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Abstract— A method is proposed which enables testing of
prosthetic devices in simulation. A hybrid model is used to
represent human walking—the combination of continuous and
discrete dynamics motivates the use of hybrid systems. A human
walking experiment is analyzed and mathematical functionson
the kinematics of the collected data are found which capture
some of the fundamental behaviors associated with human
walking. One model is considered in which these behaviors are
fully tracked using feedback linearization; the intent of this
is to simulate healthy human walking. Then, a second model
is considered: this model is assumed to be a human with a
transfemoral prosthesis; PD control is used on the prosthesis.
All models considered demonstrate locally exponentially stable
periodic orbits when simulated for four separate test subjects,
or, in other words, the models exhibit stable walking even with a
prosthetic lower extremity. The methods used in this paper are a
stepping stone toward a process capable of rapidly prototyping
potential prosthesis designs and controllers.

I. INTRODUCTION

As of 2002, there are approximately 1.4 million people liv-
ing in the United States with an amputated lower extremity.
Approximately 350,000 of these people have a transfemoral
amputation [1]. The sheer numbers motivate research into
intelligent prosthetics. While the concept of prostheticshas
been around for a long time [2], a paradigm shift occurred
when researchers started exploring the idea ofintelligent or
controlled prosthetics. By outfitting a prosthetic leg with
a motor and some type of controller, the potential for a
more efficient prosthesis is created; indeed, research exists
regarding the efficiency of such prostheses [3], [4]. Consid-
ering the number of parameters associated with designing a
prosthesis (physical parameters, controllers/gains, etc.), one
quickly sees the need for a way to simulate models, yet few
simulations have been reported in the literature [5], [6], [7].
A simulation model streamlines the design process, allowing
designers to vary parameters and test the results without
constructing a prototype and testing in the field.

One study [8] used the inverse-forward dynamics approach
to investigate the interaction of the biomechanical system
with other technical systems. This study validated the in-
clination that simulation can help in the design process.
Studies have also been conducted for assistive devices. In
one such study [9], the authors analyzed trajectories of hip
and ankle joints from cubic spine interpolation coupled with
geometry and motion restraints to develop a parameterized
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model of the body’s walking pattern. Comparing simulation
and experimental results, it was concluded that simulation
can achieve adequate results. Motivated by the potential
applications of prosthesis simulation, this paper attempts to
fill in a gap in the literature by demonstrating a simulation
of a human with a transfemoral prosthesis.

Constructing the simulations of interest in this paper issues
another interesting challenge: “human controllers” must be
designed with the capability of mimicking a human gait.
To construct such controllers, this paper analyzes the results
of a human walking experiment conducted using the Phase
Space System [10] which performed high-frequency motion
capture. The study of human walking requires research in
either robotics and control or biomechanics. In the context
of biomechanics, researchers are often interested in forces
and dynamics [11], [12]; specifically, forces and loading have
been studied at the foot [13], [14] and at the hip [15], [16].
Such analysis is useful in the design of prostheses and hip
replacements yet fails to give a complete picture of human
walking. While many studies have been conducted in the
context of biomechanics [17], few have been done with
respect to control engineering [18], [19]. When studying the
biomechanics of walking, researchers use force plates and
force loading models to measure and estimate the distribution
of musculoskeletal forces and ground reaction forces [20].
This is used with either inverse-dynamic models [21], [22]
or forward-dynamic models [23], [24], [25]. In this paper,
we prefer to analyze functions representing outputs on the
kinematics of a human. Recent methods have been developed
[26], [27] which draw from human data to obtain walking
in robotic models. This paper uses methods from [27] to
develop the human functions and controllers and achieve
simulated walking for a human with prosthesis.

In order to faithfully represent human walking, a human
walking experiment is considered [28]. Controllers are de-
signed using simple mathematical functions which attempt
to represent the fundamental behaviors of human walking
during a walking gait; a state-based parameterization is intro-
duced to remove the time-dependence from these functions.
Then, a model of healthy human walking is considered;
controllers are created using feedback linearization [29,
ch. 9] to achieve humanlike walking on this model; indeed,
a simulation shows stable walking. This walking will require
large joint velocities, yet recent results have built upon the
methods used in this paper to achieve a hybrid zero dynamics
which significantly reduces maximum joint velocities [30],
[31].

After demonstrating healthy human walking, another
model is created with a prosthesis; PD control is used to



mimic the desired human behavior on the prosthetic knee and
feedback linearization is used to control the human joints.
Simulations using mass, length, and walking data from four
different human test subjects were conducted. Each model
was made to walk with a prosthesis in simulation without
changing any of the parameters characterizing the human
behavior. This result signifies that human-inspired control
can be used reproduce robustness similar to that of a human.

II. HYBRID SYSTEMS AND ROBOTIC MODELS

Bipedal walking exhibits both discrete and continuous
behaviors; it is, therefore, natural to model bipeds as hybrid
systems. The point-foot robotic model of a human with a
transfemoral prosthesis considered in this paper motivates
the use of a two-domain hybrid system—one domain for
standing on the human leg and one for standing on the pros-
thesis. The system evolves in a continuous fashion according
to a dynamic model derived from a Lagrangian modeling the
mechanical system on each domain. At some point during
the gait, the swing foot will strike the ground; this will
cause an impact resulting in discrete changes in velocity.
This combination of continuous and discrete phenomena is
the fundamental concept underlying hybrid systems.

This section formally introduces hybrid systems and dis-
cusses how the dynamic model of a robot together with a
temporal ordering of discrete events completely determines
the hybrid model of a system.

A. Formal Definition of Hybrid Systems

Hybrid systemsor systems with impulse effects[32] have
been studied extensively in a wide variety of contexts and
have been used to model a wide range of bipedal robotic
systems [33]. In this section, a definition of hybrid systems
applicable to bipedal walking is introduced. The gait for the
model posed in this paper has two domains with a temporal
ordering of discrete events, motivating the application of
multi-domain hybrid systems in which the domain graph is
a directed cycle.

Definition 1: A directed cycleis a graphΓ = (V,E),
with V a set of vertices andE a set of edges—for an edge
e ∈ E, denote the source bysor(e) and the target bytar(e)—
in which the edges and vertices can be written

V = {v1, v2, . . . , vp} , (1)

E = {e1 = {v1, v2}, e2 = {v2, v3}, . . . , ep = {vp, v1}} ,

wherep is the number of discrete domains in the correspond-
ing hybrid model. This is now illustrated with an example:

Example 1: Thedomain breakdownpictured in Fig. 1 has
an underlying graph that is a directed cycle; the graph is
given byΓu = (Vu, Eu). In particular, there are two vertices
and two edges with

Vu = {HU ,PR} ,

Eu = {{HU ,PR}, {PR,HU }}

With this notion of a directed cycle in hand, the formu-
lation of a hybrid system that is of interest in this paper is
now introduced.

HU PR

q0q0

qstkqstk

qhipqhip

qnskqnsk

eHU = {HU ,PR}

ePR = {PR,HU}

Fig. 1: Domain graph for human with prosthesis model.
Circles represent joints with given relative coordinates.Black
represents human control, blue indicates prosthesis control,
and green indicates no actuation.

Definition 2: A hybrid control system in a cycleis a tuple,

H C = (Γ,D, U, S,∆, FG),
where

• Γ = (V,E) is a directed cycle,
• D = {Dv}v∈V is a set ofdomains of admissibility

with Dv ⊆ Xv × Uv a smooth submanifold, whereXv

represents the state space of the system,
• U = {Uv}v∈V with Uv ⊆ R

mv a set of admissible
controls,

• S = {Se}e∈E is a set ofguardsor switching surfaces,
with Se ⊆ Dsor(e),

• ∆ = {∆e}e∈E is a set ofreset maps, with ∆e : Se →
Dtar(e) a smooth map,

• FG = {(fv, gv)}v∈E with (fv, gv) a control systemon
Dv, i.e., ẋ = fv(x) + gv(x)u ∀ (xT , uT )T ∈ Dv.

A hybrid systemis a hybrid control system withUv = ∅ ∀
v ∈ V , e.g., any applicable feedback controllers have been
applied, making the system closed-loop. In this case,

H = (Γ,D, S,∆, F ),

whereF = {fv}v∈E , with fv a dynamical systemon X ⊆
Dv, i.e., ẋ = fv(x).

Hybrid Period Orbits and the Poincar é Map. In order to
establish the stability of hybrid periodic orbits, the standard
technique of studying the corresponding Poincaré map [34]
is used. In particular, takingSv for an arbitrary domainv
to be the Poincaré section, one obtains the Poincaré map,
P : Sv → Sv, which maps from a point on the guard to a
point on the guard. Letx∗ be a fixed point ofP . Then, a
hybrid periodic orbitO with x∗ ∈ O is locally exponentially
stable if and only ifP is locally exponentially stable (as a
discrete-time dynamical system,zi+1 = P (zi)). Although it
is not possible to explicitly compute the Poincaré map, one
can compute a numerical approximation of this map through
simulation and thereby test its stability numerically. This
gives a concrete method for practically testing the stability
of hybrid periodic orbits.

B. Constructing Hybrid Systems

It will now be shown how to construct a hybrid system
using a Lagrangian and discrete events—the feet periodically



strike the ground. Begin with the assumption that the stance
foot is pinned to the ground and use this to describe the con-
tinuous dynamics. In order to derive the discrete dynamics,
one must introduce additional Cartesian coordinatespx, pz
at the stance foot. A more general discussion factoring in
ground wrenches and applicable to a wider range of bipeds
can be found in [33].

Domain and Guard. The domain specifies the allowable
configuration of the system. For a biped, the feet must be
above (or in contact with) the ground at all times. This
condition is specified by a unilateral constraint,h, which
is the height of the swing foot; this naturally leads to a
definition for the domain:

D =
{

(qT , q̇T )T ∈ TQ : h(q) ≥ 0
}

. (2)

The guard is just the boundary of the domain with the addi-
tional assumption that the unilateral constraint is decreasing,
i.e., the vector field is pointed outside of the domain, or

S =

{

(qT , q̇T )T ∈ TQ : h(q) = 0 and
∂h(q)

∂q
q̇ < 0

}

.

(3)

Continuous Dynamics. The Lagrangian of a robot,L :
TQ → R, can be stated in terms of its kinetic energy,
K : TQ → R, and its potential energy,V : Q → R, as
L(q, q̇) = K(q, q̇) − V (q). The Euler-Lagrange equation
gives the dynamic model, which, for robotic systems (see
[35]), is stated as:

D(q) q̈ +H(q, q̇) = B(q)u (4)

with inertia mapD(q) and torque distribution mapB(q), and

H(q, q̇) = C(q, q̇) q̇ +G(q)

containing terms resulting from the Coriolis effect and
gravity; C(q, q̇) can be found using standard methods [35].
Manipulation of (4) leads to the control system(f, g):

f(q, q̇)=

[

q̇

−D−1(q)H(q, q̇)

]

, g(q)=

[

0

D−1(q)B(q)

]

. (5)

Discrete Dynamics.In order to define the reset map, it is
necessary to first augment the configuration spaceQ. Attach
a frameRe to the stance foot; letw represent the Cartesian
position ofRe in thexz-plane. Thegeneralized coordinates
are then written

qe = (px, pz, q
T )T ∈ Qe = R

2 ×Q.

Without loss of generality, assume that the values of the
extended coordinates are zero throughout the gait. Moreover,
the configuration variable does not change through impact
so these values will be zero right after impact. Therefore,
introduce the embeddingι : Q → Qe defined as(0, 0, q) 7→
qe; this allows the generalized coordinates to be written in
terms of the shape coordinates.

The impact model used is [36]; plastic rigid-body impacts
with impulsive forces are used to simulate impact. Impulsive
forces can be applied to the swing foot when it contacts

the ground; this is representable as the holonomic constraint
J(q) q̇ = (vx, vz)

T where vx and vz are the x and z

velocities, respectively, of the frameRe. The impact map
gives the post-impact velocity (see [37]):

q̇+ = P (qe, q̇
−
e ) = (6)

(I −D−1(qe)J
T (qe)(J(qe)D

−1(qe)J(qe))
−1J(qe)) q̇

−
e

with I the identity matrix.
In the bipedal walking literature, it is common to use

a stance/swing notation for the legs [32]; it can be more
intuitive to think of control design for the legs in the context
of stance/swing than left/right—the differences in behavior
provide a natural way of transforming the design problem.
To achieve this, the legs must be “swapped” at impact. A co-
ordinate transformationR (i.e., astate relabeling procedure)
switches the roles of the left and right legs:

∆(q, q̇) =

[

R 0

0 R

] [

π ◦ ι(q)
π∗ ◦ P (ι(q), ι∗(q̇))

]

, (7)

whereι∗ : TQ → TQe is the pushforward ofι : Q → Qe

andπ : Qe → Q is the canonical projection associated toι

with pushforwardπ∗ : TQe → TQ. The reset map (7) takes
a point on the guard and maps it to the domain (2).

C. Bipedal Models

In this paper, two models are considered: mainly, the
paper focuses on a human with a prosthesis, however, also
considered for the sake of comparison is a model of human
without a prosthesis. Both models have the same mass and
length distribution, so the construction will be similar; the
few differences will be pointed out during construction. The
physical model has knees and assumes point-masses for
simplicity. There are five point masses: one for the hip, one
for each thigh, and one for each calf; the values of the masses
are calculated using a weight distribution [12] for each test
subject in Fig. 2(b). The masses and lengths are depicted in
Fig. 2(a) with the values given in Fig. 2(b). The model also
has point feet but some clarification will be given shortly.
Recall that the goal of this paper is to simulate prosthetic
walking. Specifically, a transfemoral prosthesis with onlyone
actuator at the knee is under consideration.

Fig. 2: Physical configuration of the human/prosthesis model.

(a) Bipedal model.

Lc

Lt

Lc

2

Lt

2

mc

mt

mh

(b) Subject and model parameters.

Var. S1 S2 S3 S4
Sex M F F M
Age 22 23 19 30

Ht. (cm) 169.5 165.5 163.5 170.0
Wt. (kg) 90.7 47.6 53.6 69.1
mh (kg) 61.5 32.3 32.3 36.3
mt (kg) 9.1 4.8 4.8 5.4
mc (kg) 5.5 2.9 2.9 3.3
Lt (cm) 40.1 39.2 39.2 40.3
Lc (cm) 43.6 37.6 37.6 38.1



The healthy human model has symmetric walking and thus
assumes a one-domain hybrid system, i.e., the one vertex in
the graph is connected to itself whereas the asymmetry of the
prosthetic model motivates the use of a two-domain hybrid
system. Denote the domains or phases for the prosthetic
model byHU andPR, representing the two distinct phases
when the model is standing on the human leg or standing
on the prosthetic leg, respectively. To simplify the model,
point feet are assumed, yet full control authority at the
stance foot is granted for a model when it is standing on the
human leg. Thus, the human model has full control authority
throughout the gait and the prosthetic model has full control
authority only in domainHU , meaning underactuation of the
prosthetic ankle; see Fig. 1.

Hybrid Model Construction. Let the human and prosthetic
models be represented by labelsH andP , respectively. The
construction of the hybrid control systems

H C H = (ΓH ,DH , UH , SH ,∆H ,FGH ),

H C P = (ΓP ,DP , UP , SP ,∆P ,FGP )

will now be given. The human model is a simple hybrid
system with one domain; the prosthesis model has two
domains—the graphΓP is shown in Fig. 1 and given
explicitly in Example 1. The shape coordinates comprise the
configuration space for both models:

q = (qT0 , q
T
stk , q

T
hip , q

T
swk )

T ∈ Q.

For the human model, full control authority is granted so
UH = R

4, and, as mentioned earlier, control authority onq0
is granted only in domainHU for the prosthesis; thus, the
admissible control isUP = {UHU , UPR} with UHU ⊆ R

4

and UPR ⊆ R
3, as depicted in Fig. 1. For both models,

the guard and domain can be determined from the unilateral
constrainth, which represents the height of the swing foot
above the ground. Then, the domains for both the human
model and the prosthesis model (for domainsHU andPR)
are DH and DP = {DP

HU ,DP
PR} and the guards areSH

and SP = {SP
HU , SP

PR}, respectively; the elementsDH =
DP

HU = DP
PR andSH = SP

HU = SP
PR are equivalent and are

given by (2) and (3), respectively.
The Lagrangian is determined using standard methods

[35]; then, the Euler-Lagrange equation determines the dy-
namic model on each domain as in (4). For the two do-
mains of the model in this paper, control systemsFGH =
(fH , gH ) andFGP ,HU = (fP ,HU , gP ,HU ) andFGP ,PR =
(fP ,PR, gP ,PR) for the setFGP = {FGP ,HU ,FGP ,PR}
are given by (5). Finally, the elements of the reset maps
∆H and∆P = {∆P

HU ,∆P
PR} are given by (7) and, under

the assumptions that the biped is physically symmetric and
that the acuators do not produce impulsive torques, are
equivalent, i.e.,∆H = ∆P

HU = ∆P
PR.

III. HUMAN WALKING CONTROLLERS

The controller design process hinges on the goal of
designing humanlike walking using experimentally-collected
human walking data [28]. The experiment will be described

and the resulting data will be examined to identity funda-
mental human walking behaviors; these behaviors will be
represented as mathematical functions on the kinematics of
the human. Feedback linearization [29, ch. 9] will be used to
design controllers for human and human/prosthesis models
which will impose these human behaviors.

Human Walking Experiment. An experiment was per-
formed using the Phase Space System [10] which provided
position data of sensors on human test subjects at a rate of
480 Hz and an accuracy of one millimeter. Nine subjects
were measured, eight trials each, walking approximately
three full steps per trial. The data for each subject were
averaged to obtain smooth trajectories for all nine subjects.
In this paper, four of these subjects are considered.

Characterizing Human Behavior. Analysis of the data indi-
cates that four behaviors represent the human gait inasmuch
as the model of interest is relatively simple, having only four
links. The behaviors are the angles of both knees, the slope of
the swing leg, and the forward position of the hip. The human
functions which model these behaviors are given in Table I;
an optimization problem can be solved to characterize the
walking in terms of the functions for a given test subject.
These human functions are central to this paper and the
associated body of work [27], [30], [31], [38].

Function Fitting. Consider applying the human functions in
Table I to the human data to model the behaviors described.
Formally, one seeks the parameters{ai} which minimize
the error between the fit and the data; this is expressed
mathematically as the optimization problem

min
{ai}

K
∑

k=1

(yd(τ [k], {ai})− x[k])2, (8)

TABLE I: Table containing parameter values of our
constraint functions for the four test subjects. Here,
phip,mnsl, θstk, and θnsk are hip x position, non-stance
slope, stance knee angle and non-stance knee angle respec-
tively. The first three functions for each subject use the first
equation while the last function uses the second equation.

y{1,2,3} =
a1 cos(a2t+a3)+a4 sin(a2t+a3)

ea5t + a6t+ a7

y4 = a1 exp
(

−(t−a2)
2

2(a3)2

)

+ a4

S. Fun. a1 a2 a3 a4 a5 a6 a7 Cor.
1 phip 0 0 0 0 0 1.177 0.705 0.999

mswl 0 7.461 -2.453 -0.405 0 0 -0.119 0.999
θstk 0.083 13.326 0 2.503 4.155 0 -0.257 0.993
θswk -1.015 0.243 0.119 -0.149 0.993

2 phip 0 0 0 0 0 1.192 0.713 0.998
mswl 0 6.879 -2.388 -0.485 0 0 -0.068 0.999
θstk 0.194 16.153 0 0.384 4.99 0 -0.380 0.956
θswk -1.041 0.239 0.137 -0.184 0.989

3 phip 0 0 0 0 0 1.532 0.739 0.999
mswl 0 8.470 -2.109 -0.424 0 0 -0.112 0.999
θstk 0.045 16.738 0 0.894 2.255 0 -0.378 0.986
θswk -0.965 0.179 0.119 -0.274 0.993

4 phip 0 0 0 0 0 0.946 0.538 0.999
mswl 0 7.0473 -2.476 -0.404 0 0 -0.157 0.999
θstk 0.080 13.379 0 1.081 1.662 0 -0.219 0.981
θswk -1.062 0.259 0.131 -0.116 0.995
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Fig. 3: Plots of the fitted functions and the human data.

where τ [k] and x[k] represent the time and human data,
respectively, withk ∈ [1, . . . ,K] ⊂ Z an index for theK
data points, andyd(·) the fitting function with parameters
{ai}. To be clear,x[k] is the value of the kinematics function
on the human at data pointk. This problem is solved for the
four test subjects and the resulting fit parameters along with
the coefficients of correlation are given in Table I.

Tracking Human Behavior. Now that the desired behaviors
have been classified, control is necessary to mimic these
behaviors. In a formal sense, a control law attempting to
impose these behaviors should seek to driveya(q) → yd(t)

as t → 0 where ya(q) and yd(t) are the actual and
desired values of the human functions, respectively; this is
achieved using feedback linearization. Note that the desired
functionsyd(t) are time-dependent; in general, time-invariant
controllers tend to show more robustness to perturbations.

State-Based Parameterization. Motivated by the desire to
designautonomousor time-invariant controllers, a param-
eterization for time is introduced, as is common in the
literature [39], [40]. Denote the parameterization byς :
Q → R

+
0 whereR+

0 represents time; ideally,ς(t) should be
approximately linear, i.e.,ς(t) ≈ αt for someα. Fig. 3(a)
indicates thatpxhip ≈ v̄hipt with v̄xhip the averagex velocity
of the hip is approximately linear in time, motivating the
following parameterization:

ς(t) :=
pxhip(q)− pxhip(q

−)

v̄xhip
. (9)

A decision is made to track the velocityvxhip , driving it to
a constant, instead of the associated position. The value of
this velocity constant should be the parameterv̄xhip from (9).

Feedback Linearization.Let y = ya−yd with ya the actual
values from the kinematics of the model andyd the desired
values from the fitted functions. Without loss of generality,
assume an output having mixed relative degree. Group the
output functions as

y(q, q̇) = (yT1 (q, q̇), y
T
2 (q))

T , (10)

wherey1 and y2 represent the relative degree one and two
outputs respectively. The control law which drivesy(q, q̇) →
0 is given by

uFL(q, q̇) = −A−1(q, q̇)

([

0
LfLfy2(q)

]

(11)

+

[

Lfy1(q, q̇)
2ε Lfy2(q, q̇)

]

+

[

ε y1(q, q̇)
ε2 y2(q)

])

,

with control gainε, Lfy = ∂y
∂x

f(x) representing Lie deriva-
tives, and decoupling matrixA(q) given by

A(q, q̇) =

[

Lgy1(q, q̇)
LgLfy2(q, q̇)

]

for a given control system(f, g).

Human Control. Using the method of feedback linearization
as just described, it is possible to explicitly construct a hybrid
system modeling healthy human walking. Denote byyH

(with the form of (10)) the output functions to be zeroed
as described previously. Then, the control law which drives
yH → 0 ast → 0 is writtenuH (q, q̇) and given in (11). This
control is applied to the control system(fH , gH ) to obtain
the closed-loop vector field

fFL
H (q, q̇) = fH (q, q̇) + gH (q)uH (q, q̇).

Using this new vector field, a hybrid system is constructed
modeling healthy human walking:

H
FL
H = (DH , SH ,∆H , FFL

H ), (12)



Fig. 4: Simulated gait for healthy human walking, S1. Only
one step is shown due to symmetry.

where we have dropped the discrete graphΓ as it is unnec-
essary for simple hybrid systems (i.e., single-domain hybrid
systems).

Simulations. Simulations of the hybrid system (12) were
performed for each of the test subjects, S1–S4. Fixed points
of the Poincaré map were found; see Fig. 5(a). For a given
system, a fixed point indicates an orbit. To show stability
of the orbit, one must consider the eigenvalues associated
with a Jacobian matrix linearized about a fixed point on the
orbit. Eigenvalues for the simulations are shown in Fig. 5(b).
These eigenvalues are all less than unity, thus the orbit is
locally exponentially stable. In terms of walking, this means
that the system exhibits stable walking. The gait for S1 is
shown in Fig. 4. The humanlike nature of the walking can
be seen in video [41]. The simulations just described show a
natural way to model the human control aspect. This will be
leveraged when creating the simulation for the human with
prosthesis.

IV. DESIGNING HUMAN/PROSTHESIS
CONTROLLERS

Having examined healthy human walking, the main in-
terest of this paper can now be explored: simulation of a
human with a transfemoral prosthesis. A human function has
already been defined representing the behavior of a knee. It
will be convenient to use PD control to try to mimic this
behavior on the prosthesis. After applying PD control for the
prosthesis, the human controllers designed around feedback
linearization will be applied; the idea behind this is to letthe
human controller handle the human actuators on the model.

Prosthesis Control.To achieve the goal of human tracking
on the prosthetic knee on both domains,HU andPR, a PD
controller is used. Let

yHU
p (q) = θaswk (q)− θdswk (ς(q)),

yPR
p (q) = θastk (q) − θdstk (ς(q))

represent the error in tracking on domainsHU and PR,
respectively, whereθa are actual values of the knee angles
andθd are the desired values as given in Table I. Then, using
the parameterization (9), control laws for the prosthesis are

uHU
p (q) = kHU

p yHU
p (q) + kHU

d ẏHU
p (q),

uPR
p (q) = kPR

p yPR
p (q) + kPR

d ẏPR
p (q).

The control laws can be applied to the control systems
FGP ,HU andFGP ,PR viz.

fPD
P ,HU (q, q̇) = fP ,HU (q, q̇) + g

p
P ,HU (q)uHU

p ,

fPD
P ,PR(q, q̇) = fP ,PR(q, q̇) + g

p
P ,PR(q)u

HU
p ,

Var. P1 P2 P3 P4 H1 H2 H3 H4
q0 -0.388 -0.422 -0.305 -0.370 -0.366 -0.410 -0.343 -0.326
qstk 0.011 -0.064 -0.174 -0.015 -0.006 -0.066 -0.153 0.014
qhip -2.521 -2.412 -2.490 -2.477 -2.540 -2.432 -2.362 -2.611
qswk -0.249 -0.366 -0.387 -0.180 -0.247 -0.366 -0.264 -0.182
q̇0 2.597 14.707 21.433 4.286 3.961 10.904 17.388 1.093
q̇stk -1.854 -20.070 -29.016 -4.624 -3.990 -14.556 -23.598 0.001
q̇hip -0.806 4.857 8.603 -0.089 0.329 3.238 5.925 -0.519
q̇swk -1.344 -2.145 -0.852 -2.631 -0.654 -1.748 -3.221 -0.164

(a) Fixed points for simulated gaits.
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(b) Eigenvalues for healthy and human walking.

Fig. 5: Fixed points and eigenvalues for simulations. S1-4
represent the subjects.

where

g
p
P ,HU (q) = gP ,HU (q)

(

∂qswk

∂q

)T

,

g
p
P ,PR(q) = gP ,PR(q)

(

∂qstk

∂q

)T

.

Using these control fields, a new hybrid control system
with fields FGPD

P = {FGPD
P ,HU ,FGPD

P ,PR} for FGPD
P ,HU =

(fPD
P ,HU , gP ,HU ) andFGPD

P ,PR = (fPD
P ,PR, gP ,PR) is created:

H C
PD
P = (ΓP ,DP , UP , SP ,∆P , FGPD

P ), (13)

Human Control. To implement the controller on each
domain, first consider which functions are to be tracked: on
both domains, the human knee angle and swing leg slope
are tracked. Additionally, on domainHU , the hip velocity is
tracked. Under these assumptions, the control fields can be
written

ghP ,HU (q) = gP ,HU (q)

(

∂(q0, qstk , qhip)

∂q

)T

,

ghP ,PR(q) = gP ,PR(q)

(

∂(qhip , qswk )

∂q

)T

.

Using these control fields with the control laws (11), the
closed-loop vector fieldsFP = {FPD,FL

P ,HU ,FPD,FL
P ,PR } for

FPD,FL
P ,HU = f

PD,FL
P ,HU andFPD,FL

P ,PR = f
PD,FL
P ,PR can be created:

f
PD,FL
P ,HU (q, q̇) = fPD

P ,HU (q, q̇) + ghP ,HU (q)uh
HU ,

f
PD,FL
P ,PR (q, q̇) = fPD

P ,PR(q, q̇) + ghP ,PR(q)u
h
PR,

The end result is a hybrid system modeling a human with
prosthesis:

H
PD,FL
P = (ΓP ,DP , SP ,∆P , F

PD,FL
P ). (14)

Simulations. Simulations of the hybrid system (14) were
performed for each of the test subjects, S1–S4. Fixed points



of the Poincaré map were found (Fig. 5(a)) along with
eigenvalues (Fig. 5(b)). Like before, these eigenvalues are all
less than unity, thus the orbit is locally exponentially stable.
In terms of walking, this means that the system exhibits
stable walking. The walking can be seen in video [41]. Tiles
and phase portraits for each subject’s gait are shown in Fig.6.

Concluding Remarks. The main point behind this paper
was to design a simulation capable of testing controlled
prostheses. To construct this simulation, a human-inspired
model was used with human-inspired controllers making
use of human functions. It was found that this simulation
could not only accurately reproduce human walking but
also exhibited some degree of robustness. The robustness is
substantiated by the simplicity of the prosthesis controller
design and the stability of the resulting human/prosthesis
models. The hope is that, in the future, prosthesis designs
can be rapidly tested by changing the prosthesis design or
controllers and checking stability in simulation.
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(a) S1—Phase portrait.
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(b) S2—Phase portrait.

(c) S1—Human stance leg, prosthesis swing leg. (d) S2—Human stance leg, prosthesis swing leg.

(e) S1—Prosthesis stance leg, human swing leg. (f) S2—Prosthesis stance leg, human swing leg.
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(g) S3—Phase portrait.
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(h) S4—Phase portrait.

(i) S3—Human stance leg, prosthesis swing leg. (j) S4—Human stance leg, prosthesis swing leg.

(k) S3—Prosthesis stance leg, human swing leg. (l) S4—Prosthesis stance leg, human swing leg.

Fig. 6: Outputs and phase portraits for simulations. The topwalking tiles in each set represent domainHU and the bottom
walking tiles represent domainPR. The red leg is the prosthesis.


