can be explic-
itly solved as a function of system states and torques by
combining (6) and (7). However, in this paper, we consider
Fv as a part of the control inputs that satisfy (6) and (7)
simultaneously. Then let

B̄v(q) =
[
Bv JTv (q)

]
, ūv =

[
uv Fv

]T
, (8)

to yield equations of motion as the affine control system

ẋ = f(x) + gv(x)ūv (9)

from (6) with x = (q, q̇) the system states, where

f(x) =

[
q̇

−D−1(q)H(q, q̇)

]
, gv(x) =

[
0

D−1(q)B̄v(q)

]
.

The discrete dynamics is determined by the changes in the
contact points of the system. For bipedal robots, the config-
uration of the system are assumed to be invariant through
impact, but the velocities of robot joints are determined
through the impact equation by imposing the holonomic
constraints of the subsequent domain. Given pre-impact
states (q−, q̇−), the post impact states (q+, q̇+) are computed
by the reset map ∆e:[

q+

q̇+

]
=

[
Rq−

R∆(q−)q̇−

]
, (10)

where R is the relabeling matrix if there is a coordinate
change due to switching of stance and non-stance legs, and
∆(q−)q̇− is the plastic impact equation [13], [10].

Any applicable state-based feedback controllers, ūv , that
have been applied on the control system, FGv , yield closed-
loop dynamics. We define the resulting autonomous hybrid
system as a multi-domain hybrid system:

H = (Γ,D, S,∆,F), (11)

where F is a set of smooth vector fields on D with ẋ = fv(x).

B. Virtual Constraints and Hybrid Zero Dynamics

Analogous to holonomic constraints, virtual constraints are
defined as functions of the robot configuration to describe
the behavior of bipedal walking, such as swinging the non-
stance leg forward, keeping the torso straight, etc. The
term “virtual” comes from the fact that these constraints
are enforced through feedback control instead of through
physical constraints. Let yav (q) be functions of the robot
configuration to be controlled, and ydv(τ(q), α) be the corre-
sponding desired behaviors parameterized by α, where τ(q)
is a strictly monotonic function of q that parameterizes time.
The virtual constraints are then defined on the domain Dv
as

yv(q) = yav (q)− ydv(τ(q), α) ≡ 0. (12)

Note that we use the canonical walking function (CWF) for
desired trajectories in this paper. We refer the readers to [1],
[2] for the details of CWF within the context of Human-
Inspired Control.

Combining holonomic constraints and virtual constraints
together, and differentiating (yv(q), ηv(q)) twice yields[

ÿv(q, q̇)
η̈v(q, q̇)

]
=

[
LgvLfyv(q, q̇)
LgvLfηv(q, q̇)

]
︸ ︷︷ ︸

Av

+

[
L2
fyv(q, q̇)

L2
fηv(q, q̇)

]
︸ ︷︷ ︸

(L2
f )v

ūv, (13)

where L represents the Lie derivative. If yv(q) has the
same dimension as the control input uv and the Jacobian
of (yv(q), ηv(q)) w.r.t. q has a full rank, then the decoupling
matrix,Av , is invertible. An input-output feedback controller,

ūv(x) = −A−1v
(
(L2

f )v + µ̄v
)
, (14)

with µ̄v = [−2εLfyv − ε2yv;0] for ε > 0, drives the
output y(q)→ 0 exponentially and guarantees the holonomic
constraints in (7) are satisfied simultaneously. In addition, the
control law renders the zero dynamics submanifold

Zv = {x ∈ Dv|yv(q) = 0, Lfyv(q, q̇) = 0} (15)

invariant over the continuous dynamics of the domain. How-
ever, it is not necessarily invariant through discrete dynamics.
Therefore, a submanifold Zv is impact invariant if

∆e(x) ∈ Zv+ , ∀x ∈ Se ∩ Zv. (16)

A manifold Z =
⋃
v∈V Zv is called hybrid invariant if it

is invariant over all domains of continuous dynamics and
impact invariant through all discrete dynamics, i.e., solutions
that start in Z remain in Z, even after impulse effects. If a
feedback control law renders Z hybrid invariant, then we say
that the multi-domain hybrid control system has a hybrid zero
dynamics (HZD), H |Z .

In fact, the restricted reduced dimensional dynamics are
independent of control effort ε and ūv . To determine the
dynamics equations of zero dynamics, let zv = θv(q) be a
real-valued function representing the local coordinates of the
zero dynamics Zv . Then

Φv(q) :=
[
yv(q) ηv(q) θv(q)

]T
: Q → Rn (17)

is a diffeomorphism onto its image and there exists at least
one point where both the virtual and holonomic constraints
vanish, i.e., zero dynamics manifold. Let

ξ1,v = θv(q), ξ2,v = γv(q, q̇) := γ0v(q)q̇, (18)

be the states of the zero dynamics, where γ0v(q) =
`v(q)D(q) with `v(q) ∈ Null(B̄v). It is easy to verify that
Lgvγv(q, q̇) = 0. Then, the EOM of the zero dynamics can
be expressed explicitly:

żv =

[
ξ̇1,v
ξ̇2,v

]
=

[
Lfθv(q, q̇)
Lfγv(q, q̇)

]
:= qv(zv, αv), (19)

which is independent of the control torque input ū. When
the system evolves on the zero dynamics manifold, the full
order states can be reconstructed as follows:

q = Φ−1v (0, 0, ξ1,v), q̇ =

 ∂yv(q)
∂q

Jv(q)
γ0v(q)

−1  0
0
ξ2,v

 . (20)



That is, the zero dynamics (19) determines the behavior
of the full order system. It is shown in [15], [3] that if the
system has HZD and there exists a hybrid periodic orbit,
O|Z , of H |Z , as shown in Fig. 2(a), then the full order
system has a hybrid periodic orbit O.

C. HZD based Multiple Shooting Optimization

Based on the formal construction of hybrid zero dynamics,
we present our main result of the paper – HZD based
multiple shooting optimization.

Let T Iv ∈ R be the time where the system hits the
corresponding guard of the domain. We uniformly divide a
continuous domain into n shooting grids, i.e.,

0 = t0 < t1 < t2 · · · < tn = T Iv , n ≥ 1. (21)

with an abstract example shown in Fig. 2(b). For each
shooting grid si defined on t ∈ [ti, ti+1] ⊂ R, let the initial
condition ziv and control parameters αiv of the zero dynamics
be the optimization variables. Hence the solution of the zero
dynamics on shooting grids can be represented as initial
value problems defined below:

żv = qv(zv, α
i
v), zv(ti) = ziv, t ∈ [ti, ti+1], (22)

where i ∈ {0, 1, . . . , n− 1}.
Combining both HZD based optimization and multiple

shooting optimizations, we propose a HZD based multiple
shooting optimization problem for a multi-domain hybrid
system:

argmin
w

∑
v∈V

Jv(wv) (23)

s.t zv(z
i
v, α

i
v; ti+1)− zi+1

v = 0, i ∈ [0, n− 1], (C1)

αiv − αi+1
v = 0, i ∈ [0, n− 1], (C2)

hv(z
i
v, α

i
v) ≤ 0, i ∈ [0, n], (C3)

gv(z
n
v , α

n
v ) = 0, (C4)

∆e|Se∩Zv (znv ) ∈ Zv+ , v, v
+ ∈ V, e ∈ E, (C5)

αnv − α0
v+ = 0, v, v+ ∈ V, (C6)

where w is the combination of optimization variables de-
fined on each domain, i.e., w =

⋃
v∈V wv with wv =

(z0v , α
0
v, . . . , z

n
v , α

n
v , T

I
v ), and zv(ziv, α

i
v; ti+1) is the solution

of system (22) at ti+1. Constraints (C1) and (C2) establish
both state continuity and parameter equality between two
connected shooting grids, constraints (C3) and (C4) are the
physical path and terminal conditions, constraints (C5) im-
poses the hybrid invariance of the zero dynamics at impacts,
and constraints (C6) enforces equality of parameters between
two domains.

IV. APPLICATIONS TO BIPEDAL ROBOTS

In this section, we utilize the HZD based multiple shooting
optimization method on two different underactuated bipedal
robots, DURUS-C and DURUS-R, to generate stable periodic
walking gaits on both platforms. DURUS-C and DURUS-
R are the prototype DURUS series robots designed by SRI
International, shown in Fig. 1, where ‘R’ represents rigid
legs, and ‘C’ represents compliant legs.

Se1Δe2
(Se2

⋂Zv2
)

Zv2
Zv1

Se2

Δe1
(Se1

⋂Zv1
)

Se2

a( ) Periodic orbit on HZD

b( ) Discretization of zero dynamics

Fig. 2: (a) HZD periodic orbit of a two-domain hybrid
control system. (b) A discretization of the hybrid system for
integration with multiple-shooting optimization methods.

A. DURUS-R Model and Optimization

DURUS-R is a planar five-link robot with underactu-
ated point feet; it utilizes advanced mechanical and elec-
trical designs including novel cycloid drive gearing, high-
current motor drivers, etc. The robot configuration q =
(px, pz, qsf , qsk, qsh, qnsh, qnsk) is shown in Fig. 3(a).

Due to the plastic impact of the rigid links, the double
support phase is regarded as instantaneous [10]. Thus, the
walking of DURUS-R has only one continuous domain as
the non-stance leg swings in the air and one discrete event
when the non-stance foot hits the ground. We model it as
a single domain hybrid control system as a special case of
(5). The single domain Dr and the guard Sr are shown in
Fig. 4(a). The holonomic constraints of Dr are the positions
of the stance foot (px, pz) and the guard condition is the
height of the non-stance foot. The continuous and discrete
dynamics are determined from (9) and (10), respectively.

Since the robot has four actuated joints, the following four
virtual constraints are considered, with the actual outputs
defined as

yar (q) =
[
qsk qnsk qtor δmnsl

]T
, (24)

where δmnsl is the linearized non-stance slope [1], and
the desired outputs defined as ydr (τ(q), αr), as shown in
Fig. 3(b). Then our goal is to find a parameter set αr such
that the system has HZD. We will use the formulation in
(23) for this problem.

To seek an efficient walking gait, we define the cost
function as the mechanical cost of transport of the gait:

Jr(wr) =
W (wr)

mgd(wr)
, (25)

where wr is the set of optimization variables for the domain
Dr, W is the total absolute mechanical work done by
the actuators, m is the total mass of the robot, g is the
acceleration due to gravity, and d is the distance traveled
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Fig. 3: Model configuration and outputs representation of
DURUS-R and DURUS-C robot. DURUS-C has two extra
spring links, one at the distal end of each leg.

during one step. W is the sum of the work done at each
shooting grid, Wi(z

i
r, α

i
r), with

Wi(z
i
r, α

i
r) =

∫ ti+1

ti

m∑
j=1

∣∣uaj (zir, α
i
r) · q̇aj (zir, α

i
r)
∣∣ dt, (26)

for i ∈ {0, 1, . . . , n−1}, where m is the number of actuated
joints, and q̇aj and uaj are the velocity and the actuator
torque of the actuated joint j, computed from (20) and (14)
respectively.

The following path constraints are considered:
• actuator torque limits,
• joint velocity limits,
• joint angle ranges,
• non-stance foot height clearance, and
• torso angle range.
The guard constraint is directly determined from the

hybrid system definition of the robot. Additionally, two other
constraints are considered:
• stability constraints of the zero dynamics periodic orbit:

according to [22, p. 129], the stability condition of the
two-dimensional hybrid zero dynamics can be explicitly
examined without computing the Poincaré map, and

• an equality constraint time duration of continuous do-
main T Ir : if the stability constraints are satisfied, the
time duration of the two-dimensional zero dynamics can
be explicitly solved, see [22, p. 131].

Finally the formulated optimization problem is imple-
mented using the MATLAB function fmincon. The number
of grids is chosen to be 20 in this paper, and the optimization
algorithm is set to use its interior point method. The initial
guess of the parameters α is determined by fitting the human
walking data introduced in [4]. Due to the complexity of
system dynamics, the numerical Jacobian of the cost function
and constraints are considered in the optimization problem
instead of analytic Jacobian. The proposed optimization
method in (23) converges as fast as the formulation in (1)
in this case of two dimensional hybrid zero dynamics, but
more reliably regardless of bad initial guesses.

B. DURUS-C Model and Optimization
DURUS-C is a 3D-capable, humanoid bipedal robot that

is still under development. In this example, we are only

Sr→r

Dr

a( ) DURUS-R

Dds

Sss→ds

Sds→ss

Dss

b( ) DURUS-C

Fig. 4: The directed cycle of the hybrid control systems.

interested in the planar locomotion of this robot. One key im-
provement present in DURUS-C which differs from DURUS-
R is a linear spring at the end of each leg. The compliance
provided by the linear springs is designed to absorb energy
at impact and reduce the energy loss so that more efficient
locomotion can be achieved. The design of the compliant
legs is inspired by the Spring-Loaded Inverted Pendulum
model (SLIP). The SLIP model is widely used as a low-
dimensional representation of bipedal locomotion to generate
efficient behaviors due to the presence of compliance [5], [8].

The configuration q = (px, pz, qsf , qsr, qsa, qsk, qsh, qnsh,
qnsk, qnsa, qnsr) of the robot is shown in Fig. 3(c), where qsr
and qnsr represent the deflections of the springs. Due to the
existence of the springs, the stance foot will not leave the
ground immediately after the non-stance foot hits the ground.
Therefore, the walking of DURUS-C has two continuous
domains: the double support domain Dds, where both feet
are on the ground, and the single support domain Dss, where
the non-stance leg swings in the air, as shown in Fig. 4(b).

The transition Dss → Dds occurs when the non-stance
foot hits the ground, and the transition Dds → Dss occurs
when non-stance spring reaches its rest length. Note that
there will be a coordinate change after the foot hits the
ground. The continuous and the discrete dynamics are com-
puted according to (10) and (6), respectively. Note that spring
dynamics, with stiffness k and damping b, are included in
H(q, q̇) from (6) as H(q, q̇) = C(q, q̇)q̇+G(q)+Bs(kq+bq̇),
where Bs is the distribution matrix for the spring forces.

The choice of virtual constraints for DURUS-C is very
similar to what we have picked for DURUS-R. In addition
to outputs defined in (24), two ankle joints, qsa and qnsa, are
also considered due to the fact that ankle joints are actuated
in DURUS-C. Moreover, δmnsl is omitted during the double
support domain due to the fact that both legs are constrained
on the ground so that the output δmnsl which represents the
forward motion of swing leg becomes redundant. Thus, we
define the following outputs:

yass(q) =
[
qsk qnsk qtor qsa qnsa δmnsl

]T
, (27)

yads(q) =
[
qsk qnsk qtor qsa qnsa

]T
. (28)

Remark 1: To have a square system, i.e., the inputs and
the outputs have the same dimension, we assume that there
are only five actuated joints in the system during the double
support domain of DURUS-C walking by considering one
of the originally actuated joints as passive. We pick the non-
stance hip joint as the passive joint, since all outputs defined



−1 −0.5 0 0.5 1
−4

−2

0

2

4

q(rad)

q̇(
ra
d
/
s)

qsa qsk qsh qnsh qnsk

a( ) Limit cycle

0 0.5 1 1.5

−0.2

0

0.2

0.4

0.6

0.8

t(s)

y
(r
a
d
)

qsk qnsk qtor δmnsl

b( ) Outputs

Fig. 5: Simulation result of stable periodic walking gait of
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Fig. 6: Experimental result of stable periodic walking gait of
DURUR-R.

in double support are not directly related to this joint.
The same cost function is used to generate an efficient and

stable periodic gait through the HZD based multiple shooting
optimization for DURUS-C. Since the time duration of Dds

is much shorter than that of Dss, we set the shooting grids
for the two domains to be 10 and 20, respectively.

The same path and guard constraints are imposed for the
optimization of DURUS-C, as well. However, in the case
of a high dimension zero dynamics model, i.e., more than
two, the stability condition and time-to-impact constraints
can not be explicitly computed. Thus, the stability of the
resulting hybrid zero dynamics is checked off-line after the
optimization by numerically solving for the fixed point of
the Poincaré map of the zero dynamics. To obtain a stable
gait, the maximum absolute value of all eigenvalues of the
Jacobian of the Poincaré map should be less than one [16].

Since the mechanical structure of DURUS-C is inspired
by the SLIP model, the initial guess of the parameter set is
determined from the stable walking gait of the SLIP model.
A similar approach can be found in [12]. Even with these raw
fitted data as the initial guesses, the proposed optimization
converges reliably. Moreover, though it has a higher dimen-
sion of zero dynamics, the DURUS-C optimization reaches
to an optimal solution as fast as the case of DURUS-R.

V. SIMULATION AND EXPERIMENTAL RESULTS

This section presents simulation results of stable periodic
gaits generated from the HZD based multiple shooting opti-
mization for DURUS-R and DURUS-C, and the experimental
results of the DURUS-R gait.

A. Simulation and Experimental Results of DURUS-R

Here, we describe a simulation of stable periodic walking
gait for DURUS-R. In the simulation, the robot starts from
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Fig. 7: Joint angles tracking performance of DURUS-R.

Fig. 8: The walking gait snapshot comparison of the sim-
ulation and experimental results with DURUS-R over one
step.

the fixed point on the guard and is controlled by the feedback
linearization controller defined in (14). The parameters α
are produced from the HZD based multiple shooting opti-
mization and ε = 10 is set as the control gain. The phase
portraits of the robot joints in Fig. 5(a) show the resulting
stable periodic orbit of the full order system. The maximum
magnitude of eigenvalues of the full order system Poincaré
map is 0.6461, which further proves the stability of the
walking gait. Fig. 5(b) shows the tracking performance of
the proposed controller.

The resulting walking gait is implemented experimentally
on the hardware. The robot is supported by a freely-rotating
four-bar linkage boom that restricts the motion of the robot
to the sagittal plane while keeping the robot level with the
ground. This boom design ensures that the boom neither
holds the robot upward nor adds weight to the robot. The
experiment was conducted by performing several trials un-
der the same conditions. For each trial, the robot walks
approximately 3 laps (45m) with no sign of failing before
being stopped by the experimenter. Fig. 6(a) shows the phase
portraits of the robot joints from the experimental data.
The limit cycles deviate slightly from the corresponding
limit cycles of the simulated gait, which are shown by
dotted lines. The tracking of the outputs and joints are
shown in Fig. 6(b) and Fig. 7 respectively. Fig. 8 shows



Fig. 9: The DURUS-C walking gait snapshot from the
simulation.
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Fig. 10: Phase portraits of robot joints from the simulation
of periodic stable walking gait on DURUS-C.

a stroboscopic comparison of the walking gait in simulation
and experimentation during one step. The average cost of
electrical transport for this gait is 0.75.

B. Simulation Results of DURUS-C

Because DURUS-C is still being designed, only simulation
results for the DURUS-C walking gait are presented. To show
the periodic locomotion of the robot, Fig. 10(a) shows the
limit cycles of the robot joints – including springs – from a
simulation of a walking gait started from a fixed point on the
periodic orbit by applying the feedback controller defined in
(14). The maximum magnitude eigenvalue of the full order
system Poincaré map is 0.5071 which shows the stability
of the walking gait. Furthermore, another simulation started
from a disturbed initial condition is performed to evaluate
the convergence of the gait, as shown in Fig. 10(b). Fig. 9
shows the snapshots of the walking gait over one step.

VI. CONCLUDING REMARKS

In summary, the proposed hybrid zero dynamics based
multiple shooting method converges reliably and rapidly for
two different robot models, DURUS-R and DURUS-C, even
with bad initial guesses. Moreover, this method outperforms
the single shooting method in the case of DURUS-C walking,
where the latter often fails to converge to a feasible solution
due to the multiple underactuated degrees of freedom of the
robot. The end result is a stable, efficient gait for each robot,
with a mechanical cost of transport of 0.3181 for DURUS-
R and 0.0937 for DURUS-C in simulation, respectively.
Finally, as was intended by design,, the compliant leg of
DURUS-C exhibited a smaller transport cost than its rigid-
legged counterpart.
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