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Abstract— This paper presents a method for achieving stable
“human-like” running in simulation by using human-inspired
control. Data from human running experiments are processed,
analyzed and split into the two domains: stance phase and
flight phase. By examining this data, we present a set of
outputs, i.e., functions of the kinematics, which appear to
represent human running; moreover, we show that this output
data can be described by the time-solution to a linear spring-
mass-damper—termed the canonical locomotion function. This
observation motivates the construction of a human-inspired
optimization that determines the parameters of the canonical
locomotion function that provide the best fit of the human data
while simultaneously enforcing partial hybrid zero dynamics,
i.e., that the human outputs track the canonical locomotion
functions even through impacts. The main result is a method
for numerically solving this optimization problem that prov-
ably results in stable robotic running. Simulation results are
presented that demonstrate the “human-like” robotic running
obtained through this procedure.

I. INTRODUCTION

Running is defined as a forward motion with switching
between single support and flight phases [8]. Considering
high speed locomotion, running displays more mobility and
energy efficiency compared to walking. In the field of
humanoid bipedal locomotion study, the human body has
always been the most widely used reference model. With 57
muscles utilized in human locomotion [22], this system is
far too complex to replicate with any hardware and compu-
tational capabilities. However, despite the obvious challenge
it presents, a substantial amount of work has been devoted
to achieving human-like bipedal locomotion. In particular,
following the work on hopping robots [21], numerous studies
have been devoted on the analysis of bipedal running. Passive
running was studied in [17]; running with ZMP can be found
in [28]; and optimal trajectory tracking was analyzed in
[16]. There are also numerous physical robots which have
experimentally achieved running. The hopping robots in [19]
can perform various locomotion behaviors including running.
Honda ASIMO can run with ZMP control technology [1].
A relatively recent hopping robot ATRIAS 2, which is a
physical realization of spring mass model (SLIP model), can
hop with a flight phase under the support of a boom [14].
The underactuated bipedal robot MABEL [15] can achieve
speed up to 6.8mph of bipedal running.

The main idea underlying this paper (extending recent
work by the authors [4], [20] that has proved successful
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experimentally [3], [27]) is that by looking to human data,
certain outputs can be utilized to characterize natural human
running. By tracking these outputs, as represented by specific
running functions, a bipedal robot can achieve remarkably
“human-like” running. With this motivation in mind, we
first discuss the analysis of the human running data by
showing that certain outputs of human running data can
be characterized by the time-solution of a linear spring-
mass-damper system under constant force; this canonical
locomotion function, which has been proved to work well
for other motion primitives in [20], provides accurate fits
to the outputs for both the stance phase and flight phase of
human running data with high correlations.

To construct controllers based upon these observations, a
multi-domain hybrid system model is constructed to model
a bipedal robot and, specifically, the two phases presented
in running. Then, we introduce a human-inspired controller
with feedback linearization that drives the outputs of the
robot, on both phases, to the outputs of the human as
represented by the canonical locomotion function. The notion
of the partial zero dynamics surface is then introduced
to achieve a low dimension representative of the hybrid
nonlinear system, i.e., the system is explicitly predictable
without using integration if the system is on the surface
[25]. The main results of this paper are the conditions that
ensure partial hybrid zero dynamics, i.e., that the partial
zero dynamics surface is invariant through impact, which
yields a more robust system. This allows us to present
a human-inspired optimization problem that enforces these
conditions to achieve a stable running gait [4], [20] while
simultaneously finding the good fits of the human data. These
formal results are verified through simulation by numerically
solving this optimization problem, with the end result being
stable “human-like” bipedal robotic running.

The structure of this paper is as following. In Sect. II, the
processing of human running data will be discussed. The
domain breakdown will be stated and the outputs of human
running are selected. Then, we model the running bipedal
system as a multi-domain hybrid system and derive the dy-
namics for the system in Sect. III. Development of controllers
are discussed explicitly in Sect. IV for both phases of run-
ning. We term this controller the human-inspired controller
due to the fact that it is derived from human data directly.
To obtain the parameters of the controller, human-inspired
optimization with constraints that guarantee partial hybrid
zero dynamics is discussed in detail in Sect. V. Finally, the
simulation result and conclusion remarks will be stated in
Sect. VI.



II. HUMAN RUNNING DATA

This section will be devoted to discussing human running
data in detail. It will start with a description of the experi-
mental human data, and then characterize running in terms
of the canonical locomotion function [4].
Running Data. The human running data was obtained
through a high speed motion capture system, the set up
details of which can be found in [3]. A particular domain
break method in [12] has been applied to specify a single
step which contains a stance phase and a flight phase. Fig.
1 shows the domain break down of one step for one of the
subjects. In order to reduce the noise accrued by the sensors
and to reduce the complexity of the signals, we average the
outputs of all six subjects to obtain a new set of data called
the mean human data (details can be found in [12] and the
measurements for subjects and the mean model are taken
from [20]).

21.9388 % 42.3469 % 5.6122 % 30.102 %

Fig. 1: Domain breakdown of one step evolving from left to
right of one subject along with the time spent in each domain
is shown here. The red circles indicate ground contact.

Human Outputs. We seek human running outputs which
are functions of the joint angles, while satisfying specified
criteria, e.g., they should be mutually exclusive [12]. A total
of four outputs are required for a fully actuated 4-DOF robot
model. Note that in the flight phase, we have 6-DOF since
the stance foot is not fixed to the ground. Analysis of the
human data yields the following four outputs which seem to
describe the human locomotion system (see Fig.3(c)):

1. the linearized forward position of the hip,

δphip = −θsfLc + (−θsf − θsk)Lt,

where Lc and Lt are the lengths of the calf and thigh,
respectively. θsf is the stance foot angle;

2. the non-stance hip angle, θhip, which is the angle
measured from non-stance thigh to stance thigh;

3. the stance knee angle, θsk;
4. the non-stance knee angle, θnsk.

Importantly, these outputs have been successfully used to
achieve physical robotic walking [3], [27].
Canonical Locomotion Function. It was shown in [4],
[12] that certain human outputs can be characterized by the
response of a linear spring-mass-damper system for walking
and stair climbing, which has been named as canonical
walking function. Analysis of the data shows that the specific
outputs of running data can also be represented with the same
function which we termed canonical locomotion function:

yH(t) = e−α1t(α2 cos(α3t) + α4 sin(α3t)) + α5, (1)
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(c) Stance Knee
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Fig. 2: Fitted canonical human functions (solid) and the
corresponding mean human data of running (dashed).

where the parameters α1-α5 are parameters of the linear
spring-mass-damper equations. For example, the desired non-
stance hip angle can be described by the canonical function
as θdhip(t, α

i
hip) = yH(t, αihip), where i ∈ {s, f} with s

standing for stance phase and f standing for flight phase;
and αs

hip = (αs
hip,1, α

s
hip,2, α

s
hip,3, α

s
hip,4, α

s
hip,5). We then

group the parameters of other outputs in each domain to yield
αi = (αihip, α

i
sk, α

i
nsk). Note that, the forward hip velocity

is approximately constant during the whole step (see Fig.
2(a)), thus, motivating us to fit it with a linear function of
time δpdhip(t, vhip) = vhipt . Combining the parameters for
each domain with the velocity of hip, vhip, results in a single
vector of parameters: α = (vhip, α

s, αf ) ∈ R31.
Therefore, to get the α which provides the canonical

locomotion function that best fits the mean human data, we
propose an optimization problem:

α∗ = argmin
α∈R31

CostHD(α), (2)

s.t yd,sj (tH,sj,end, α
s
j) = yd,fj (tH,fj,start, α

f
j).

where CostHD(α) is the sum of least square errors between
canonical functions and human data computed at discrete
times with specified weighting [12]. Note that, j ∈ Outputs;
tsstart and tfend represent the time at the end of stance
phase and the start of flight phase, respectively. Therefore,
the fitting constraints simply ensure that the desired fitting
functions should be continuous between the stance phase and
flight phase w.r.t corresponding outputs.

The result of fitting parameters by solving the optimization
problem can be seen in Table. I and Fig. 2, from which we
can see that the canonical locomotion function can be fitted
to the outputs of both phases very well (all correlations are
higher than 0.99). Note that, the reason we term the function
“canonical locomotion function” is that this function can
fit all the outputs of different motion primitives (walking,
stair climbing [20] and running) for all the subjects with



high correlation, i.e., it seems to characterize the human
locomotion behavior universally. Therefore, this result allows
us to make the conclusion in [4], [12] even stronger; namely,
that human appears to act like linear spring-mass-damper
systems for the outputs considered (see [7], [9], [10], [13]).

III. MODELING OF THE RUNNING BIPED ROBOT

Bipedal running contains both discrete and continuous
behavior, and is thus naturally modeled as hybrid systems
(see [3], [24]). In this section, the multi-domain hybrid
system for modeling a bipedal running robot is introduced
with the alternative phases “stance” when the robot is in
contact with the ground and “flight” when the robot is in the
air. We refer the reader to [5] for the specifics of modeling
multi-domain hybrid systems on graphs. We also note that
we implicitly assume the standard assumptions on the robot
such as no slipping (see [25] for more details).
Hybrid System Model. The hybrid control system modeling
a running robot (with point feet) is given by

H C = (Γ,D,U , S,∆, FG). (3)

where
• Γ = (V,E) is a directed cycle, with V = {s, f},

where s and f stand for stance phase and flight phase,
respectively, and E = {e1 = {s→ f}, e2 = {f → s}},

• D = {Ds, Df} is a set of domains of admissibility,
• U = {Us,Uf} is the set of admissible controls,
• S = {Ss→f ,Sf→s} is a set of guards,
• ∆ = {∆s→f ,∆f→s} is a set of reset maps,
• FG = {(fs, gs), (ff , gf )} with (fi, gi) a control system

on Di, i.e., ẋ = fi(x) + gi(x)u for x ∈ Di and u ∈ Ui.
The specific details on how the individual elements of this
model are constructed will be presented in this section.
Continuous Dynamics: The configurations of both phases
are depicted in Fig. 3. In particular, the generalized co-
ordinates q = (qb, px, pz) comprises the vector of body
coordinates qb = (θ1, θ2, θ3, θ4)T and px, pz , which are the
forward and vertical Cartesian coordinates of the stance foot,
denoting the biped’s absolute position. Therefore, with the
Euler-Lagrange method, the equations of motion (EOM) of
both the phases can be stated.
Flight phase: The dynamics of flight phase can be stated as:

D(q)q̈ +H(q, q̇) = Bf (q)u
f (4)

TABLE I: Fitted parameters for mean human data
yd1 = vhipt, yd2 = yH(t) given in ([4])

* * vhip α1 α2 α3 α4 α5 Corr
Mean δpstance

hip 2.327 * * * * * 0.9999

* δpflighthip 2.440 * * * * * 0.9998
* θstance

hip * 1.319 0.627 15.29 0.023 -0.110 1.0000

* θflighthip * -6.459 0.285 0.002 0.191 -0.827 0.9998
* θstance

sk * 7.502 -0.374 -0.000 0.061 0.916 0.9996
* θflightsk * 11.29 -0.593 5.337 -0.590 1.538 1.0000
* θstance

nsk * -1.953 -0.049 16.31 0.354 0.939 1.0000
* θflightnsk * 13.35 0.134 21.65 -0.313 0.507 0.9999
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Fig. 3: (a) is the modeling configuration; (b) is the mass and
length distribution; (c) shows the virtual constraints.

where we have torque distribution map Bf (q) ∈ R6×3 and
uf ∈ Uf = R3, since the robot is underactuated for this phase
(torque can only be applied to the stance and non-stance knee
and the hip). Note that, we use the standard definition (see
[25]) for the specified terms in this equation to simplify the
exposition. Manipulation of (4) leads to the affine control
system (ff , gf ) for the flight phase.
Stance phase: We obtain the dynamics for the stance phase
by introducing a Lagrange multiplier to the EOM:

D(q)q̈ +H(q, q̇) +AT (q)λ = Bs(q)u
s (5)

with torque distribution map Bs(qe) ∈ R6×4, us ∈ Us =
R4 considering the fully actuation in this domain. AT (q) ∈
R6×2 is the set of two velocity constraints corresponding
to the holonomic constraints p̈x = 0 and p̈z = 0, and λ
is the corresponding Lagrange multiplier (the equation can
be found [18]). Manipulation of (5) yields the affine control
system (fs, gs) of the stance phase.
Transition Dynamics: The transition dynamics determine
the domains and guards, D and S, for each domain. The
flight phase domain consists of the states where the height
of the non-stance foot hns(q) ≥ 0 and stance foot hs(q) ≥ 0.

Df = {(q, q̇) ∈ TQ : hi(q) ≥ 0, i ∈ {s, ns}} (6)

And the guard is given by the states where the foot strikes
the ground (with a downward velocity), and therefore:

Sf→s = {(q, q̇) ∈ TQ : hns(q) = 0, dhns(q)q̇ < 0} (7)

Impacts happen when the non-stance foot hits the ground,
i.e., the guard. To compute the discrete dynamics from the
impact model from [11] (also see [25]) which assumes that
an impulsive force is applied at the non-stance foot upon
impact with the ground that results in a perfectly plastic
impact in the system. This allows us to state the reset map:

∆f→s(q, q̇) =

[
∆qq

∆q̇(q)q̇

]
(8)

where ∆q “switches” the stance and non-stance leg after the
impact, and ∆q̇(q) gives of the post-impact velocity.

For the stance phase, the domain consists of states (and
control values) where the foot is on the ground (which is
enforced in the dynamics through holonomic constraints),



and the lagrange multiplier associated with the stance foot
is negative indicating the foot is pushing into the ground:

Ds = {(q, q̇, us) ∈ TQ× Us : λ(q, q̇, us) ≤ 0} (9)

The guard consists of the states where the Lagrange multi-
plier changes sign:

Ss→f = {(q, q̇, us) ∈ TQ× Us : λ(q, q̇, us) = 0} (10)

Since no impacts occur as the robot enters the flight phase,
the reset map of stance to flight is given as ∆s→f = I .

IV. CONTROLLER DESIGN

Inspired by the objective of achieving human-like running,
we need to find a controller u that drives the outputs of
the robot to match the corresponding outputs of human,
i.e., which guarantees that ya(q) → yd(t) as t → ∞,
where ya is the actual outputs of the robot and yd are the
outputs of human as represented by the canonical locomotion
function. Considering the nonlinearity of the robot model, the
Input/Output Linearization method in [23] is utilized for the
controller design.
Parameterization of Time Autonomous control has several
advantages for the control of bipedal robots, the details
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Fig. 4: Human pCOM data.

of which can be found in
[6]. With this considera-
tion, we introduce a state-
based parameterization of
time in our system; as is
common practice in [25],
[26]. Analysis of human
data reveals that the for-
ward position of center of
mass (COM) evolves in an

approximately-linear manner with respect to time in both
phases, i.e., pCOM(t, vCOM) ≈ vCOMt, where pCOM denotes
the forward position of the COM and vCOM denotes the
forward velocity of the COM. The forward position of
COM of human data along with the fitting can be seen in
Fig. 4. Taking advantage of this observation, the following
parameterization of time is formed:

τi(q) =
pCOM(q)− pCOM(q+

i )

vCOM
, i ∈ {s, f} (11)

where pCOM(q+
i ) is the forward position of the robot’s COM

at the beginning of the current step in either the stance
or flight phase. Note that we parameterize time in the two
domains separately since we control each phase separately.
Control Law Construction. Based on the human canonical
locomotion function discussed in Sec. II, we define the full
order human-inspired outputs to be:

yi(q)=

[
y1(q, q̇)
yi2(q)

]
=

[
δphip(q)q̇ − vhip

ya2 (q)− yd2(τi(q), α
i)

]
,i ∈ {s, f} (12)

where y1(q, q̇) is the relative degree one output, which is the
difference between the actual forward hip velocity δphip(q)q̇
and the desired hip velocity vhip. And yi2(q) are the relative

degree two human-inspired outputs which are the difference
between the actual relative degree two outputs ya2 (q) and
desired relative degree two outputs yd2(q), given as:

ya2 (q) =

 θhip
θsk
θnsk

 , yd2(t, αi) =

 θdhip(t, α
i
sk)

θdsk(t, αisk)
θdnsk(t, αinsk)

 (13)

With these constructions in mind, we calculate the controllers
for the stance and flight phase:
Stance Phase: For the fully actuated stance phase, through
Input/Output Linearization, we can define the following
control law for the affine control system (fs, gs) as:

us(αs,ε)(q, q̇) = −A−1
s (q, q̇)

([
0

LfsLfsy
s
2(q)

]
(14)

+

[
Lfsy1(q, q̇)

2εLfsy
s
2(q, q̇)

]
+

[
εy1(q, q̇)
ε2ys2(q)

])
,

with control gain ε, L the Lie derivative, and the nonsingular
decoupling matrix As(q, q̇) (details can be found in [4]).
Flight Phase: For the underactuated flight phase, we only
have the relative degree two outputs. Hence, the controller
for the affine control system (ff , gf ) is given as:

uf(αf ,ε)(q, q̇) = (15)

−A−1
f (q, q̇)

(
L2
ff
yf2(qf , q̇f ) + 2εLff y

f
2(q, q̇) + ε2yf2(q)

)
,

with Af (q, q̇) = LgfLff y
f
2(q, q̇) the decoupling matrix (in

the case of underactuated running). Again, the choice of
outputs implies that this matrix is nonsingular.
Hybrid System. From the feedback controllers introduced
for both phases, the end result is a hybrid system:

H(α,ε) = (Γ,D, S,∆, F ), (16)

where Γ, D, S and ∆ are as in (3) except now for Ds

and Ss→f , us = us(αs,ε)(q, q̇) making them subsets of TQ
(and not TQ × Us). This implies that, for the Lagrange
multiplier in (5), we can write λ(q, q̇). In addition, F =

{f (αs,ε)
s , f

(αf ,ε)
f } is the set of feedback vector fields where:

f (αs,ε)
s (q, q̇) = fs(q, q̇) + gs(q, q̇)u

s
(αs,ε)(q, q̇), (17)

f
(αf ,ε)
f (q, q̇) = ff (q, q̇) + gf (q, q̇)u

f
(αf ,ε)(q, q̇), (18)

Clearly, each individual vector field depends on ε, and the
parameters for their respective domains, αs and αf . The goal
of human inspired optimization is to design the parameters
α = (vhip, α

s, αf ) such that the hybrid system H(α,ε) has a
stable periodic orbit, i.e., a stable running gait, for sufficiently
large ε. Since this will be done utilizing the concepts of full
and partial zero dynamics, they must first be introduced.
Full and Partial Zero Dynamics. If we begin by considering
the fully actuated stance domain, the control law us drives
the human-inspired outputs yi(q, q̇)→ 0 exponentially with
the rate of ε. Therefore, for the continuous dynamics, the
controller renders the full zero dynamics surface:

FZαs=
{

(q, q̇) ∈ TQ : ys(q, q̇)=0, L
f
(αs,ε)
s

ys2(q, q̇)=0
}
, (19)



Fig. 5: Geometry of the closed-loop hybrid system of run-
ning, where the flight phase and the impact map ∆f→s are
composed to form a generalized impact map ∆s→s.

exponentially stable. However, the invariance of the surface
will be disturbed when the system enters the flight phase,
and will most possibly not return to the surface after the
flight phase (due to impacts in the system and the fact that
the flight phase has a different set of controller parameters).
Therefore, we want to allow for a “larger” surface as the
target for the end of the flight phase dynamics. This motivates
the partial hybrid zero dynamics surface (PHZD), consisting
of the relative degree 2 outputs only and given by:

PZαi={(q, q̇) ∈ TQ : yi2(q)= 0, L
f
(αi,ε)
i

yi2(q, q̇)= 0}. (20)

Note that, with different DOFs of stance and flight phases,
the PHZD surface for each phase will be different. The
readers can refer to [25] for more details.

V. HUMAN-INSPIRED OPTIMIZATION

In this section, we will discuss the process obtaining
a human-inspired controller from the human data via the
optimization where the cost function in (2) is used together
with Partial Hybrid Zero Dynamics constraints. In addi-
tion, the parameterization of time and inverse kinematics
are introduced such that we can solve the human-inspired
optimization.
PHZD Optimization for Running. The goal of this paper is
to find the controller parameters α∗ by solving the follow-
ing human-inspired constrained optimization problem that
achieves partial hybrid zero dynamics on the stance phase:

α∗ = argmin
α∈R31

CostHD(α) (21)

s.t ∆s→s(Ss→f ∩ FZαs) ⊂ PZαs . (PHZD)

where here

∆s→s(q, q̇) = ∆f→s(ϕ
f
Tf (q,q̇)(q, q̇)) (22)

with ϕf the solution to the vector field f
(αf ,ε)
f with initial

condition (q, q̇) ∈ Ss→f ∩ FZαs , and Tf (q, q̇) is the time to
impact function [25] that determines the first time when the
solution intersects the guard:

Tf (q, q̇) = min{t ∈ R≥0 : ϕf
t(q, q̇) ∈ Sf→s}. (23)

Naturally, the problem stated as in (21), specifically due to
the constraints (PHZD), is not in a form numerically solv-
able. Therefore, the objective of this section is to reframe this
optimization problem in a way that is, at least, numerically
solvable while provably resulting in robotic running.
Stance to Flight Constraints. In order to reframe (PHZD)
in a way that can be numerically approached, we use the full
hybrid zero dynamics surface to construct a point (q, q̇) ∈
FZαs ∩ Ss→f that will be used as the initial condition in
(22). To produce this point, we begin by assuming that the
height of the foot is equal to some additional parameter αnsf
(which is allowed to be optimized). Therefore, we expand
our set of parameters by defining βf := (αf , αnsf ). Using
these parameters, a point (ϑ(βf ), ϑ̇(βf )) dependent on these
parameters can be obtained by solving the equations:

ϑ(βf ) := θ s.t

[
yf2(θ)

hns(θ)− αnsf

]
=

[
03×1

0

]
,

ϑ̇(βf ) =

[
dδphip(ϑ(βf ))
dyf2(ϑ(βf ))

]−1 [
vhip

03×1

]
, (24)

With this point in hand, we begin to construct the con-
straints by noting that at the moment (ϑ(βf ), ϑ̇(βf )) ∈ Ss→f ,
it should follow:

λ(ϑ(βf ), ϑ̇(βf )) = 0 (C1)

which simply means that the Lagrangian Multiplier is cross-
ing zero when the stance foot leaves the ground. Moreover,
because of that ∆s→f = I and (C1) implies that τf (ϑ(βf )) =
0, the continuous constraints of the stance to flight transition
can be stated as:

yd2(τs(ϑ(βf )), αs) = yd2(0, αf ), (C2)

dys2(ϑ(βf ))ϑ̇(βf ) = dyf2(ϑ(βf ))ϑ̇(βf ), (C3)

which allows us to conclude:
Lemma 1: For αs and βf such that (C1)-(C3) are sat-

isfied, it follows that (ϑ(βf ), ϑ̇(βf )) ∈ FZαs ∩ Ss→f and
(ϑ(βf ), ϑ̇(βf )) ∈ PZαf

Flight to Stance Constraints. From Lemma 1, we know that
(ϑ(βf ), ϑ̇(βf )) ∈ FZαs∩Ss→f and so this point corresponds
to the final point in the stance phase. Since ∆s→f = I , it
follows that this will be the initial conditition to the flight
phase. Again, using ϕf to denote the solution to the vector
field f (αf ,ε)

f , we define the following point:

(ϕ(βf ), ϕ̇(βf )) = ϕf
Tf (ϑ(βf ),ϑ̇(βf ))

(ϑ(βf ), ϑ̇(βf )) (25)

with Tf in (23). Therefore, clearly (ϕ(βf ), ϕ̇(βf )) ∈ Sf→s

and, in fact, by the invariance of PZαf for the continuous
dynamics (ϕ(βf ), ϕ̇(βf )) ∈ PZαf ∩ Sf→s (from Lemma 1).
The goal is to give constraints that ensure that, post-impact,
(ϕ(βf ), ϕ̇(βf )) ∈ PZαs , which are clearly implied as:

ys2(∆qϕ(βf )) = 0 (C4)
dys2(∆qϕ(βf ))∆q̇ϕ̇(βf ) = 0 (C5)

dhns(ϕ(βf ))ϕ̇(βf ) < 0 (C6)



where (C6) implies the impact is “transverse” to the guard.
Main Result. We now have the necessary framework in
which to introduce the human-inspired optimization problem
for running:

β∗ = argmin
β∈R32

CostHD(β) (HIO)

s.t (C1)− (C6). (C)

where β = (vhip, αs, βf ), i.e., β consists of the parameters
α and the parameter αnsf ; thus, any function of α can be
viewed as a function of β in the obvious manner.

The goal is to show that if the constraints (C) are satisfied
then it implies stable robotic running. Before proving this,
some terminology is needed. For a point (q, q̇) ∈ Ss→f , we
can define the Poincaré map P : Ss→f → Ss→f which is a
partial function:

P (q, q̇) = ϕs
Ts(∆s→s(q,q̇))(∆s→s(q, q̇)) (26)

with ∆s→s as in (22), ϕs the flow of f (αs,ε)
s and Ts the time-

to-impact function for the stance domain defined analogously
to Tf as in (23). A running gait corresponds to a fixed point of
P , i.e., (q∗, q̇∗) ∈ Ss→f such that (q∗, q̇∗) = P (q∗, q̇∗) which
implies that the hybrid system H(β,ε) has a periodic orbit.
A running gait is exponentially stable if P is exponentially
stable as a discrete-time dynamical system, which in turn
implies that the corresponding periodic orbit is exponentially
stable [25]. With this notation in hand, we can state the main
result of this paper which is a straight forward combination
of Lemma 1, Theorem 1 in [4] and Theorem 2 in [3].

Theorem 1: Let β∗ be parameters solving (HIO), then
if (C) is satisfied, it implies partial hybrid zero dynamics
(PHZD). Moreover, if τs(ϕ(β∗f )) > 0 then there exists a
constant ε > 0 such that for all ε > ε, the hybrid system
H(β,ε) has an exponentially stable periodic orbit. Morover,
the fixed point of this orbit, (q∗ε , q̇

∗
ε ), is dependent on ε and

satisfies the property that:

lim
ε→∞

(q∗ε , q̇
∗
ε ) = (ϑ(β∗f ), ϑ̇(β∗f ))

VI. SIMULATION RESULTS AND CONCLUSION

A simulation of the running with the control parameters
obtained from the optimization problem (HIO) was per-
formed. The actual outputs vs desired outputs over four steps
are plotted in Fig. 7(b), from which we can see that outputs

TABLE II: Optimized parameter values with human func-
tions for mean data

ya1 = vhipt, ya2 = yH(t) given in (1)
* * vhip α1 α2 α3 α4 α5 Corr Cost

Mean δpstancehip 2.1998 * * * * * 0.9999 *
* δpflighthip 2.1998 * * * * * 0.9999 *
* θstancehip * 4.952 0.941 14.06 0.475 -0.370 0.9987 *
* θflighthip * 13.04 -0.322 2.175 -2.828 -0.339 0.9960 *
* θstancesk * 11.66 -0.159 3.153 6.561 0.196 0.8491 *
* θflightsk * -6.647 -0.119 24.98 -0.069 0.660 0.9911 *
* θstancensk * -1.319 -0.241 23.55 0.284 1.089 0.9630 *
* θflightnsk * 0.855 0.301 25.46 -0.242 0.364 0.9910 3.02
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Fig. 6: Optimized canonical human functions (solid) and the
corresponding mean human data of running (dashed).

of the robot agree with the desired outputs (for all but the
velocity of the hip) implying that the relative degree 2 outputs
are invariant through impact, i.e., we have achieved partial
hybrid zero dynamics.

To quantify how “human-like” the running is, we also
plot the actual outputs (with 42% flight phase duration)
vs. the human experimental running data (with 37% flight
phase duration), which can be seen in Fig. 6. Note that,
the trajectories that fall into the one standard deviation
boundary of mean human data (the region shown in the
figure), are considered to be qualitative human-like . Also,
the high correlations for each outputs along with the cost
can be referred in Table. II. The running gaits of both phases
achieved in simulation can be seen in Fig. 7(c), 7(d) and the
video of the simulation results can be seen [2]. Readers may
observe that the foot clearance of the flight phase is not very
high. Comparing with mean human data, we found out that
the foot clearance for mean human data is also quite low
(most probably due to the constrained environment in which
the running was performed). The swing foot height at the
beginning of stance phase is 0.039m for the robot compared
to 0.0415m for human; and the swing foot at the beginning
of flight phase is 0.113m compared to human’s 0.0985m.
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Fig. 7: Simulation Results, including: (a) the periodic orbit corresponding to the running gait, (b) the actual vs. desired
outputs over 4 steps (with the stance and flight phase indicated) and (c),(d) gait tiles for the stance and flight phase.

Therefore, since we are seeking human-like running, we
argue that the low foot clearance is a direct result of the
human data from which the robotic running was derived.

From the discussion above, we can conclude that the
optimized running gait achieves “human-like” running. The
phase portraits are shown in Fig. 7(a) indicating that we do
achieve a periodic orbit as Theorem 1 predicts. This theorem
also predicts that this periodic orbit is stable for sufficiently
large ε. In order to verify the stability of the running orbit, we
construct numerical approximations of the Poincaré map (26)
and check the eigenvalues. Fig. 8 shows how the poincare
eigenvalues evolve with controller gain ε. With controller
gain ε = 30, all eigenvalues have magnitude smaller than
1 with the maximum magnitude of 0.836 and we therefore
numerically establish the stability of the running gait.
Conclusion. This paper studied bipedal robotic running in
the context of human inspired control, providing yet another
motion primitive [20] that can be described through this
framework (adding to the existing collection consisting of
walking on flat ground, up and down slopes and up and
down stairs). Analysis of the experimental data shows that
human running data, which consists of two phases, can also
be represented by the response of a linear spring-mass-
damper system, i.e., by the canonical locomotion function.
We construct a novel optimization problem with constraints
that ensure partial hybrid zero dynamics constraints for mul-
tiple domains. We establish that by solving this optimization
problem, the end result is control parameters, i.e., parameters
of the canonical locomotion functions, that provably result
in stable robotic running. These formal results are verified
through simulation. Future work will be devoted to realizing
the results of this work on a physical robot.
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