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Abstract— This paper presents a method for achieving pla-
nar multi-phase, multi-contact robotic walking using human
inspired control and optimization. The walking presented con-
tains phases with differing degrees of actuation including over-
actuated double support, fully-actuated single support, and
under-actuated single support via heel lift. An optimization
methodology for generating walking gaits using partial hybrid
zero dynamics will be presented. It will be shown that this
method yields periodic, multi-contact locomotion. Simulation
results for the three domain walking under standard Input-
Output Linearization control will be presented.

I. INTRODUCTION

Human walking consists of multiple phases, referred to in
this paper as domains, including instances of single support
and double support that together result in efficient, fluid
locomotion. Between these domains are transition events
such as heel strike, toe strike, toe off, and heel off that
allow humans to elegantly regulate gait characteristics such
as walking speed, step length, and step frequency. With the
goal of designing robust and efficient robotic walking, it
is essential that control theorists strive to develop walking
controllers capable of taking advantage of these same gait
characteristics. Unfortunately, the overwhelming majority of
robotic walking to date revolves around the assumption that
the feet are flat and remain flat throughout the gait, which
greatly reduces the ability to walk efficiently.

Though flat footed walking is less efficient, countless
methods have been developed and realized on robots that
have worked well and have been demonstrated to be sur-
prisingly robust. One of the most widely used approaches is
to design walking controllers around the zero moment point
(ZMP) [9], [24]. The ZMP approach has been successfull
in producing surprisingly robust locomotion on a number
of humanoid platforms including Honda’s ASIMO [14], the
entire series of HRP humanoids from Kawada Industries (see
HRP-2 in [23]), as well as countless other humanoid robots
(see [8] for another example).

Another control strategy similar to ZMP based control
is capture point control [11], [16]. Capture point control
is based upon finding regions on the stepping surface in
which the robots state is capturable, meaning the robot
can successfully stop. Capture point has been successfully
realized experimentally on the humanoid M2V2 [17] with
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Fig. 1: Bipedal robotic testbed AMBER 2 seen on the left
in a SolidWorks rendering and on the right as the robot is
today.

both walking and push recovery. Other more mathematically
formal methods that have been developed more recently in-
clude geometric reduction [6], [20], control symmetries [21],
and hybrid zero dynamics [2], [6]. Hybrid zero dynamics
based control has seen great success on multiple platforms
such as RABBIT [5], MABEL [22], ATRIAS [7], AMBER 1
[18], and AMBER 2 [15]. Extraordinarily, MABEL has also
achieved human-like running using hybrid zero dynamics
based control [22].

In this paper, a human-inspired optimization will be pre-
sented that yields controller parameters defining parame-
terized reference trajectories for a three domain walking
gait consisting of all the key phases of human-like walk-
ing: over-actuation, full-actuation, and under-actuation. The
robot model used is that of AMBER 2 pictured in Fig. 1,
the footed successor to AMBER 1. The remainder of this
paper will be structured as follows: Section II defines the
multi-domain hybrid system model and discusses contact
conditions and actuation types. Section III introduces human
inspired control. Section IV introduces partial hybrid zero
dynamics (PHZD) and highlights the properties of PHZD
useful for walking gait construction. Section V describes the
main result of this paper: construction of a multi-domain,
human-inspired optimization. Section VI provides simulation
results and a discussion on the proposed method.

II. HYBRID CONTROL SYSTEM MODEL

This section develops the mathematical model for multi-
contact locomotion for a bipedal robot with feet. In particu-
lar, the changing of contact points over a walking gait, e.g.,
lifting and striking of the heel and toe, necessitates a model
of the robot that includes continuous and discrete dynamics.
For this paper the goal will be to construct a walking gait
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Fig. 2: Directed graph associated with 3 domain walking.
The stance leg is red and non-stance leg is black.

consisting of three discrete domains (see Fig. 2).
Hybrid System Model. The formal model of a bipedal robot
with a multi-contact multi-domain walking gait follows the
general development given in [12], [19]. In particular, we
consider a hybrid control system model given by a tuple:

H C = (Γ, D, U, S,∆, FG), (1)

where Γ = (V,E) is a directed graph with vertices and
edges. For v ∈ V and e ∈ E, D = {Dv} is a set of domains,
U = Rmr is a set of admissible controls, S = {Sv} is a
set of guards, ∆ = {∆e} is a set of transition maps, and
FG = {FGv} is a set of control systems. These elements
are discussed in more detail in the following sections.
Three-Domain Graph. For the multi-contact walking gait of
interest, the graph Γ of the hybrid system H C is pictured
in Fig. 2. In particular, Γ is a directed cycle, with a set of
vertices, V , and a set of edges, E, given by:

V = {oa, fa,ua}, (2)
E = {ets = (oa→ fa), ehl = (fa→ ua), ehs = (ua→ oa)},

where in this case, we have labeled each vertex v ∈ V (which
is used to index a domain Dv) by the type of actuation
in the corresponding domain (as will be discussed later),
i.e., the vertices oa, fa and ua correspond to over, full and
under actuation, respectively. Associated with each edge in
the graph, e = (v → v′) ∈ E, is a transition map ∆e from
the one domain to the next, i.e. ∆e : Dv → Dv′ .
Coordinates, Constraints and Actuation Types. The gen-
eralized configuration space for the chosen robot model
is Q = R2 × SO(2) × Qr where Qr is characterized
by the relative joint angles (see Fig 3); specifically, the
(generalized) coordinates are given by q = {px, pz, ϕ0, qr}
where qr = {qsa, qsk, qsh, qnsh, qnsk, qnsa} and {px, pz, ϕ0}
reference the body fixed frame Rb with respect to a fixed
inertial frame R0 shown in Fig. 3.

Contact Conditions: For each vertex of the graph Γ,
there are associated contact points interacting with the
physical world that dictate multi-contact conditions in the
robot [4]. This is represented by a set of contact points
Cv ⊂ {sh, st, nsh, nst}, where sh is the stance-heel, st
is the stance-toe, nsh is the non-stance heel and nst is
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Fig. 3: Coordinates of 9 degree of freedom footed biped
model (left) and layout of physical parameters (right).

the non-stance toe. With this, we consider two types of
constraints: unilateral, denoted hv , and holonomic, denoted
ηv . Unilateral constraints dictate the set of admissible states,
while holonomic constraints are used to encode which points
are in contact with the walking surface.

Example 1: For the domain structure considered in this
paper (see Fig. 2) there are the following constraints:
• For v = fa ∈ V , hfa(q) consists of the z position of the

non-stance heel, and ηfa(q) consists of the x, z position
of the stance toe together with the z position of the
stance heel.

• For v = ua ∈ V , hua(q) consists of the z position of
the non-stance heel, while ηua(q) consists of the x, z
position of the stance toe.

• For v = oa ∈ V , hoa(q) consists of the z position of the
stance toe, while ηoa(q) consists of the x, z positions
of the stance heel and non-stance toe.

Actuation Type: For a given robot, let mr denote the num-
ber of actuators, let n denote the number of unconstrained
degrees of freedom, let ncv denote the number of holonomic
constraints in a given domain, and let nv = n− ncv denote
the number of constrained degrees of freedom in a given
domain, v. We say that a domain is
• Fully-actuated if mr = n− ncv ,
• Under-actuated if mr < n− ncv ,
• Over-actuated if mr > n− ncv .
Understanding and managing these three types of actuation

is an important aspect of this paper; the actuation type affects
both the dynamics of the robot and the permissible control.

Example 2: AMBER 2 has six actuators, thus mr = 6
and n = 9. For oa ∈ V , ncoa = 4 thus n−ncoa = 9−4 = 5 <
6 and the robot is over-actuated in oa. For fa, ncfa = 3 thus
n−ncfa = 9−3 = 6 and therefore the robot is fully-actuated
in fa. For ua, ncua = 2 thus n− ncua = 9− 2 = 7 > 6 and
therefore the robot is under-actuated in ua.
Control System. We now have the necessary framework in
which to construct the control system FGv for each domain
of the hybrid system H C given in (1). In particular, the
control system on each domain will be obtained from general
“unpinned” dynamics subject to holonomic constraints cor-
responding to forceful nature of the interaction between the



robot and the environment; see [6] for a detailed derivation.
The resulting constrained dynamical system is described by,

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u+ Jv(q)
TFv, (3)

where M(q), C(q, q̇) and G(q) are the inertia matrix, Cori-
olis matrix, and gravity vector, respectively, B determines
the distribution of joint torques, u ∈ Rmr , and Fv is the
contact wrench containing reaction forces and moments [6].
Let x := (q, q̇) so that (3) can be written

ẋ = fv(x) + gv(x)u, v ∈ V, (4)

where the methods described in [6] are used to express the
wrench, Fv , as a function of the joint states and joint torques.
Thus the control system on v is FGv = (fv, gv).
Domains, Guards and Reset Maps. A continuous domain is
the set of admissible configurations of the system, as dictated
by contact constraints. Specifically, one can ensure that the
foot does not slip or rotate by considering inequalities of the
form: µv(q)TFv(q, q̇, u) ≥ 0, with µv a matrix of friction
parameters (see [19] for more details). Coupled with the
unilateral constraints, hv(q), the constraints on the domain
are,

Ψv(q, q̇, u) =

[
µv(q)

TFv(q, q̇, u)
hv(q)

]
≥ 0. (5)

The continuous domain is thus given by:

Dv = {(q, q̇, u) ∈ TQ× Rmr : Ψv(q, q̇, u) ≥ 0}. (6)

The guard is just the boundary of this domain with the ad-
ditional assumption that the set of admissible configurations
is decreasing, i.e. the vector field is pointed outside of the
domain:

Sv = {(q, q̇, u) ∈ TQ× Rmr : Ψv(q, q̇, u) = 0, (7)

Ψ̇v(q, q̇, u) < 0}. (8)

The transition map for an edge e = (v → v′) is given by:

∆e : Sv → Dv′ , ∆e(q, q̇) =

[
∆qq

∆qPeq̇

]
, (9)

where ∆q is a relabeling matrix1, and Pe is computed from
impact equations assuming perfectly plastic impacts (see
[25]) and no slipping. Note that the reset map from full to
under-actuation is the identity map as no impact occurs.

III. MULTI-DOMAIN HUMAN-INSPIRED CONTROL

This section extends the framework of human-inspired
control [2] to the multi-contact case, i.e., the case where there
are multiple discrete domains. In particular, it is necessary
to consider phases of under, over and full actuation. This
general construction, applicable to general mixed actuation
gaits, will be specialized the case of AMBER 2 for the
discrete structure given in Fig. 2.

1Note that as a result of considering “stance” and “non-stance” legs, the
labeling on the legs must be switching during one of the transitions; in this
paper, these switching occurs at heel strike. This is a common “trick” in
robotic walking used to reduce the number of discrete domains.

Consider the following system defined on each domain
v ∈ V :

ẋ = fv(x) + gv(x)u, (10)

yv = yav (x)− ydv(x), (11)

for x ∈ Dv and u ∈ Uv and where yv is a control output for
v ∈ V , consisting of the difference between an actual output
yav (x) and a desired value for this output ydv(x). The human-
inspired control design process consists of proper choice
of actual and desired outputs, along with construction of a
control law u(q, q̇) that drives yav (x)→ ydv(x) such that the
resulting hybrid system obtained by applying this control law
has a periodic orbit, i.e., a walking gait.
Human Locomotion (Actual) Outputs. Motivated by the
consideration of human locomotion data in previous work
[4], we will construct actual outputs, yav , through the use
of human output combinations [1]. The human outputs of
interest here include both the stance and non-stance knee
angles, the angle between the hips, the angle of the non-
stance foot with the ground, the angle of the robots torso,
and the stance ankle angle. It has been shown through the
analysis of human walking data [4] that these outputs behave
in a simple manner and can be represented with functions
that are linear combinations of the robots joint angles.

Definition 1: A human output combination for v ∈ V is
a tuple Y Hv = (Qr, y

H
1,v, y

H
2,v) consisting of a configuration

space Qr, a velocity-modulating output yH1,v(q) and position-
modulating outputs yH2,v(q). Let Ov be an indexing set for
yH2,v whereby yH2,v(q) = [yH2,v(q)o]o∈Ov

. A set of human
outputs are independent if,

rank
([

yH1,v(q)
yH2,v(q)

])
= nv, (12)

on Qr, and linear if

yH1,v(q) = cvq, (13)

yH2,v(q) = Hvq, (14)

for cv ∈ R1×nv and Hv ∈ R(nv−1)×nv .
Example 3: We choose the following linear and indepen-

dent human output combinations for the three domains of
interest. For the velocity modulating output, we consider the
same linear output for all three domains characterized by:

cv =
[

0 0 0 −Lc − Lt −Lt 0 0 0 0
]
, (15)

for v ∈ V = {oa, fa,ua}, with Lc the length of the calf
and Lt the length of the thigh of the robot. The velocity
modulating output yH1,v(q) is simply the linearized forward
position of the hip. For the position modulating outputs, we
first consider the linear outputs for the under-actuated domain
characterized by

Hua =


0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 −1 0 0
0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 −1 −1 −1

 . (16)



The position modulating outputs for the over- and fully-
actuated domains are chosen to be submatrices of Hua based
upon the available degrees of actuation in these respective
domains. In particular, Hoa = (Hua)1,2,5,6 and Hfa =
(Hua)2−6, where here we have used the notation (Hua)i to
denote the ith row of Hua. Note that this is not the only valid
choice of human output combination, but the one chosen here
based upon examination of human locomotion data.
Canonical Walking Functions. Previous results [4] reveal
that for the actual outputs considered, humans tend to
display very simple behavior. This observation motivates
the use of simple desired functions for bipedal locomotion.
In particular, it was observed [4] through examination of
human walking data that the “proper” choice of the velocity
modulating output satisfies the property that:

yH1,v(q) ≈ vhipt. (17)

In addition, by selectively choosing the human outputs, they
appear to be described by the solution to a linear mass-spring
damper system. With this in mind, define the canonical
walking function:

ycwf(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5. (18)

Additionally, it was found that for more complex walking
behavior, e.g., stair climbing and rough terrain locomotion
[10], the position modulating outputs appear to be described
by the solution to a linear mass-spring-damper system under
sinusoidal excitation. With this in mind, define the extended
canonical walking function (ECWF):

yecwf(t, α) =e−α4t(α1 cos(α2t) + α3 sin(α2t))

+ α5 cos(α6t) + κ(α) sin(α6t) + α7, (19)

where κ(α) = (2α4α5α6)/((α2)2+(α4)2+(α6)2). As found
in [2] these functions represent (human) bipedal locomotion
data with high correlation and therefore, we leverage these
functions in construction of desired control outputs for
bipedal locomotion and claim that the functions are natural
suggestions for bipedal (human and robotic) walking.
Parameterization of Time. With these time-based functions
in mind, and specifically (17), coupled with the desire
to construct autonomous control functions, we specify the
following parameterization of time:

τv(q, q̇) =
yH1,v(q)− dv

vhip
(20)

where yH1,v(q) is the velocity modulating output which, based
upon the relationship in (17), is used to parameterize time
and dv ∈ R is used to align τv(q) = 0 at critical points in
the gait, i.e. at the start of specific domains v ∈ V .
Desired Output functions. With the goal of controlling the
forward velocity of the robot, we define the relative degree
one desired output to be:

yd1,v = vhip, v ∈ V (21)

for all domains, i.e., irrespective of actuation type. Similarly,
with the goal of the robot tracking the canonical walking

function, for the over-actuated domains, we define the desired
outputs to be:

yd2,v(τv(q), αv) = [ycwf (τv(q), α
i
v)]i∈Ov

, v = oa (22)

that is, for v ∈ V s.t. mr > n− cv . Finally, in the case of
either full or under-actuation, we define the desired output
to be:

yd2,v(τv(q), αv) = [yecwf (τv(q), α
i
v)]i∈Ov

, v ∈ {fa, ua}
(23)

that is, for v ∈ V s.t. mr ≤ n − ncv . The change to the
ECWF is needed for computing a Motion Transition (detailed
reasoning will be given in Section IV).
Control Law Construction. The goal is to drive the outputs
of the robot, obtained through a human output combination,
to the outputs of the human as represented by the canonical
walking functions parameterized by τv(q). This motivates the
final form of the outputs, termed the human-inspired outputs
and given by:

y1,v(q, q̇) = ẏH1,v(q, q̇)− vhip, (24)

y2,v(q) = yH2,v(q)− yd2,v(τv(q), αv). (25)

From these outputs, we can construct two types of con-
trollers: one for the fully and over-actuated domains, and
one for the under-actuated domain. In the case of full and
over-actuation, we define the human-inspired controller by:

u(αv,ε)
v (q, q̇) = −A−1v (q)

([
0

LfvLfvy2,v(q, q̇)

]
(26)

+

[
Lfvy1,v(q, q̇)

2εLfvy2,v(q, q̇)

]
+

[
εy1,v(q, q̇)
ε2y2,v(q)

])
,

for v ∈ {fa, oa}. Here L is the Lie derivative, ε > 0 is
a user defined control gain that dictates the convergence of
y1,v and y2,v to 0, and

Av(q) =

[
Lgvy1,v(q)

LgvLfvy2,v(q)

]
(27)

is the decoupling matrix. In a similar fashion, in the case of
under-actuation, we define the human-inspired controller:

u(αua,ε)
ua (q, q̇) = −A−1ua (q) (Lfua

Lfua
y2,ua(q, q̇)+ (28)

2εLfua
y2,ua(q, q̇) + ε2y2,ua(q)

)
where in this case Aua = Lgua

Lfua
y2,ua(q). We note that

Av is assumed to non-singular for all v ∈ V as a necessary
condition for the human output combination Y Hv to be valid;
this also implies that y1,v and y2,v have the proper (vector)
relative degree. Importantly, depending on the choice of
outputs and constraints enforced, the control law (26) is a
controller for the case of under, full and over actuation.

Applying the feedback control law in (26) and (28) to
(4) yields dynamical systems for each domain. It is the
behavior of this closed form system that we wish to analyze.
In particular, the goal is to find parameters αv for each
domain such that a hybrid periodic orbit is generated for
the closed form system. This is the aim of the human-
inspired optimization problem that will be presented in the
next section.



IV. PARTIAL HYBRID ZERO DYNAMICS

The optimization problem leverages the hybrid zero dy-
namics and partial hybrid zero dynamics concepts to produce
low-dimensional representations of the system; this section
introduces these concepts and corresponding notation. A zero
dynamics surface Zαv

is defined by the set:

Zαv
= {(q, q̇) ∈ Q : yv(q, q̇) = 0}, (29)

where yv(q, q̇) contains all relative degree one and/or two
outputs and first time-derivatives of relative degree two
outputs in the domain v. A hybrid zero dynamics [25], [1]
is a zero dynamics surface that is invariant through impacts.
Properties of Partial Zero Dynamics. The definition of a
partial zero dynamics (PZD) surface:

PZαv = {(q, q̇) ∈ Q : y2(q) = 0, ẏ2(q, q̇) = 0}, (30)

has two properties of interest that can be utilized in the
construction of walking gaits. First, by definition, a PZD
surface consists of equality constraints on the state space of
the robot which can be combined with additional constraints
to form a well-posed inverse kinematics problem.

In the over-actuated and fully-actuated domains, a second
property associated with the PZD surface and the control
law (26) is a “low-dimensional” (linear) dynamical system.
Picking the coordinates ξv = (ξv,1, ξv,2), where ξv,1 :=
yH1,v(q) and ξv,2 := ẏH1,v(q, q̇), and due to the specific choice
of control law (26), the partial zero dynamics are given by:

ξ̇v,1 = ξv,2, (31)

ξ̇v,2 = −ε(ξv,2 − vhip), v ∈ {oa, fa}. (32)

Let ξv(t, ξ+v ) be the solution to (31) and (32) with initial
condition ξ+v ; and note that because (31) and (32) describe
a linear system, ξv(t, ξ+v ) can be obtained in closed form.
Obtaining States On PZD Surfaces. The 2nv equality
constraints associated with a given partial zero dynamics
surface PZαv

can be combined with 2(n − nv) additional
constraints, such as holonomic constraints, on the state space
of the robot to form an inverse kinematics problem with a
unique solution (ϑ(αv), ϑ̇(αv)) ∈ PZαv

.
Example 4: (PHZD Reconstruction). In the fully-actuated

domain, the states of the system can obtained through PHZD,
or simply PZD, reconstruction [1]. This is accomplished by
defining,

Φ(ξfa,1) =

[
cfa
Hfa

]−1 [
ξfa,1
ydfa,2

]
, (33)

Ψ(ξfa,1) =

[
cfa
Hfa

]−1 [ 1
∂ydfa,2

∂ξfa,1
.

]
The point (q, q̇) ∈ PZαv ∩ (ξfa,1, ξfa,2) is found by setting
q = Φ(ξfa,1) and q̇ = Ψ(ξfa,1)ξfa,2.
Obtaining PZD Surfaces from States. The extended canon-
ical walking function can be used to create a partial zero
dynamics surface connecting any two states. Specifically,
for two distinct states: (q̄, ˙̄q) and (q̂, ˙̂q), we can solve for

Soa Sfa Sua

∆ua→oa(ϑ(α), ϑ̇(α))T

PZoa PZfa Zua

Fig. 4: Geometry of the closed loop obtained using motion
transitions.

α such that (q̄, ˙̄q) ∈ PZα and (q̂, ˙̂q) ∈ PZα using a Motion
Transition [10]. In the construction of the optimization
problem, Motion Transitions are used to obtain controller
parameters for full-actuation, αfa, and under-actuation, αua.

V. OPTIMIZATION

The main result of this paper is a method for achieving
hybrid invariance across three domains using the properties
and usage of partial zero dynamics surfaces described in
Section IV. Multi-domain hybrid invariance will be encoded
in the form of nonlinear constraints to be solved in an
optimization problem.
The Over-Actuated PHZD Surface. To begin the optimiza-
tion construction, we must first define an additional set of ac-
tual outputs ya2 (q) := yH2,ua(q) ∈ R6 and define correspond-
ing desired outputs yd2(τ(q), α) := [ycwf (τv(q), α

i
v)]i∈Oua

.
Associated with these desired outputs is the matrix α of
parameters to be optimized; furthermore, αoa = (α)1,2,3,6,7,
i.e. the rows in αoa are select rows in α. These additional
outputs are not used in control, but they are needed to solve
the inverse kinematics problem to obtain a point on the guard
of the under-actuated domain.

Let q−ua ∈ Sua be the final configuration on the under-
actuated domain and q+oa = ∆qq

−
ua be the initial configuration

in the over-actuated domain. On the surface, Zα, the angles
q−ua are obtained by solving

ϑ(α) = q−ua s.t.[
ya2 (∆qq

−
ua)− yd2(0, α)

hua(∆qq
−
ua)

]
=

[
06

0

]
, (34)

where τoa = 0 at the beginning of the over-actuated domain.
Using ϑ(α) and the zero dynamics constraints, Zα, we can
explicitly solve for the velocity vector corresponding to the
point (ϑ(α), ϑ̇(α)) ∈ Sua ∩ Zα. The initial state of the
over-actuated domain is calculated via (q+oa(α), q̇+oa(α)) =
∆ua→oa(ϑ(α), ϑ̇(α)). This quantity is used to compute a
partial hybrid zero dynamics constraint to be solved in the
optimization; this constraint is given by:

∆ua→oa(Sua ∩ Zα) ⊂ PZαoa
, (C1)

where noting again that αoa ⊂ α, this constraint renders
PZαoa invariant through impact, ∆ua→oa. This constraint



can be converted to one that is only a function of α via the
construction in [1].

Assuming (C1) is satisfied, the evolution of the robot’s
state during over-actuation can described by the evolution of
the coordinates ξoa. In particular, associated with the initial
state of the over-actuated domain are the initial reduced
coordinates state: ξ+oa(α) = (δphip(q

+
oa(α)), coaq̇

+
oa(α)) and

corresponding solution ξoa(t, ξ+oa(α)) to (31) and (32). With
the goal of forcing a domain transition governed by doa,
we solve for the time Toa corresponding to the end of the
domain, i.e. Toa = {t : ξoa,1(t, ξ+oa(α)) = ξ+oa,1(α) + doa}
using the Lambert W function as done in [1]. Over the
interval t ∈ [0, Toa] the states of the robot are obtained by
solving for (qoa(t), q̇oa(t)) ∈ PZαoa ∩ξoa(t, ξ+oa(α)); this is
done using the method described in Example 4 together with
the geometric constraint ηoa(qoa(t)) = 0. These states can
be used to construct constraints on the over-actuated domain

min
t∈[0,Toa)

[Ψoa(qoa(t), q̇oa(t), uαoa,ε
oa )] > 0, (C2)

and a constraint which triggers the guard at t = Toa,

Ψoa(qoa(t), q̇oa(t), uαoa,ε
oa ) = 0. (C3)

Here, the final state in the over-actuated domain,
(q−oa(α), q̇−oa(α)) = (qoa(Toa), q̇oa(Toa)) is constrained to be
on the guard Soa and thus at this point the robot transitions
to the fully-actuated domain.
The Fully-Actuated PHZD Surface. The transition map
from over-actuation to fully-actuation is used to obtain
the initial condition for the fully-actuated domain, i.e. we
calculate (q+fa(α), q̇+fa(α)) = ∆oa→fa(q−oa(α), q̇−oa(α)). As
in the over-actuated domain, associated with the initial state
of the fully-actuated domain is the solution ξfa(t, ξ+fa(α))

to (31) and (32) with initial condition ξ+fa(α). With the goal
of forcing a domain transition governed by dfa, we solve
for the time Tfa corresponding to the end of the domain,
i.e. Tfa = {t : ξfa,1(t, ξ+fa(α)) = ξ+oa,1(α) + doa + dfa}
again using the Lambert W function as done in [1]. The final
states of the robot in the fully-actuated domain are made to
satisfy (q−fa(α), q̇−fa(α)) ∈ Zα ∩ ξfa(Tfa, ξ

+
fa(α)) via the

reconstruction method described in Example 4.
Thus, the initial and final conditions to the fully-actuated

domain are (q+fa(α), q̇+fa(α)) and (q−fa(α), q̇−fa(α)), respec-
tively. These two points are used to construct a Motion
Transition resulting in controller parameters αfa. Over the
interval t ∈ [0, Tfa] the states of the robot are obtained
by solving for (qfa(t), q̇fa(t)) ∈ PZαfa

∩ ξfa(t, ξ+fa(α)),
specifically by using the method described in Example 4.
These states can be used to construct constraints on the fully-
actuated domain

min
t∈[0,Tfa)

[
Ψfa(qfa(t), q̇fa(t), u

αfa,ε
fa )

]
> 0. (C4)

and a constraint which triggers the guard at t = Tfa,

Ψfa(qfa(t), q̇fa(t), u
αfa,ε
fa ) = 0. (C5)

Where again, when (C5) is satisfied, the robot transitions to
the under-actuated domain as planned.

Fig. 5: Snapshots of a three domain walking gait.

The Under-Actuated PHZD Surface. The initial condi-
tion to the under-actuated domain is (q+ua(α), q̇+ua(α)) =
∆fa→ua(q−fa(α), q̇−fa(α)). Recall that the final condition in
this domain is (ϑ(α), ϑ̇(α)). These two points are used to
construct a Motion Transition resulting in controller param-
eters αua. As this domain is under-actuated, the states along
the surface Zαua

are obtained through numerical integration
of the zero dynamics (as discussed in [25], [1]). As done in
the first two domains, constraints are formed to ensure that
the states obtained through integration are consistent with
the definition of the under-actuated domain:

min
t∈[0,Tua)

[Ψua(qua(t), q̇ua(t), uαua,ε
ua )] > 0. (C6)

In particular, this constraint is satisfied if the solution ob-
tained through numerical integration of this domain reaches
(ϑ(α), ϑ̇(α)) ∈ Sua.
Main Result: A Multi-Domain PHZD Optimization. With
the controllers and constraints defined, the final form of the
human inspired, 3-domain optimization becomes,

(α∗, d∗fa, d
∗
ua) = argmin

α,dfa,dua∈R33

CostHD(α) (35)

s.t. (C1,C2, ...,C6)

with CostHD(α) the human-data based cost defined in [4].
The solution to (35) is a set of parameters α and transition
conditions dfa and dua corresponding to a hybrid-invariant,
three-domain walking gait. Furthermore, the control param-
eters αoa, αfa and αua can all be obtained from α.

VI. SIMULATION RESULTS

This section presents a simulation example showing how
the optimization algorithm of Section V was used to produce
a multi-domain walking gait for the planar biped AMBER
2, a planar robot that was designed and partially machined
within AMBER lab at Texas A&M University. AMBER 2 is
a seven link robot supported by a light weight, carbon fiber
boom that restricts motion to the saggittal plane. The boom
is counter weighted so as to not introduce mass to the robot;
however, there is an inertial load introduced to the torso link
that is negligible due to the low friction bearings used in
the construction of the boom as well as a long moment arm
(∼ 8ft) separating the robot from the center of rotation of
the boom. The optimization of Section V was implemented
using MATLAB’s fmincon function and the interior-point
algorithm. The results of the optimization are shown in Fig.
5, where the three-domain walking gait is plotted as a series
of tiles. An animation is available online [13]. The gait shown
here has an average velocity of 0.42 m/s, with a step length
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Fig. 6: Actual and desired outputs over one step for a three
domain walking gait.
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Fig. 7: Phase plot (left) for 9 steps of a 3 domain walking
gait showing the periodicity of the gait and joint angles (top
right) and velocities (bottom right).

of 0.373 m (58% of leg length) and a period of T = 0.88
sec. The step time can be further broken down, with 0.139 s
(16%) in over-actuation, 0.19 s (21%) in full-actuation, and
0.56 s (63%) in under-action. The actual and desired outputs
are shown in Fig. 6.

VII. CONCLUSION

The objective of this paper has been to present a novel
method with which to design multi-domain walking gaits.
The chief contribution lies in the extension of the human-
inspired optimization [3] to handle multi-contact locomotion
containing both heel strike and toe off. In doing so, it
was shown that including motion transitions in the human-
inspired optimization allows the robot to remain on the zero
dynamics manifold across domains in which the degrees of
actuation change. The methods described here have been
recently realized on AMBER 2 to achieve robust, multi-
domain locomotion experimentally [27], [26].
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