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Abstract— Hybrid zero dynamics (HZD) has emerged as a
popular framework for dynamic and underactuated bipedal
walking, but has significant implementation difficulties when
applied to the high degrees of freedom present in humanoid
robots. The primary impediment is the process of gait design–
it is difficult for optimizers to converge on a viable set of virtual
constraints defining a gait. This paper presents a methodology
that allows for the fast and reliable generation of efficient
multi-contact robotic walking gaits through the framework of
HZD, even in the presence of underactuation. To achieve this
goal, we unify methods from trajectory optimization with the
control framework of multi-domain hybrid zero dynamics. By
formulating a novel optimization problem in the context of
direct collocation and generating analytic Jacobians for the
constraints, solving the resulting nonlinear program becomes
tractable for large-scale nonlinear programming solvers, even
for systems as high-dimensional as humanoid robots. We
experimentally validated our methodology on the spring-legged
prototype humanoid, DURUS, showing that the optimization
approach yields dynamic and stable 3D walking gaits.

I. INTRODUCTION

Generating dynamic locomotion for humanoid robots is a
challenging exercise, both analytically and computationally.
The numerous linkages and degrees of freedom make the
search space for gaits dauntingly large. To simplify this
planning operation, humanoid control methods often restrict
their available options by conforming the robot dynamics to
a simplifying model. Notable examples include the linear
inverted pendulum model (LIPM) [18], [26], the spring-
loaded inverted pendulum (SLIP) [29], center-of-mass dy-
namics constrained to footstep plans [19], or more-heuristic
“spring-mass” policies [22]. However, the formal foundations
of these simplifications are possible primarily when the
robot is “fully actuated,” i.e., robots with actuators and rigid
connections at every joint. In this paper, we present a formal
methodology for generating dynamic 3D walking gaits on
humanoids that exploits the full-body dynamics of the sys-
tem, even in the presence of underactuation. This is achieved
without restricting the robot to reduced order models through
the formulation of a novel large-scale optimization problem
that utilizes hybrid zero dynamics.

Hybrid zero dynamics (HZD) [13], [30] is a formal
framework for the design of nonlinear controllers that yield
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Fig. 1: DURUS is a 180-cm-tall spring-legged humanoid
robot designed for efficient locomotion. The above experi-
ment shows DURUS’ ability to walk dynamically on a tread-
mill with all three dimensions unrestricted as a consequence
of the control framework presented in this paper (a video
can be found at [1]).

dynamic bipedal locomotion even in the presence of under-
actuation and multi-contact foot behaviors, and has had nu-
merous successful robot implementations [3], [7], [8], [25],
[31]. HZD works by designing a set of virtual constraints,
which are enforced via feedback control of the actuated
degrees of freedom. If these constraints satisfy a hybrid
invariance condition, i.e., invariance through impact, all of
the stability properties of the high-dimensional system are
effectively captured in a lower-dimensional representation.
However, reliably generating bipedal gaits that satisfy these
conditions becomes increasingly difficult as a robots’ degrees
of freedom and underactuation grow.

The main contribution of this paper is to present a general-
ized gait generating framework for dynamic bipedal locomo-
tion that scales effectively to 3D humanoid locomotion. Our
approach unifies virtual constraint optimization with direct
collocation formulations for multi-domain hybrid systems.
While virtual constraints provide the formal guarantees of
stability of the gait through hybrid zero dynamics, direct
collocation provides scalability for optimizing large-scale
dynamical systems through discretization and approximation



Fig. 2: Illustration of the process used to generate dynamic 3D walking with DURUS, an underactuated spring-legged
humanoid robot. This direct collocation framework parses a multibody model of the robot and set of parameterized virtual
constraints into a large and sparse nonlinear program (NLP) with upwards of 10,000 design variables and constraints. Large-
scale algorithms can typically solve this NLP in under 10 minutes, thereby optimizing a dynamic gait for the 3D humanoid
that exploits the full multi-body dynamics of the machine, even in the presence of underactuation.

of states and controls. Moreover, defect variables are intro-
duced in the problem formulation to simplify the expression
of constraints, enabling symbolic generation of an analytic
Jacobian matrix of constraints. By carefully ordering opti-
mization variables and constraints, a banded structure of the
Jacobian matrix is realized, resulting in a fast and effective
optimization tool for optimal HZD gait generation.

To demonstrate the effectiveness and reliability of this
method, we then apply the formulation of multi-domain
hybrid systems and virtual constraints based direct col-
location optimization to a twenty-three degree-of-freedom
humanoid robot, DURUS (see Fig. 1), to generate stable
dynamic walking gaits in 3D. Finally, using the parameters of
virtual constraints obtained from the optimization, sustained
dynamic walking is realized experimentally on the humanoid
robot DURUS.

II. HYBRID ZERO DYNAMICS AND BIPEDAL
LOCOMOTION

Bipedal locomotion consists of phases of continuous dy-
namics (e.g., when the leg swings forward) and discrete
dynamics (e.g., when the foot strikes the ground); formally
modeling this interplay of continuous and discrete dynamics
results in a hybrid system model of robotic walking [2], [13].
During a steady-state walking gait, the transitions between
the continuous phases become ordered and periodic; this
motivates the use of a multi-domain hybrid system with
a predetermined ordering of phases (or domains) as repre-
sented by a directed cycle, i.e., a cyclic directed graph [24].
Formally, the definition of a multi-domain hybrid control
system is given as a tuple (see [4] for a full definition),

H C = (Γ,D,U , S,∆,FG), (1)

where Γ = (V,E) is a directed cycle. In this section, we
briefly introduce remaining elements of the hybrid system

model. For simplicity of notation, we specify v ∈ V be an
arbitrary vertex, v+ be the subsequent vertex of v in the
cycle, and e = {v → v+} be the transition from v to v+ for
the remainder of the paper.

Holonomic Constraints. Given a robot model with coor-
dinates q ∈ Q, where Q ⊂ Rn is the configuration space
of the robot with n degrees of freedom, the dynamics of
the system in a domain depends on both the Lagrangian of
the model and the contact constraints. Any physical contact
of the robot with the external environment introduces a
holonomic constraint, ηc(q). Let Cv be a indexing set of all
holonomic constraints defined on Dv , we state the holonomic
constraints of the domain as ηv = {ηc}c∈Cv ≡ constant and
the associated kinematic constraints as Jv(q)q̇ = 0, where
Jv(q) is the Jacobian matrix of ηv , i.e., Jv(q) = ∂ηv

∂q .

Continuous Dynamics. With the mass, inertia and length
properties of each link of a robot model, the equation of
motion (EOM) for a given domain Dv is determined by the
classical Euler-Lagrange equation [13], [21]:

D(q)q̈ +H(q, q̇) = Bvuv + JTv (q)Fv, (2)

where Fv : TQ × Uv → Rnv , with nv the number of
total holonomic constraints, is a vector of contact wrenches
containing the constraint forces and/or moments (see [21]).
To enforce the holonomic constraints, the second order
differentiation of the constraints, ηv should be set to zero,

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0. (3)

The constrained dynamics of the system is determined by
evaluating both (2) and (3) simultaneously.

Domains and Guards. It was shown in [13], [16] that forces
and moments produced by holonomic constraints are limited
in number. Specifically, we state these conditions in the form



of inequalities:

νv(q)Fv(q, q̇, uv) ≥ 0, (4)

where νv(q) depends on the physical parameters of the
system. Another class of constraints that determines the
admissible configuration of the system are termed unilateral
constraints, denoted by: hv(q) ≥ 0. Combining (4) and
unilateral constraints (if present) together yields the domain
of admissibility:

Dv = {(q, q̇, uv) ∈ TQ× Uv|Av(q, q̇, uv) ≥ 0}, (5)

for v ∈ V , where

Av(q, q̇, uv) =

[
νv(q)Fv(q, q̇, uv)

hv(q)

]
≥ 0, (6)

defines the boundary of the domain manifold.
A guard Se is a proper subset of the boundary of the

domain, Dv , determined by an edge condition associated
with the transition from Dv to the subsequent domain, Dv+ .
Let He(q, q̇, uv) be the appropriate elements from the vector
in (6) corresponding to the edge condition, then the guard is
defined as

Se = {(q, q̇, uv) ∈ TQ× Uv|He(q, q̇, uv) = 0,

Ḣe(q, q̇, uv) < 0}. (7)

Discrete Dynamics. Associated with the guard Se is a reset
map ∆e that maps the system states at the guard to the
subsequent domain. Given pre-impact states (q−, q̇−) on Se,
the post-impact states (q+, q̇+) of Dv+ are computed using
a reset map ∆e by assuming a perfectly plastic impact (if an
impact occurs) [12], [17]. Following the presentation in [13],
configurations of the system are invariant through an impact,
i.e., q+ = q−, but post-impact velocities need to satisfy the
plastic impact equation:[

D(q−) −JTv+(q−)
Jv+(q−) 0

] [
q̇+

δFv

]
=

[
D(q−)q̇−

0

]
, (8)

where δFv is a vector of impulsive contact wrenches.
Virtual Constraints. Analogous to holonomic constraints,
virtual constraints (also termed outputs in the control liter-
ature [2]) are defined as a set of functions that modulate
the behavior of a robot in order to achieve certain desired
trajectories [30]. The term “virtual” comes from the fact
that these constraints are enforced through feedback control
instead of through physical constraints.

Virtual constraints are defined as the difference between
the actual and desired outputs of the robot:

y1,v = ẏa1,v(q, q̇)− yd1,v(αv), (9)

y2,v = ya2,v(q)− yd2,v(q, αv), (10)

for v ∈ V , where y1,v and y2,v are relative degree 1 and
(vector) relative degree 2 by definition (see [23] for the
definition of relative degree), respectively. In this paper, we
use the definition of outputs described in [2] (see Definition
1). Specifically, we assume the desired velocity-modulting
output to be a constant, i.e., yd1,v(αv) = vd ∈ R and the

Fig. 3: Illustration of the PHZD periodic orbit in the case of
a two-domain hybrid system.

desired position-modulating outputs are given in term of
a Bézier polynomial of degree M , determined by M + 1
coefficients [31]:

yd2(τ, αo) :=

M∑
k=0

αo[k]
M !

k!(M − k)!
τk(1− τ)M−k, (11)

for all o ∈ Ov with Ov be an indexing set, where αo is a
vector of Bézier polynomial coefficients, and τ is the state-
based parameterization of time. The introduction of τ , which
has to be monotonic over a gait cycle, is motivated by the
desire to create an autonomous controller, which is more
robust than non-autonomous controllers [30].
Partial Hybrid Zero Dynamics. With the goal of driving
the virtual constraints yv = (y1,v, y2,v) → 0 exponentially,
consider the feedback linearization control law described in
Eq. 28 of [2]. Applying this control law yields linear output
dynamics of the form:

ẏ1,v = −εy1,v, (12)

ÿ2,v = −2εẏ2,v − ε2y2,v. (13)

with ε > 0 and renders the zero dynamics submanifold
invariant in each continuous domain. However, it is not
necessarily invariant through discrete dynamics. In fact,
enforcing impact invariance of the relative degree 1 output
is too strong of a condition due to the velocity change at
impact. Hence, we enforce conditions only related to the
relative degree 2 virtual constraints, y2,v , resulting in the
partial zero dynamics surface (see [2]), given by:

PZv={(q, q̇) ∈ Dv|y2,v = 0, ẏ2,v = 0}. (14)

Moreover, for any e ∈ E, the submanifold PZv is called
impact invariant, if there exist a set of parameters vd and
{αv}v∈V , with αv = (αo)o∈Ov

, so that

∆e(x) ∈ PZv+ , ∀ x ∈ Se ∩ PZv. (15)

A manifold PZ =
⋃
v∈V PZv is called hybrid invariant if

it is invariant over all domains of continuous dynamics and
impact invariant through all discrete dynamics, i.e., solutions
that start in PZ remain in PZ , even after impulse effects,
see Fig. 3. If a feedback control law renders PZ hybrid
invariant, then we say that the multi-domain hybrid control
system has a partial hybrid zero dynamics (PHZD), H |PZ .



III. OPTIMIZATION VIA DIRECT COLLOCATION

The core contribution of this paper is a computational
framework for generating walking gaits that meet the above
conditions, and its subsequent implementation on the DU-
RUS humanoid. Specifically, this requires determining a
valid set of gait parameters, αv and vd, that both satisfies
PHZD requirements and minimizes a cost–the result is a
nonlinear program (NLP).

A straightforward and traditional approach to transcribing
such a gait design optimization is via direct single shooting
methods. This involves assigning each gait parameter a
design variable, integrating the dynamics via standard time-
marching numerical methods, evaluating the PHZD condi-
tions as equality constraints, and employing an NLP solver
to drive these conditions to zero. Variations of this approach
have been successfully applied on fully actuated robots [3]
and planar point-feet robots [30]. However, as robots are
built with more actuated linkages or have higher degrees of
underactuation, such NLP’s become increasingly intractable
for single-shooting methods. In the author’s previous work,
techniques from the trajectory optimization community were
first utilized; specifically, direct multiple shooting methods
[6] based on reduced-dimensional hybrid zero dynamics [15]
were used to improve the reliability and speed of solving this
PHZD NLP. But such multiple-shooting approaches also run
into scalability issues with increasing degrees of freedom,
due to the increased complexity of the equations describing
the robot dynamics.

In this section, we present the main contribution of the
paper–an optimization problem for multi-domain bipedal
walking using the direct collocation method [27]. Motivated
by the desire to provide a generalized gait optimization tool
for HZD type bipedal walking, the discussion in this section
is based on the general multi-domain hybrid system model
presented in Sec. II.

A. General Description

In the case of local direct collocation, implicit Runge-
Kutta methods–such as Hermite-Simpson and Trapezoidal
method–are most commonly used. In this paper, we specif-
ically employ the Hermite-Simpson (Separated) scheme so
as to achieve better accuracy with fewer nodes (see [5]).
Assuming TI,v > 0 is the time at which the system reaches
the guard associated with a given domain, Dv with v ∈ V ,
the discretization of time is given as, 0 = t0 < t1 < t2 <
· · · < tNv

= TI,v, with Nv = 2(N c
v − 1), where the even

points are called cardinal nodes, the odd points are called
interior nodes (see Fig. 4), and N c

v ∈ Z represents the
total number of cardinal nodes chosen per domain. There
have to be two or more cardinal nodes defined per domain.
The distribution of cardinal nodes within a domain could be
arbitrary, however, a interior point has to be placed at the cen-
ter of two adjacent cardinal nodes. Our formulation allows
the cardinal nodes to be placed at the uniformly distributed
points or the Chebyshev-Gauss-Lobatto (CGL) points, where
the former provides simplicity in implementation, and the
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Fig. 4: Illustration of defect constraints and node distribution.

latter yields better accuracy due to the fact that more nodes
are placed close to the two ends.

Given the discretization, the separated Hermite-Simpson
scheme uses Hermite interpolation polynomials to represent
the state trajectories within two neighboring cardinal nodes
using the estimated states, xi = (qi, q̇i), and their derivatives,
ẋi, obtained by evaluating the system dynamic equation,
where i is the numbering of the nodes. As illustrated in
Fig. 4, there are two defect constraints defined at each
interior point: 1) the difference between the estimated states
from the optimizer and the interpolated states of that point
using the approximated polynomial, and 2) the difference
between the derivatives of states obtained through the system
dynamic equation and the time derivates of the approximated
polynomial at that point [5], [14]. These constraints can be
stated as,

xi − 1

2
(xi+1 + xi−1)− 1

8
∆tiv(ẋ

i−1 − ẋi+1) = 0, (C1)

xi+1 − xi−1 − 1

6
∆tiv(ẋ

i−1 + 4ẋi + ẋi+1) = 0, (C2)

with ∆tiv = ti+1 − ti−1, for i ∈ {1, 3, 5, . . . , Nv − 1}.

B. Introducing Defect Variables

Defect variables are sets of optimization variables that
could have been determined by closed form functions, e.g.,
ẋi in (C1) and (C2). The idea of introducing defect variables
in the NLP is that instead of computing these variables
explicitly using relatively complicated functions, we impose
implicit but equivalent equality constraints, which are often
computationally easier in the optimization. For example,
computing ẋi explicitly requires inverting the inertia matrix,
however, the original formulation of system dynamics in (2)
and (3) does not.

Introducing defect variables replaces these closed form
equations with a set of equivalent, but less complicated
equality constraints. With the discretization of a continuous
domain, let

ziv = (T iI,v, q
i, q̇i, q̈i, uiv, F

i
v, α

i
v, v

i
d) (16)

be a vector of optimization variables defined at each node
i ∈ {0, 1, 2, . . . , Nv}. By introducing defect variables in
this fashion, the first order derivatives in (C1) and (C2)
are no longer obtained by evaluating the system dynamics



explicitly. Instead the evaluation at each node is replaced by
the dynamics equation in (2) and the holonomic constraints
equation in (3):

D(qi)q̈i +H(qi, q̇i)−Bvuiv − JTv (qi)F iv = 0, (C3)

Jv(q
i)q̈i + J̇v(q

i, q̇i)q̇i = 0, (C4)

for i ∈ {0, 1, 2, . . . , Nv} and ∀ v ∈ V .
To determine the feedback controller through virtual con-

straints, the following constraints are imposed to ensure that
the resulting solution of the system evolves as the linear
output dynamics as in (12)-(13):

ẏ1,v(q
i, q̇i, q̈i, vid) + εy1,v(q

i, q̇i, vid) = 0, (C5)

ÿ2,v(q
i, q̇i, q̈i, αiv) + 2εẏ2,v(q

i, q̇i, αiv)

+ε2y2,v(q
i, αiv) = 0, (C6)

for i ∈ {0, 1, 2, . . . , Nv} and ∀ v ∈ V . Notice that we
define the time TI,v, and the parameters αiv and vid at each
node albeit being constant throughout the domain. Defining
variables in this fashion, along with arranging constraints
and optimization variables of each node as a unit, realizes a
computationally efficient band structure in the Jacobian ma-
trix. Of course, this approach requires additional constraints
to ensure the consistency of parameters:

αiv − αi+1
v = 0, (C7)

vid − vi+1
d = 0, (C8)

T iI,v − T i+1
I,v = 0, (C9)

for i ∈ {0, 1, 2, . . . , Nv − 1} and ∀ v ∈ V .
Furthermore, to satisfy the partial hybrid zero dynamics

(PHZD) constraints, relative degree 2 outputs y2,v and their
first-order derivatives ẏ2,v should be zero at the beginning
of each continuous domain. In other words, the following
equality constraints should be imposed at the first node of
each domain v ∈ V :

y2,v(q
0, α0

v) = 0, (C10)

ẏ2,v(q
0, q̇0, α0

v) = 0. (C11)

Thus, any parameters set {αv}v∈V and vd that satisfy (C1)-
(C11), as well as other admissible constraints described later,
guarantee the system has partial hybrid zero dynamics.

C. Admissible Constraints

To complete the optimization problem for multi-domain
bipedal walking under the hybrid system model framework,
we also have to consider other admissible constraints, in-
cluding path and terminal constraints.
Domain of Admissibility. According to (5), the domain of
admissibility constraints are enforced at each node (including
interior nodes):

νv(q
i)F iv ≥ 0, (C12)

hv(q
i) ≥ 0, (C13)

for i ∈ {0, 1, 2, . . . , Nv} and ∀ v ∈ V . It can be noted
that the dependence of contact wrenches on q, q̇, and uv

is no longer required here, as F iv is explicitly defined as
optimization variables.

Guard Condition. We impose the guard condition in (7) at
the last node of each domain, i.e.,

He(q
N , q̇N , FNv ) = 0, (C14)

Ḣe(q
N , q̇N ) < 0, (C15)

∀ v ∈ V with e is the subsequent edge of a vertex v. We also
replace uv with Fv for the reason that the guard condition is
often defined as either a function of robot configuration or
contact wrenches.

Reset Map. Let R be the relabeling matrix if there is a coor-
dinate change and an identity matrix if there is no coordinates
change. We impose the state continuity constraints between
two neighboring domains as,

Rq0v+ − qNv = 0, (C16)

Jv+(qNv )Rq̇0v+ = 0, (C17)

D(qNv )(Rq̇0v+ − q̇Nv )− JTv+(qNv )δFNv
v = 0, (C18)

∀ v ∈ V . Here, we use the notation �0v and �Nv to represent
variables defined at the first and the last node of the domain
Dv , respectively. Following the idea of introducing defect
variables, we include the impact wrenches δFv in the NLP
variables vector to express constraints in the simplest form
possible.

Holonomic Constraints. We add the desired holonomic con-
straints η̄v = {η̄c}c∈Cv as a set of augmented parameters in
the optimization variables. Then, the following constraint is
imposed at the first node of each domain v ∈ V :

ηv(q
0v )− η̄0vv = 0. (C19)

Parameter Consistency. The desired velocity vd should be
the same for each domain. We state the parameter consis-
tency constraints in the following form:

vNv

d − v
0v+

d = 0, (C20)

for each domain Dv except the last domain in the graph. If
the virtual constraint is present in neighboring domains, then
αv continuity is enforced via,{

αNv
o − α

0v+
o

}
o∈(Ov∩Ov+ )

= 0, (C21)

and if holonomic constraints are present in neighboring
domains, {

η̄0vc − η̄
0v+
c

}
c∈(Cv∩Cv+ )

= 0, (C22)

for each domain Dv except the last domain in the graph.

D. Problem Formulation of Direct Collocation Optimization

We now formally define the nonlinear program where we
let z = {zv}v∈V be a vector of all optimization variables,
where zv = (η̄0v , z

0
v , z

1
v , . . . , z

Nv
v , δFNv

v ) is a vector of
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Fig. 5: The coordinates of DURUS robot, where R0 is the
inertial frame, Rb is the robot base frame located at the center
of hip with pb, φb is the position and orientation of Rb. ψw,
φw, and θw are the waist yaw, roll, and pitch angles, ψlh, φlh,
θlh, θlk, θla, φla, and rls are the left hip yaw, hip roll, hip
pitch, knee pitch, ankle pitch, ankle roll angles, and spring
deflection, respectively, and ψrh, φrh, θrh, θrk, θra, φra, and
rrs are the right hip yaw, hip roll, hip pitch, knee pitch, ankle
pitch, ankle roll angles, and spring deflection, respectively.

optimization variables defined on domain Dv with ziv given
in (16). Then we state the optimization problem as,

argmin
z∗

Φ(z) (17)

s.t zmin ≤ z ≤ zmax, (18)
cmin ≤ c(z)≤ cmax, (19)

where Φ(z) is the cost function, and c(z) is a vector of
functions defined in (C1)-(C22) organized in the order of
nodes, zmin, cmin and zmax, cmax are the vectors containing
the minimum and maximum values of optimization variables
and constraints, respectively.

The formulation of direct collocation method significantly
increases the number of constraints and optimization vari-
ables, leading to a large sparse nonlinear optimization prob-
lem. Yet, the Jacobian matrix is very sparse–the density
of the matrix is less than 1% in many cases. This feature
allows the problem to be solved efficiently using appropriate
large sparse NLP solvers such as IPOPT [28], SNOPT [11],
etc. Additionally, in this formulation, the Jacobian matrix
of the constraints and objective with respect to the design
variables can be obtained symbolically, and evaluated in
closed form (as opposed to computationally-taxing finite
differencing methods). This analytical convenience allows
for reasonable computation times for such 10,000+ design
variable problems.

IV. APPLICATION TO THE DURUS HUMANOID

DURUS is a three-dimensional humanoid robot designed
and built by SRI International to implement efficient and
dynamic locomotion. DURUS consists of fifteen actuated

Foot Lift

Foot Strike

DssDds

Fig. 6: Domains graph of 3D walking, where red circles
represent foot contact points.

joints throughout the body driven by either ultra-efficient
cycloid drives or harmonic drives. The design of the passive
spring at the end of each leg, which is often vertical to
the foot plate, helps reduce energy loss by absorbing the
kinetic energy during the foot impact. To model the robot,
we assume that the base frame, Rb, of the robot is located
at the center of the hip. As illustrated in Fig. 5, the kine-
matic tree of body coordinates consists of three branches:
waist joints, qw = [ψw, φw, θw]T , left leg joints, ql =
[ψlh, φlh, θlh, θlk, θla, φla, rls]

T , and right leg joints, qr =
[ψrh, φrh, θrh, θrk, θra, φra, rrs]

T , respectively. Specifically,
we model the passive spring on both legs as a prismatic joint
initially, and then apply a “feedback controller” on this joint
by ensuring that the “feedback controller” actually equals to
the spring force associated with the deflection of this joint.
In addition, we incorporate the reflected inertia of actuators
as a decoupled addition to the inertia matrix as in [10].

Due to the existence of the passive springs, the system
is no longer rigid, thus the impact of the non-stance foot is
not guaranteed (and is unlikely) to cause the trailing foot
to break contact. Therefore, the hybrid system model of
the flat-foot walking of 3D humanoid robot consisting of
two domains: a double-support, Dds, and a single-support
domain, Dss, (see Fig. 6). Accordingly, we define that a
transition from double-support to single-support takes place
when the normal force on non-stance foot reaches zero, and
a transition from single-support to double support domain
occurs when the non-stance foot strikes the ground. The
continuous and discrete dynamics of the system are (2),
(3), and (8). To ensure the foot on the ground remains flat,
the associated contact wrenches should satisfy: the positive
normal force, non-slipping condition, and ZMP constraints
[13]. Incorporating these constraints in the form given in (4),
the domain of admissibility conditions for both domains are
determined along with additional unilateral constraints.

Virtual Constraints. With the hybrid system model of 3D
flat-foot walking in hand, now we design virtual constraints
for each domain based on the formulation in Sec. II. Inspired
by [3], we pick the linearized hip position, δphip(q) =
Laθra+(La+Lc)θrk+(La+Lc+Lt)θrh, as the velocity-
modulating output ya1,v(q) for both domain v ∈ {ds, ss},
where La, Lc, and Lt are the length of ankle, calf, and thigh
link of the robot, respectively.

We pick the following position-modulating outputs for the



double-support domain:
• stance knee pitch: ya2,skp = θrk,
• stance torso pitch: ya2,stp = −θra − θrk − θrh,
• stance ankle roll: ya2,sar = φra,
• stance torso roll: ya2,str = −φra − φrh,
• stance hip yaw: ya2,shy = ψrh,
• waist roll: ya2,wr = φw,
• waist pitch: ya2,wp = θw,
• waist yaw: ya2,wy = ψw,
• non-stance knee pitch: ya2,nskp = θlk,

and define five more outputs for the single-support domain:
• non-stance slope:

ya2,nsl = −θra − θrk − θrh +
Lc

Lc + Lt
θlk + θlh,

• non-stance leg roll: ya2,n = φra − φla,
• non-stance foot roll: ya2,nsfr = pznsf I(q)− pznsfO(q),

• non-stance foot pitch: ya2,nsfp = pznst(q)− pznsh(q),

• non-stance foot yaw: ya2,nsfy = pynst(q)− p
y
nsh(q),

with (px�(q), py�(q), pz�(q)) the Cartesian positions of a point
indicated by the subscript.
Gait Generation. To achieve efficient walking, we set
the objective function to minimize the mechanical cost of
transport of the walking gait:

Φ(z):=
∑
v∈V

1

mgd(η̄v)

(
Nv−1∑
i=1

(
‖Pv(uiv, q̇i)‖ ·∆ti

T iI,v

))
, (20)

where mg is the robot weight, d(η̄v) is the distance traveled
during a gait which could be determined from the desired
holonomic constraints, and Pv(u

i
v, q̇

i) is the total power
consumed (assuming no power-regeneration) computed at
each interior node. Constraints can be formulated as in
Sec. III with proper upper and lower boundaries imposed
on both optimization variables and constraints according
to physical limitation of the robot hardware. Additionally,
constraints were added to keep the non-stance foot flat with
respect to the ground, to ensure flat foot contact. We assigned
10 and 20 cardinal nodes for the double-support and single-
support domains, respectively.

The stability of a walking gait is evaluated a posteriori by
computing the magnitude of the eigenvalues of the Jacobian
of the Poincaré return map [20], which must all be less
than one to certify exponential stability of the periodic orbit.
Numerically evaluating the Jacobian of the return map in
this simulation revealed a maximum eigenvalue magnitude
of 0.24, suggesting exponential stability.
Typical Optimization Performance. The formulated op-
timization problems were solved using IPOPT with linear
solver ma57 on a laptop computer with an Intel Core i7-
3820QM processor (2.7 GHz) and 12 GB of RAM. The
NLP’s were solved to a constraint tolerance less than 10−12

in 910 seconds using a random initial guess. Seeding the
optimizer with a previous gait as an initial guess reduced
solving time to 380 seconds.
Experimental Setup. During the experiments, the robot
walks on a 5′ × 8′ large treadmill platform. A slack safety
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Fig. 7: Cost of transport (CoT) for a walking experiment
over 450 steps with a mean cost of transport of 1.33.

tether is connected to the robot to catch DURUS in case of
a fall. Otherwise, the robot is capable of fully untethered lo-
comotion, operating with an on-board processor and battery
pack installed in the torso.
3D Walking Experiment. To execute 3D walking, DURUS
was programmed to follow the optimized outputs with re-
spect to time using PD position control for all actuators.
Fig. 8a shows the phase plots for actuated joints compared to
the optimized gait when simulated using a MATLAB variable
time step integrator (ode45). The resulting control yielded
stable 3D walking on DURUS, as depicted in walking tiles
in Fig. 8b. DURUS walked unassisted for over 30 minutes on
many occassions at an average speed of 0.23m/s, based on
treadmill data (slightly slower than the 0.27m/s predicted
by the simulator). Measurements of the electrical cost of
transport (CoT)1 of one trial of these experiments is shown
in see Fig. 7, where the CoT averages to 1.33 over 450 steps.

V. CONCLUSION

The authors presented a generalized optimization frame-
work for generating formally stable 3D locomotion on under-
actuated humanoid robots. It does so by solving a nonlinear
program that converges in under ten minutes on a laptop
computer. By building upon the theoretical foundation of
HZD, this method optimizes the interactions of the full multi-
domain multibody dynamics of humanoid system models,
without conforming motions to simpler more-tractable dy-
namics. Further, this method produced 3D dynamic walking
on the spring-legged humanoid, DURUS. By optimizing
for efficient locomotion, we achieved an average cost of
transport of 1.33, significantly lower than that reported by
other human-scale humanoid robots [9]. The authors believe
that this result encourages robot designs that don’t shy away
from underactuation to simplify control, and signals that
HZD approaches can now tackle the complexity of humanoid
locomotion.
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Fig. 8: Experimental results of DURUS walking in 3D at 0.23m/s. a) Periodic orbits from each joint in experiment and
overlaid on the simulated gait (units: rad and rad/s; symmetric joints omitted for clarity). b) Tiled still images from the
walking experiment.
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