
Bio-Inspired Feedback Control of 3D Humanlike Bipedal Robots

Paper: Rb24-4-5505

Bio-Inspired Feedback Control of Three-Dimensional
Humanlike Bipedal Robots

Ryan W. Sinnet and Aaron D. Ames
Department of Mechanical Engineering, Texas A&M University

200 MEOB, 3123 TAMU, College Station, Texas 77843-3123, USA
E-mail: {rsinnet, aames}@tamu.edu

[Received 00/00/00; accepted 00/00/00]

Bridging contemporary techniques in bio-inspired
control affords a unique perspective into human lo-
comotion where the interplay between sagittal and
coronal dynamics is understood and exploited to sim-
plify control design. Functional Routhian reduction
is particularly useful on bipeds as it decouples these
dynamics, allowing for control design on a sagittally-
restricted model while providing coronal stabilization.
2D sagittal walking is designed using Human-Inspired
Control which produces humanlike walking with good
stability properties. This walking is then easily trans-
lated to 3D via reduction. The proposed control
scheme, which is based on a fundamental understand-
ing of human walking, is validated in both simulation
and experiment.
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1. Introduction

Robotic walking is often studied with little direct inspi-
ration from human locomotion. If the goal is to achieve
humanlike walking, then existing approaches have been
largely unsuccessful: walking has been achieved using
a variety of strategies – passivity-based control [1], zero
moment point [2], hybrid zero dynamics [3], etc. – yet
the gaits have been generally non-humanlike [4]. This pa-
per weaves together existing methods, proposing a proce-
dure to produce 3D walking by fusing Human-Inspired
Control [5], hybrid zero dynamics [3], and functional
Routhian reduction [6].

Many existing methods are effective, yet the control
schemes are often esoteric and obfuscate the underly-
ing mathematical foundation of human walking. Human-
Inspired Control, on the other hand, asserts that there is
elegance to be found in simplicity. Indeed, by examining
human kinematics data, it becomes apparent that certain
kinematics outputs of human walking, termed human out-
puts, can be encoded with very little loss by fitting the data
to canonical walking functions, which have the same form
as the solution to a linear spring-mass-damper system. In
addition, the methods of hybrid zero dynamics are drawn
upon to construct a zero dynamics which can be rendered

Fig. 1. The models of interest are based on the robots
AMBER (left) and NAO (right).

forward-invariant through feedback linearization, and is,
moreover, invariant through impacts (i.e., foot strike), re-
sulting in guaranteed stability properties [7, 8].

After achieving 2D walking, functional Routhian re-
duction is used to migrate the controller to a 3D model. In
order to combine this with Human-Inspired Control, it is
necessary to extend previous results [9] as was done in [6]
to include systems with forcing. In this paper, a formal
proof is given for the theorem stated in [6]. The appeal of
functional Routhian reduction comes from its capacity to
separate sagittal and coronal dynamics, permitting control
design for each to be conducted independently and expos-
ing the decoupled nature of human walking. Stable 3D
walking for models based on AMBER and NAO (shown
in Fig. 1) is achieved using a sagittal control law designed
on a reduced-order model. Simulation results show that
the 2D and 3D gaits for each robot are virtually identical.
An experiment with NAO validated the control scheme by
showing relatively robust and humanlike walking.

The rest of this paper is structured as follows: Sec-
tion 2 introduces a general formulation for the robotic
models of interest. Section 3 reviews Human-Inspired
Control and applies it to achieve 2D walking in simula-
tion. Section 4 details functional Routhian reduction and
Section 5 uses this reduction to migrate the 2D walking to
3D. Section 6 discusses simulation of the 3D models and
concludes by providing analysis of a walking experiment
conducted with NAO.
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Fig. 2. General model of interest showing configuration
variables (right) and physical and human outputs (left).

2. Robotic Modeling

Bipedal walking exhibits both continuous dynamics –
when the non-stance leg swings freely – and discrete dy-
namics, consisting of periodic impacts when the non-
stance foot strikes the ground. The necessity to model
both types of dynamics, which operate on very different
time scales, motivates the use of hybrid systems or sys-
tems with impulse effects [10]. In order to establish the
stability of hybrid periodic orbits, the standard technique
of studying the Poincaré map [11] is used. Although it is
not possible to explicitly compute the Poincaré map for
most bipeds, one can compute a numerical approximation
through simulation and thereby ascertain stability. The
two robots studied, AMBER1 and NAO2, will be modeled
as in Fig. 2 using a hybrid control system,

H C 3D = (D,U,S,Δ, f ,g), . . . . . . . . (1)

which is standard in the literature [12]. Denote the me-
chanical configuration Q with coordinates

q = (ϕs f ,θs f ,θsk,θsh,θnsh,θnsk)T . . . . . (2)

The domain D ⊂ T Q represents the admissible configura-
tions, U ⊆ R

6 is the set of admissible controls, S ⊂ D is
a guard or switching surface which represents the edge of
the domain, Δ : S → D is a smooth map called the reset
map, and ( f ,g) is a control system on D.

The Lagrangian, L : T Q → R, can be stated in terms
of kinetic energy, K : T Q → R, and potential energy,
V : Q →R, as L(q, q̇) = T (q, q̇)−V (q). The forced Euler-
Lagrange equation gives the dynamic model, which, for
robotic systems (see [13]), takes the form: M(q) q̈ +
H(q, q̇) = ϒ, with inertia map M : Q → Rn×n and forcing
ϒ and H(q, q̇) =C(q, q̇) q̇+N(q) containing terms result-
ing from the Coriolis effect and gravity. This corresponds
to the vector field

f (q, q̇) =
[

q̇
M−1(q)(ϒ−H(q, q̇)) .

]
. . . (3)

In this paper, forcing takes the form ϒ = B(q)u with
torque distribution map B : Q → R

n×n. This results in the

1. http://www.bipedalrobotics.com/
2. http://www.aldebaran-robotics.com/

control system ( f ,g):

f (q, q̇)=
[

q̇
−M−1(q)H(q, q̇)

]
, g(q)=

[
0n×n

M−1(q)B(q)

]
(4)

The impact model in [14] is used which considers rigid-
body, plastic impacts. Impulsive forces are applied to the
non-stance foot when it contacts the ground. This results
in an impact map which gives post-impact velocities [5].
And, finally, a reduced-order model for the purpose of
sagittal controller design is obtained by applying a sagit-
tal restriction to the full-order model:

H C 2D = (D2D,U2D,S2D,Δ2D, f2D,g2D). . (5)

This is as simple as setting ϕ = 0 and projecting away this
coordinate from the hybrid model H C 3D.

3. Human-Inspired Control

The framework of Human-Inspired Control was re-
cently developed as a method of achieving humanlike
walking on robots [7, 8, 12]. Its appeal lies in the sim-
ple structure of the fundamental underlying mathematical
element: the canonical walking function. This function
can faithfully represent the human gait when fit to specific
kinematics outputs. When applied via control to a biped,
the canonical walking function yields qualitatively and
quantitatively humanlike locomotion. Moreover, a par-
tial hybrid zero dynamics is generally constructed [7] by
imposing constraints during the fitting process, i.e., con-
strained optimization, resulting in guaranteed stability.

Gait Analysis. Kinematics outputs on the data in [4] were
averaged between subjects and then analyzed. These hu-
man outputs can be computed as forward kinematics maps
on a robot. Natural course of thought, then, leads one to
suppose that if the robot outputs match the human out-
puts, the gait ought to be humanlike. This bridge between
human walking and humanlike robots is the conceptual
foundation beneath Human-Inspired Control.

The Canonical Walking Function. Analysis of kinemat-
ics outputs yielded five choices which, together, appear to
faithfully represent human walking (see Fig. 3):

O1 : phip, the x-position of the hip;

O2 : mnsl , the slope of the non-stance leg;

O3 : θsk, the angle of the stance knee from straight;

O4 : θnsk, the angle of the non-stance knee from straight;
and

O5 : θtor , the angle between the torso and vertical.

It was discovered in [7, 12] that the human outputs O2–
O5 can be accurately described by a single function –
the time solution to a linear spring-mass-damper system
– termed the canonical walking function:

yH
i (t,α) =

e−αi,4t(αi,1 cos(αi,2t)+αi,3 sin (αi,2t))+αi,5, (6)
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Fig. 3. Optimized human functions for AMBER and NAO compared with normal human walking. The humanlike nature of the
encoded walking can be seen with respect to each human output.

where i ∈ {2, . . . ,5} is an index corresponding to outputs
O2–O5. The parameters are combined into a matrix:

α =

(
vhip 01×4

{αi}i∈{2,...,5}

)
∈ R

5×5

Observe that Eq. (6) is the solution of a linear spring-
mass-damper system for which αi,1 and αi,3 would be de-
termined from initial conditions, αi,4 = ζ ωn with damp-
ing ratio ζ and undamped natural frequency ωn, αi,2 =ωd
with damped natural frequency ωd , and αi,5 is the gravity
bias. It was shown in [7] that these functions can be fit to
human outputs with correlation coefficients near unity.

Time-Invariant Parameterization. In order to achieve
autonomous control, time is replaced by a state-based pa-
rameterization as is common in the literature [3]. Denote
this parameterization τ : Q2D → R

+
0 where R

+
0 represents

time. From Fig. 3, it is clear that the position of the hip,
phip(q), increases monotonically during the gait and is
thus a good choice for τ . Thus, define

τ(θ) :=
phip(θ)− phip(θ−)

vhip
, . . . . . . . (7)

where vhip represents the desired hip velocity and
phip(θ−) is the hip position at the beginning of a step.

Sagittal Controller Construction. This paper achieves
3D walking by using reduction to decouple the sagittal
and coronal dynamics of H C 3D, thereby enabling inde-
pendent control design. The construction of the sagittal
controller consists of 1) finding parameters of the canoni-
cal walking function (Eq. (6)) such that a hybrid zero dy-
namics is created and 2) using these parameters with the
output functions to construct a sagittal walking controller.

Hybrid Zero Dynamics. The goal of the controller is
to drive the outputs of the robot to the canonical walking
functions. Therefore, define the actual outputs

ya(θ) = (phip(θ),mnsl(θ),θstk,θswk,θtor(θ))T ,

which combines the outputs O1–O5 computed for the
robot from its kinematics, and the controller outputs, y :

Q2D → R5, and their derivatives, ẏ : TQ2D → R5, as

yi(θ) =
{

0, i = 1,
ya

i (θ)− yH
i (τ(θ),αi), i = 2, . . . ,5,

ẏi(θ , θ̇) =

{
ṗhip(θ , θ̇ )− vhip, i = 1,
d
dt

yi(θ , θ̇ ), i = 2, . . . ,5.

. . . . . . . . . . . . . . . (8)

where yH
i (θ) are the canonical walking functions of Eq. (6)

with time parameterized by Eq. (7). For these outputs, the
zero dynamics Zα is the surface on which the actual and
desired outputs agree for all time, i.e., y(θ)≡ ẏ(θ , θ̇)≡ 0.
Due to the nature of impacts, it is unlikely the hip velocity
will remain constant through impact; thus the partial zero
dynamics PZα is also an important construct – this is the
surface where yi(θ)≡ ẏi(θ , θ̇)≡ 0, i ∈ {2, . . . ,5}. See [7]
for a more formal definition of these surfaces.

The main result of [7] is that, using the controller out-
puts of Eq. (8) with feedback linearization, it is possible to
realize a parameter matrix α which produces stable walk-
ing. This is stated in the form of an optimization problem.
From the mean human walking data, denote by τHD[k] and
yHD

i [k] the sampled times and values, respectively, of the
output functions O1–O5. Then define the cost

CostHD(α) =
K

∑
k=1

5

∑
i=1

(
yHD

i [k]− yH
i (τHD[k],α)

)2
. (9)

Minimizing this subject to constraints which ensure stable
robotic walking results in a least-squares fit of the canon-
ical walking functions to the mean human data, thus mo-
tivating the optimization problem.

α∗ = argmin
α∈R5×5

CostHD(α) . . . . . . . . (10)

s.t. Δ2D(S2D ∩Zα ) ∈ PZα

Solving numerically in MATLAB through fmincon re-
sults in a matrix of parameters for both AMBER and
NAO. In [7], it was shown that conditions on Eq. (10) can
be given in terms of only α . The proximity of the opti-
mized gaits to normal human walking is shown in Fig. 3.
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Fig. 4. Simulation of three-dimensional biped models for AMBER (top) and NAO (bottom). Phase portraits are shown (left) along
with input torques (middle) and output function values (right).

Controller Design. The optimization begets stable walk-
ing when paired with feedback linearization, yet the desire
to employ functional Routhian reduction precludes the ap-
plication of such a control law in sagittal design as it is not
independent of the coronal variables. This will be seen
later in Theorem 1. Proportional-Derivative (PD) control,
on the other hand, does not suffer the same limitation and
is thus used instead. Define the control law

Kα
2D(θ , θ̇ ) =−kp y(θ)− kd ẏ(θ , θ̇ ) . . . . . (11)

This is applied to the system H C 2D to obtain H α
2D.

Simulation. Simulations for AMBER and NAO were
conducted choosing kp = 50 and kd = 20. The 2D phase
portraits are nearly identical to the 3D ones in Fig. 4 and
are, therefore, omitted; there exists a closed limit cycle
for each model representing steady-state walking. The hu-
manlike nature of the gaits can be ascertained from the fits
in Fig. 3. The gait of AMBER is more humanlike than that
of NAO, presumably as a consequence of AMBER having
proportions more similar to a human than does NAO.

Stability is confirmed by locating a fixed point and ex-
amining the Poincaré maps linearized about those points.
The maximum eigenvalues of AMBER (resp. NAO) are
found to have magnitudes 0.409 (resp. 0.700).

4. Functional Routhian Reduction

Classical Routhian reduction [15] is a method which
takes advantages of symmetries inherent in a dynamical
system and utilizes conserved momentum to eliminate
cyclic variables, thereby reducing the dimensionality of
the system and simplifying controller design. Functional
Routhian reduction (first introduced in [16, 17]) is a vari-
ant in which the conserved momentum is set to a function
rather than a constant. This scheme has enjoyed success in
migrating 2D gaits to 3D [6, 9]. By decoupling the sagit-
tal and coronal dynamics, functional Routhian reduction
provides insight into the decoupled nature of human walk-
ing and allows for sagittal control design to be conducted

on a reduced-order model while simultaneously provid-
ing coronal stabilization. This remarkable relationship
between dynamics, while only providing a slight reduc-
tion in dimensionality, shifts the control problem from de-
signing complicated 3D walking gaits to the much more
tractable challenge of designing 2D gaits. Thus, stable
walking is obtained in 3D by simply applying control
laws which give stable walking in the sagittally-restricted
counterpart in 2D (which has a Lagrangian of the form
given in Eq. (15)).

Almost-Cyclic Lagrangians. Consider a system with
configuration space Q= S×S, where S is called the shape
space. Let the coordinates be represented by q=(ϕ ,θ T )T

with θ ∈ S and almost-cyclic variable ϕ ∈ S. A La-
grangian Lλ : TS×TS → R is almost-cyclic if it takes the
form in Eqs. (10) and (11) from [6] for some λ : S → R.

Momentum Maps. As alluded to earlier, functional
Routhian reduction utilizes a momentum map, J : TQ →
R, which specifies conserved quantities:

J(ϕ ,θ , ϕ̇, θ̇ ) =
∂ Lλ
∂ ϕ̇

= Mϕ,θ (θ) θ̇ +mϕ(θ) ϕ̇ . (12)

This map is equal to a function, λ (ϕ).

Functional Routhians. For an almost-cyclic Lagrangian
Lλ , define the functional Routhian Lfct : TS → R:

Lfct(θ , θ̇) =[
Lλ (ϕ ,θ , ϕ̇, θ̇)−λ (ϕ) ϕ̇

]
J(ϕ,θ ,ϕ̇,θ̇)=λ (ϕ) . (13)

Because J(ϕ ,θ , ϕ̇, θ̇ ) = λ (ϕ) implies that

ϕ̇ =
1

mϕ(θ)
(λ (ϕ)−Mϕ,θ(θ) θ̇) . . . . . (14)

by direct calculation the functional Routhian is given by:

Lfct(θ , θ̇) =
1
2

θ̇ T Mθ (θ) θ̇ −Vfct(θ). . . . (15)

Reduction Theorem. Before introducing the reduction
theorem, note that for Lλ with forcing ϒ(q, q̇), the Euler-

4 Journal of Robotics and Mechatronics Vol.24 No.4, 2012



Bio-Inspired Feedback Control of 3D Humanlike Bipedal Robots

Lagrange equation can be written:

d
dt

∂ Lλ
∂ q̇

− ∂ Lλ
∂ q

= Mλ (θ) q̈+Hλ (θ , θ̇)

+yλ (ϕ ,θ , θ̇)−ϒ(q, q̇), . (16)

where Hλ (θ , θ̇) is obtained from Mλ (θ) and

yλ (ϕ ,θ , θ̇ ) =
d
dt

∂Wλ
∂ q̇

− ∂Wλ
∂ q

.

This can be written as the vector field

fLλ (q, q̇) =(
q̇

M−1
λ (θ)(ϒ(q, q̇)−Hλ (q, q̇)−yλ (ϕ ,θ , θ̇))

)
. (17)

In addition, fLfct , the forced vector field corresponding to
Lfct, is given by Eq. (3). The solutions of these two sys-
tems are related in the following manner (in a way analo-
gous to the classical Routhian reduction result, see [15]).

Theorem 1: Let Lλ be an almost-cyclic Lagrangian
with almost-cyclic variable ϕ and Lfct its functional
Routhian with shape space S = R

n−1. Additionally, let
ϒ : TQ → R

n represent external forcing satisfying

(i) ϒ(q, q̇) = ϒ(θ , θ̇ ), i.e., ϒ does not depend on ϕ , ϕ̇ ,

(ii) ϒϕ(θ , θ̇) = 0, i.e., no external forces act on the
almost-cyclic variable.

Then, (ϕ(t),θ(t), ϕ̇(t), θ̇(t)) is a solution to the vector
field fLλ given by Eq. (17) on [t0, tF ] with

ϕ̇(t0) =
1

mϕ(θ(t0))
(λ (ϕ(t0))−Mϕ,θ (θ(t0)) θ̇(t0)) (18)

if and only if (θ(t), θ̇(t)) is a solution to fLfct given by
Eq. (3) and (ϕ(t), ϕ̇(t)) satisfies:

ϕ̇(t) = m−1
ϕ (θ(t))(λ (ϕ(t))−Mϕ,θ(θ(t)) θ̇(t)). (19)

To prove this, first note that the Lagrangian can be written

Lλ (ϕ ,θ , ϕ̇ , θ̇) = Lfct(θ , θ̇ )+Rem(ϕ ,θ , ϕ̇, θ̇ ),

where

Rem(ϕ ,θ , ϕ̇ , θ̇) =
mϕ(θ)

2
ϕ̇2 +

1
2

λ 2(ϕ)
mϕ(θ)

+ ϕ̇Mϕ,θ (θ)θ̇

+
1
2

1
mϕ(θ)

θ̇ T MT
ϕ,θ (θ)Mϕ,θ (θ)θ̇ − λ (ϕ)

mϕ(θ)
Mϕ,θ (θ)θ̇ .

Application of the Euler-Lagrange equation gives

d
dt

∂ Lλ
∂ θi

− ∂ Lλ
∂ θi

=
d
dt

∂ Lfct

∂ θ̇i
− ∂ Lfct

∂ θi

+
d
dt

∂ Rem
∂ θ̇i

− ∂ Rem
∂ θi

= ϒi(θ , θ̇),

d
dt

∂ Lλ
∂ ϕ̇

− ∂ Lλ
∂ ϕ

=
d
dt

∂ Rem
∂ ϕ̇

− ∂ Rem
∂ ϕ

= 0, . . (20)

where i = 1, . . . ,dim(S). It can be verified through direct
calculation that the above are satisfied when the functional
conserved quantity of Eq. (14) is satisfied.

Proof: (⇒) Let (ϕ(t),θ(t), ϕ̇(t), θ̇(t)) be a flow
of fLλ given by Eq. (17) on [t0, tF ] with ϕ̇(t0) satisfying
Eq. (18) and let (ϑ(t), ϑ̇(t)) be a flow of fLfct given by
Eq. (4) on [t0, tF ] with ϑ(t0) = θ(t0) and ϑ̇(t0) = θ̇ (t0),
and let φ(t) satisfy

φ(t0) = ϕ(t0),

φ(t0) = m−1
ϕ (φ(t))

(
λ (φ(t))−Mϕ,θ (ϑ(t))ϑ̇(t)

)
.

It follows from Eq. (20) that the curve
(φ(t),ϑ(t), φ̇(t), ϑ̇(t)) satisfies the forced Euler-
Lagrange equations corresponding to Lλ and is thus a
flow of fLλ on [t0, tF ]. Moreover, because both curves
have the same initial conditions, it follows by uniqueness
of solutions that

(ϕ(t),θ(t), ϕ̇(t), θ̇)) = (φ(t),ϑ(t), φ̇(t), ϑ̇(t))

and therefore (θ(t), θ̇(t)) is a flow of the vector field fLfct
on [t0, tF ] and ϕ̇(t) satisfies Eq. (19).

(⇐) Let (θ(t), θ̇(t)) be a flow of fLfct on [t0, tF ] and
(ϕ(t), ϕ̇(t)) be a pair satisfying Eq. (19). It then follows
from Eq. (20) that the forced Euler-Lagrange equations
for Lλ are satisfied since the curve (θ(t), θ̇(t)) satisfies
the forced Euler-Lagrange equations for Lfct by definition
and, therefore, (ϕ(t),θ(t), ϕ̇(t), θ̇(t)) is a solution to fLλ
on [t0, tF ] satisfying Eq. (18).

5. Reduction Control Laws

Three controllers will be needed to obtain walking in
the 3D model. The Human-Inspired Control introduced
previously will provide sagittal control. In this section,
two additional controllers are described. The first shapes
the Lagrangian into an almost-cyclic Lagrangian which is
amenable to reduction. In order to enjoy the decoupling
effects of reduction, a second controller is needed to sta-
bilize to the surface where reduction is valid.

Sagittal Control. The first controller is strictly responsi-
ble for motion in the sagittal plane. This controller will
be used with the reduction controllers to generate walk-
ing for the three-dimensional model. In Section 3, a con-
troller was described which resulted in walking for the
sagittally-restricted model H C 2D given in Eq. (5). This
exact control law, Kα

2D, given by Eq. (11), is applied to the
sagittal coordinates of the the 3D model H C 3D.

Lagrangian Shaping Controller. Reduction is only valid
for almost-cyclic Lagrangians motivating the use of con-
trol to shape the Lagrangian of the system into this form.
Using λ (ϕ) =−μϕ with control gain μ ∈R

+, the system
can be shaped to be almost-cyclic with the control law

Kα,μ
3D (q, q̇) = B−1

3D(H3D(q, q̇)+

M3D(q)M−1
μ (θ)[−Hμ(q, q̇)− yμ(ϕ ,θ , θ̇)+Kα

3D(θ , θ̇)])
. . . . . . . . . . . . . . . . . . . (21)

where 3D and μ represent the nominal shaped system.
For initial conditions satisfying Eq. (18), the continu-

ous dynamics of H C 3D can be decoupled into the sagit-
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Fig. 5. Comparison of experimental and simulated walking gaits. The stance leg is represented by a dashed line and the nonstance
leg is represented by a solid line. About half of the torso has been hidden due to space constraints.
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Fig. 6. Comparison between experiment and simulation for NAO. Left leg (top) and right leg (bottom). Black solid lines represent
experimental data; gray dashed lines represent desired trajectories.

tal and coronal components with Kα,μ
3D (q, q̇). This con-

trol law, in Eq. (21), contains the sagittal control law
K2D(θ , θ̇). Furthermore, the dynamics of ϕ evolve ac-
cording to Eq. (19). To guarantee the requirements of
Eq. (19) are satisfied, an additional control law is needed.
The assumptions of Theorem 1 are satisfied only on the
zero dynamics

Z =
{
(qT , q̇T )T ∈ Q3D : yz(q, q̇) = 0

}
, . . . (22)

where

yz(q, q̇) = ϕ̇ +m−1
ϕ (θ)

(
μϕ +Mϕ,θ (θ) θ̇

)
. (23)

Feedback linearization allows this to be realized.

6. 3D Simulation and Experiment

Simulations were run choosing ε = 20 and μ = 1. This
resulted in stable walking which is strikingly similar to 2D
simulations. The gait tiles in Fig. 5 and phase portraits in
Fig. 4 show the humanlike nature of the gaits. The outputs
and torques are shown in Fig. 4 and are reasonable for the
robots studied. A linearization of the Poincaré maps for

AMBER (resp. NAO) results in maximum eigenvalues of
magnitude 0.286 (resp. 0.300), indicating stable walking;
and, moreover, the gaits have Specific Cost of Transport
(SCOT) 0.35 (resp. 0.36), which are reasonably close to
the human value of 0.20 [18]. The 2D and 3D walking
gaits are virtually identical illustrating the decoupled na-
ture of walking. This comparison highlights the utility of
functional Routhian reduction, which seems to provide an
intuitive way of implementing 2D walking gaits in 3D.

NAO Experiment. An experiment was conducted with
NAO to substantiate the practicality of reduction-based,
Human-Inspired Control. The experiment proved some-
what remarkable: on the first run, the robot achieved
dynamically-stable walking with a forward velocity of
15 cm/s. The gait was implemented through trajectory
tracking. The experiment was conducted on a laminate
floor as shown in Fig. 1. The initial condition of the robot
was chosen to be on the guard but with zero velocity and
NAO was able to fall into the designed gait as shown in
Fig. 5. This figure juxtaposes the simulated gait and NAO
attempting to reproduce the simulated gait – one can see
the agreement. Further evidence of agreement is provided
by Fig. 6. The sagittal coordinates track closely while
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the coronal coordinates have some error to them. This
is likely the result of model differences and the relative
magnitude of the coronal trajectories. Yet this walking
is dynamically-stable, a feat which is difficult to achieve
given the large size of NAO’s feet. A video of the walk-
ing achieved in this experiment can be seen online3 and
the reader is invited to draw his or her own conclusions
about the humanlike nature of the walking.
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