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Abstract—Quadratic programming (QP)-based nonlin-
ear controllers have gained increasing popularity in the
legged locomotion community. This letter presents a for-
mal foundation to systematically decompose QP-based
centralized nonlinear controllers into a network of lower-
dimensional local QPs, with application to legged loco-
motion. The proposed approach formulates a feedback
structure between the local QPs and assumes a one-step
communication delay protocol. The properties of local QPs
are analyzed, wherein it is established that their steady-
state solutions on periodic orbits (representing gaits) coin-
cide with that of the centralized QP. The asymptotic conver-
gence of local QPs’ solutions to the steady-state solution
is studied via Floquet theory. The effectiveness of the ana-
lytical results is evaluated through rigorous numerical sim-
ulations and various experiments on a quadrupedal robot,
with the result being robust locomotion on different terrains
and in the presence of external disturbances. This letter
shows that the proposed distributed QPs have consider-
ably less computation time and reduced noise propagation
sensitivity than the centralized QP.

Index Terms—Distributed control, robotics, stability of
nonlinear systems.

I. INTRODUCTION

QUADRATIC programming (QP)-based controllers have
received extensive consideration in recent years for the

real-time planning and control of legged robots. For exam-
ple, they have been used in the context of model predictive
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control (MPC) for path planning of reduced-order locomotion
models (see e.g., [1]–[3]) and whole-body motion control of
full-order models (see e.g., [4]–[6]). The bedrock of these
approaches considers the centrality structure. Despite the supe-
rior performance of centralized QP-based controllers, they
may exhibit a lack of scalability with the increasing complex-
ity of modern legged robots with higher degrees of freedom
(DOFs). In addition, centralized QP-based algorithms cannot
be easily transferred into the control of powered prosthetic
legs and lower-limb exoskeletons because of the presence of
inherent decentralization in the human-robot structure. The
curse of dimensionality is a common problem in the field of
large-scale systems such as power networks and urban traf-
fic networks [7]. As a solution, a vast majority of work has
focused on developing distributed and decentralized control
algorithms in large-scale systems, see, e.g., [8]–[11].

In recent years, there have been significant theoretical and
numerical advances in developing efficient methods that con-
sider a distributed treatment of QPs. Examples include, but
are not limited to, active-set methods [12], [13], Lagrangian
decomposition or dual decomposition [14], and distributed
multiple shooting methods [15]. These methods, however,
depend upon the sparse nature of the equality constraints [16].
They translate very well to the problem of network systems
or distributed MPC [17] as the subsystems are weakly cou-
pled, hence preserving sparsity. On the contrary, legged robots
are underactuated, high-dimensional, and inherently unsta-
ble hybrid dynamical systems. By nature, any morphological
consideration of subsystems will result in a strong coupling
amongst the local systems. This motivates the development
of distributed QPs for high-DOF legged robots with strong
coupling amongst their subsystems.

Steady-state dynamic gaits correspond to periodic trajecto-
ries of the hybrid models of locomotion. Different nonlinear
control approaches have been developed to stabilize the peri-
odic gaits of these systems. These approaches include but
are not limited to hybrid zero dynamics (HZD) [18]–[22],
transverse linearization [23], and controlled symmetries [24].
The HZD approach has been integrated with the control
Lyapunov functions (CLFs) [4], [5], [25], [26] and control
barrier functions (CBFs) [27] to formulate QP-based nonlinear
controllers for legged robots. The HZD approach has also been
used to synthesize distributed nonlinear controllers for bipedal
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and quadrupedal robots [26], [28], prosthetic legs [29], [30],
and exoskeletons [31]. References [28], [32], [33] developed
decentralized controllers based on bilinear matrix inequal-
ities (BMIs) and decomposition for locomotion models.
Reference [26] presented stability guarantees, based on CLFs
and input-to-state-stability (ISS), for an interconnected system
of bipeds. It then developed model-free local QPs for
quadrupedal locomotion.

The overarching goal of this letter is to present a formal
foundation to systematically decompose QP-based and central-
ized nonlinear controllers into a network of lower-dimensional
and local QPs for periodic behaviors in hybrid systems, with
application to robotic locomotion. The objectives and key con-
tributions of this letter are as follows. This letter develops a
network of distributed QPs with an inherent feedback struc-
ture that preserves the steady-state solution of the centralized
QP on periodic orbits. This letter theoretically establishes a set
of sufficient conditions under which the solutions of the local
QPs asymptotically converge to the steady-state solution of
the centralized QP. This letter applies the proposed synthesis
approach utilizing local QPs to experimentally realize robust
locomotion on the 18-DOF A1 quadrupedal robot. In particu-
lar, the theoretical contributions are verified via an extensive
set of numerical and experimental studies for quadrupedal
locomotion at varying speeds and in the presence of differ-
ent uncertainties. It is shown that the proposed local QPs have
less sensitivity to noise propagation compared to the original
centralized QP. It is further shown that the total solve time of
the local QPs is reduced by 3.82 times in comparison to the
centralized QP.

II. PROBLEM FORMULATION

The objective of this section is to present the problem state-
ment to synthesize distributed QP-based nonlinear controllers
for periodic orbits of hybrid models of locomotion. Without
loss of generality, we consider single-domain hybrid systems
as follows:

�:

{
ẋ = f (x) + g(x) u, x ∈ X
x+ = �(x−), x− ∈ X ∩ S,

(1)

where x ∈ X ⊂ R
n and u ∈ U ⊂ R

m denote the states and
control inputs, respectively, for some positive integers n and
m. In addition, X and U represent the state manifold and a
convex polytope of admissible control inputs. The evolution
of the system during continuous-time domains is described by
the smooth (i.e., C∞) dynamics ẋ = f (x)+ g(x) u. In addition,
S denotes the guard of the hybrid system on which the evo-
lution of the system is described by a smooth discrete-time
transition (i.e., reset law) as x+ = �(x−). Here, x− and x+
denote the state of the system right before and after the reset
law, respectively.

In this letter, we consider the following class of real-time
centralized QPs for nonlinear control of legged locomotion
that can arise from input-output (I-O) linearization:

min
u

1

2

∑
i∈I

u�
i Pii ui (2)

s.t.
∑
j∈I

Aij(x) uj = bi(x), i ∈ I (3)

ui ∈ Ui, i ∈ I. (4)

Here, we assume that the nonlinear model is composed of
M ≥ 2 interconnected subsystems �i for i ∈ I := {1, . . . , M}.
The local control inputs of the i-th subsystem is given by
ui ∈ Ui ⊂ R

mi . In particular, u := col(ui | i ∈ I) and we
assume that U = U1 × · · · × UM for some convex polytopes
Ui with

∑
i∈I mi = m. In addition, (3) represents the cor-

responding decomposition for some state-dependent coupled
equality constraints given by A(x) u = b(x). Furthermore, (4)
denotes the decoupled inequality constraints corresponding to
feasibility conditions. Finally, Pii’s for i ∈ I are positive defi-
nite matrices. Throughout this letter, we shall assume that by
employing the centralized QP-based controller (2)-(4), there
is an asymptotically stable periodic orbit (i.e., gait) O for the
hybrid system model (1).

Assumption 1 (Periodic Solution): We suppose that there is
a unique and periodic optimal solution of the strictly convex
QP (2)-(4) on the orbit O. This solution, referred to as the
steady-state solution, is denoted by u�

s (t) := col(u�
i,s(t) | i ∈ I)

for 0 ≤ t < T , where T represents the fundamental period of
the orbit. It is further assumed that the steady-state solution
belongs to the interior of the set Ui, that is, u�

i,s(t) ∈ int(Ui)

for all i ∈ I and every t ∈ [0, T).
Assumption 1 is not restrictive in that one can enlarge the

admissible set of controls to satisfy the condition u�
i,s(t) ∈

int(Ui). Throughout this letter, we shall assume that the steady-
state solution is known for the proposed network of local QPs.
This is not a limited assumption as one can consider u�

s (t)
as the feedforward control inputs (e.g., joint-level torques)
that generate the orbit O (i.e., gait). For future purposes,
the steady-state Lagrange multipliers corresponding to the
equality constraints (3) on the periodic orbit are denoted by
α�

i,s(t) for i ∈ I. The steady-state solution and Lagrange
multipliers (u�

s (t) and α�
s (t)) will be used to construct the

proposed network of local QPs. Since the QPs will be solved
digitally, we will continue our analysis in discrete time. In our
notation, k ∈ Z≥0 := {0, 1, . . . , } represents the discrete time,
Ts denotes the sampling time, and we assume that T

Ts
= N for

some positive integer N.
Assumption 2 (One-Step Communication Delay):

Motivated by the inherent limitation of the distributed
structure, at every time sample k, each local QP can have
access to the optimal solution of the other local QPs solved
at time k − 1, but not the current time sample. In particular,
local QPs can share their optimal solutions from the previous
time sample.

Problem 1 (Synthesis of Local QPs): The synthesis problem
of distributed controllers consists of designing M local
QPs whose optimal solutions asymptotically converge to the
steady-state optimal solutions of Assumption 1 while meeting
the communication protocol of Assumption 2.

III. NETWORK OF DISTRIBUTED QPS

The objective of this section is to propose a network of local
QPs that addresses Problem 1.

A. Synthesis of Local QPs

As discussed before, the local QPs can communicate and
share their previous optimal solutions. Let us denote the
optimal solutions of the QPi at time sample k − 1 by
ui[k − 1]. We now propose the following structure for the
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local QPi, i ∈ I

min
ui

1

2
u�

i Pii ui + η�
i ui

s.t. Aii ui = bi − ζi

ui ∈ Ui, (5)

where ηi and ζi are feedback terms defined as follows:

ηi :=
∑

j∈I\{i}
A�

ji α
�
j,s[k] −

∑
j∈I

Lij

(
uj[k − 1] − u�

j,s[k − 1]
)

ζi :=
∑

j∈I\{i}
Aij u�

j,s[k]

−
∑
j∈I

Aij Kij

(
uj[k − 1] − u�

j,s[k − 1]
)

(6)

with Kij and Lij for i, j ∈ I being proper gain matrices to
be determined. For future purposes, the elements of this set
of gain matrices can be embedded in a parameters vector �.
In (6), “\” represents the set minus. In the proposed struc-
ture, the terms η�

i ui and ζi are added to the cost function and
right-hand side of the equality constraints, respectively. These
functions consist of feedforward terms u�

j,s[k] and α�
j,s[k] for

j ∈ I \ {i} as well as feedback terms to penalize the devi-
ation from the orbit. In Theorem 1, we will show that the
proposed network of local QPs preserves the steady-state solu-
tion u�

s [k]. Theorem 2 will show that the convergence to the
steady-state solution will be achieved via a proper selection
of the parameters vector �.

Theorem 1 (Steady-State Solutions for QPs): Under
Assumptions 1-2, u�

i,s[k] for i ∈ I are unique optimal
solutions for the proposed local QPs in (5) on the desired
orbit O.

Proof: Let us assume that at time k − 1, the solutions for
the local QPs coincide with u�

i,s[k − 1] for all i ∈ I. This
assumption reduces ηi and ζi to the feedforward terms, i.e.,
ηi = ∑

j∈I\{i} A�
ji α

�
j,s[k] and ζi = ∑

j∈I\{i} Aij u�
j,s[k]. We then

show that u�
i,s[k] is the unique solution for the local QPi

at time k. We remark that from Assumption 1, ui = u�
i,s[k]

satisfies the equality constraint Aii ui = bi − ζi and the
inequality constraint. Hence, it is a feasible solution. We next
show that the first and second-order Karush–Kuhn–Tucker
(KKT) optimality conditions are met at this point. Since from
Assumption 1 the inequality constraints are inactive (i.e.,
ui ∈ int(Ui)), the Lagrangian for the local QP (5) is reduced
to Li := 1

2 u�
i Pii ui + η�

i ui + α�
i (Aii ui + ζi − bi), where

αi represents the Lagrange multipliers corresponding to the
equality constraints of the QPi with i ∈ I. The first-order
KKT optimality condition then implies that

∂Li

∂ui
= u�

i Pii +
∑

j∈I\{i}
α��

j,s [k] Aji + α�
i Aii = 0. (7)

It can be shown that this latter equation coincides with
the one obtained from the first-order KKT condition for
the Lagrangian of the centralized QP (2)-(4). In addition,
∂2Li

∂u2
i

= Pii is positive definite, and hence, ui = u�
i,s[k] is indeed

the unique optimal solution.

B. Asymptotic Convergence Analysis

From Theorem 1, the local QPs preserve the steady-state
solution. We next study the properties and convergence behav-
ior for the solutions of the proposed local QPs. Let us assume
that the system’s state evolves on the periodic orbit. According
to the feedback structure, the optimal solutions of the local
QPs at time k + 1 depend on the ones from time k. In par-
ticular, there is a nonlinear and time-varying function F that
defines the following discrete-time dynamics

u[k + 1] = F(k, u[k],�), k = 0, 1, . . . (8)

According to the construction procedure, F is periodic in k
with period N > 0. In addition, for every parameters vector
�, u�

s [k] = col(u�
i,s[k] | i ∈ I) is an N-periodic solution to (8).

Next, we make the following assumption.
Assumption 3: The matrices Aii, i ∈ I in (3) are full row

rank on the periodic orbit O.
Now, we are in a position to present the following result.
Theorem 2 (Local Asymptotic Stability): Under

Assumptions 1-3, the following statements hold.
1) The function F(k, u,�) is continuously differentiable

(i.e., C1) with respect to u on u = u�
s [k].

2) The N-periodic solution u�
s [k] is locally asymptotically

stable for (8) if the eigenvalues of the monodromy
matrix lie inside the unit circle, where the monodromy
matrix is defined as follows:


k(�) :=
N−1∏
�=0

∂F
∂u

(k + �, u�
s (k + �),�), (9)

in which the matrices in the product are ordered from
right to left for increasing indices �.

Proof: The QPs in (5) can be considered as optimization
problems whose cost and constraints are parameterized by
(ηi, ζi). We aim to show that the solutions of these QPs are
C1 with respect to (ηi, ζi) on u = u�

s [k]. From Theorem 1,
u�

i,s[k] is the unique optimal solution for the local QPs. The
cost and constraints are smooth (i.e., C∞) in (ui, ηi, ζi). Since
the inequality constraints are inactive at ui = u�

i,s[k], the
active constraints are reduced to the equality ones. From
Assumption 3, the gradients of the equality constraints with
respect to the decision variables are full rank (i.e., regular-
ity condition). Hence, the sufficient conditions of Fiacco’s
Theorem [34, Th. 2.1] are satisfied. This guarantees the exis-
tence, uniqueness, and C1 continuity of the solutions with
respect to (ηi, ζi) on an open neighborhood of u = u�

s [k].
The fact that (ηi, ζi) is smooth in terms of u completes the
proof of Part 1. Part 2 is an immediate result of Floquet
stability theory [35] for periodic and nonlinear discrete-time
systems.

IV. APPLICATION TO QUADRUPEDAL LOCOMOTION

This section aims to numerically and experimentally vali-
date the distributed QP-based controllers for blind quadrupedal
locomotion. We consider the 12.45 (kg) A1 quadruped robot
(see Fig. 1). The evolution of the robot can be described by
18 DOFs. Here, 6 unactuated DOFs are attributed to the abso-
lute position and orientation of the body. The other 12 DOFs
are actuated and associated with the legs’ motions: 2-DOFs
capture the hip pitch and hip roll motions, and one additional
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Fig. 1. Snapshots illustrating the performance of the distributed QP-based controllers for a series of blind locomotion experiments (indoor) on the
quadrupedal platform, A1. (a) Forward locomotion in a field of arbitrarily dispersed wooden blocks at 0.5 (m/s), (b) trotting on a compliant surface
(gym mat) scattered with wooden blocks at 0.4 (m/s), (c) forward locomotion with a payload of 4.54 (kg) (%36 uncertainty) at 0.5 (m/s), (d) tethered
pulling while trotting in-place, and (e) stabilization in the presence of external disturbances. Videos of all experiments are available online [36].

DOF captures the knee pitch motion for each leg. In this letter,
we study double-domain trotting gaits.

A. Hybrid Model of Locomotion

The evolution of the mechanical system during continuous-
time domains of locomotion can be described by

D(q) q̈ + H(q, q̇) = B τ + J�(q) λ, (10)

where q ∈ Q represents the generalized coordinates, Q ⊂ R
18

denotes the configuration space, τ ∈ T denotes the joint-level
torques, T ⊂ R

12 represents a closed and convex set of admis-
sible torques, λ := col{λ� | � ∈ G} ∈ R

6 denotes a vector
including individual ground reaction fores (GRFs), and G rep-
resents the set of contacting leg ends with the environment.
In addition, D(q) ∈ R

18×18 represents the mass-inertia matrix,
H(q, q̇) ∈ R

18 includes the Coriolis, centrifugal, and gravita-
tional terms, and B ∈ R

18×12 is the input matrix. We remark
that this model is valid if the GRFs at contacting leg ends
remain in the linearized friction cone, denoted by FC, that
is, λ� ∈ FC for all � ∈ G. By defining the state vector as
x := col(q, q̇) ∈ X := Q × R

18, continuous-time dynamics
can be described by the following state equation

ẋ = f (x) + g(x) τ + w(x) λ. (11)

The continuous-time state equation (11) is different from the
one in (1). However, the decision variables for the control
problem in Section IV-B will contain τ and λ allowing us
to represent the QP in the form of (2)-(4). If a leg contacts
the ground, the system’s state then undergoes a discrete-time
transition as in (1) and according to rigid impact models [18].

B. QP-Based I-O Linearizing Controllers

We consider a set of holonomic output functions, referred to
as virtual constraints [18], to be regulated for the whole-body
motion control as follows:

y(t, q) := h0(q) − hd(t), (12)

where h0(q) encodes a set of controlled variables, and hd(t)
denotes the desired evolution of the controlled variables on the
gait O. In this letter, we consider the front-hind decomposition
for the synthesis of distributed QPs (i.e., I = {1, 2}). The out-
put function y for the entire system is heuristically chosen such
that it is uniquely separable for two distinct subsystems. We
will show that this choice enables us to satisfy Assumption 3.
In particular, we choose an 18-dimensional output function for
the centralized QP-based controller. More specifically, 6 out-
puts are designated for the Cartesian coordinates of the center
of masses (COMs) for the front and hind subsystems. The

remaining 6 outputs are redundant and reserved for the abso-
lute orientations of the COMs. The last 6 outputs are reserved
to control the Cartesian positions of two swing leg ends. To
address the redundancy in orientation and to ensure the valid-
ity of Assumption 3, we introduce defect variables v to be
used later in (13). For each distributed QP, the local output
yi ∈ R

9, i ∈ I has 3 components for the corresponding swing
leg end and 6 components associated with the position and
orientation of the COM. The local torques, τi ∈ R

6, i ∈ I, are
similarly separated. Next, differentiating the output y along the
dynamics (11) gives

ÿ = LgLf y τ + LwLf y λ + L2
f y − ḧd = −KP y − KD ẏ + v, (13)

where “L” denotes the Lie derivative, LgLf y(t, x) and
LwLf y(t, x) represent the decoupling matrices with respect to
τ and λ, v ∈ R

18 is the defect variable, and KP = 400 and
KD = 40. The objective is to solve for (τ, λ, v) ∈ R

36 that sat-
isfies (13) and contact equations while having feasible torques
and GRFs. Contact equations are a set of affine conditions
in terms of (τ, λ) that represent the zero acceleration for the
stance leg ends. In particular, we have

p̈ = LgLf p τ + LwLf p λ + L2
f p = 0, (14)

where p := col{p�|� ∈ G} ∈ R
6 represents a vector containing

the Cartesian coordinates of two stance leg ends.
To solve for a feasible (τ, λ, v), we set up the following

real-time and centralized convex QP (whole-body controller)

min
(τ,λ,v)

γ1

2
‖τ‖2 + γ2

2
‖λ‖2 + γ3

2
‖v‖2

s.t. LgLf y τ + LwLf y λ + L2
f y − ḧd = −KP y − KD ẏ + v

LgLf p τ + LwLf p λ + L2
f p = 0

τ ∈ T , λ� ∈ FC, ∀� ∈ G, (15)

where γ1 = 100, γ2 = 1, and γ3 = 107. To minimize the
effect of the defect variable v in the output dynamics, we add
a penalty term to the cost function as γ3

2 ‖v‖2. We remark that
the cost function tries to minimize a weighted sum of 2-norms
of τ , λ, and v. Additionally, we note that the decision variables
are represented by u := col(τ, λ, v) ∈ R

36 for the centralized
QP. Equivalently, the decision variables for the local QPs can
be denoted by ui := col(τi, λi, vi) ∈ R

18 for i ∈ I. From (15),
we can extract the steady-state solution, u�

s (t), that satisfies
Assumption 1. We are now adequately equipped to decom-
pose the QP in (15) with 36 decision variables, 24 coupled
equality constraints and 70 decoupled inequality constraints
into two local QPs, as given in (5), with 18 decision vari-
ables, 12 equality constraints and 35 inequality constraints.
It can be shown that the gradient of the equality constraints
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Fig. 2. Phase plots of the unactuated DOFs (roll, pitch, and yaw) and the hip pitch and knee pitch, corresponding to the experiments with payloads
(see Fig. 1(c)), tethered pulling (see Fig. 1(d)), and external pushes (see Fig. 1(e)). An overlay of the nominal trot at 0.5 (m/s) is also provided.

with respect to (τ, λ, v) is full rank as LwLf p is invertible.
This, together with the proper choice of local outputs, meets
Assumption 3.

The gains in the structure (6) for local QPs are then tuned
as L11 = L22 = 10, L12 = L21 = 50, K11 = K22 =
0.08, and K12 = K21 = 0.05. We employ the qpSWIFT
solver [37] at 1 kHz to solve both centralized and local
QPs on an off-board laptop equipped with an i7-1185G7
processor running at 3.00 GHz. We note that the central-
ized and distributed QPs take on average 0.130 (ms) and
0.034 (ms), respectively. In particular, the total solve time
for the proposed local QPs is reduced by a factor of 3.82.
The time-varying Jacobian matrices in (9) are then numeri-
cally computed via finite difference and their spectral radius
approximately becomes 0.13. This makes the spectral radius
of the monodromy matrix over N = 400 samples almost zero
which indicates the asymptotic convergence to the steady-
state solution. Finally, these gains are validated numerically
in a physics engine that considers the hybrid nature of
locomotion.

C. Numerical and Experimental Evaluation

The distributed QP-based controller (5) is first validated
through extensive numerical simulations in RaiSim [38].
Subsequently, we experimentally evaluate the performance of
the local QPs on the A1 platform while subjecting the robot
to various uncertainties. Specifically, we consider (a) a ter-
rain arbitrarily dispersed with wooden blocks (see Fig. 1(a)),
(b) a compliant surface (gym mat) arbitrarily scattered with
wooden blocks (see Fig. 1(b)), and (c) locomotion with a pay-
load of 4.54 (kg) (36% uncertainty in the total mass) (see
Fig. 1 (c)). We consider a speed of 0.5 (m/s) for experiments
in (a) and (c) and a speed of 0.4 (m/s) for the one in (b).
Additionally, we consider (d) tethered pulling (see Fig. 1(d))
and (e) external pushes (see Fig. 1(e)) for in-place trot loco-
motion. The proposed local controllers can robustly stabilize
the gaits, as evident from the phase plots in Fig. 2. Especially,
Fig. 2(c) illustrates the local controller’s far-reaching capabil-
ities by demonstrating convergence to the nominal orbit even
after experiencing aggressive pulls and pushes. Videos of all
experiments are available online [36].

Figure 3(a) depicts the experimental torque of the hip
roll from the distributed QP in contrast to the correspond-
ing steady-state torque (extracted from numerical simulations)
and highlights the close convergence of the local torque to the
prescribed one. The small error between the steady-state and

Fig. 3. (a) Comparison of the hip roll torque of the front right leg against
the corresponding steady-state torque during nominal trot experiment,
demonstrating close convergence. (b) Illustration of the simulated hip
roll torque of the hind right leg in the presence of noisy velocities in the
front subsystem. Here, the gray overlay indicates ground contact.

distributed torques can be attributed to the model uncertainty
and measurement noise from hardware experimentation. We
remark that as each QP knows the solutions from the other
QP with a one-step communication delay, the solution is sub-
optimal compared to the centralized QP. However, as observed
from Fig. 3(a), this solution ultimately converges to the
steady-state solution as shown theoretically. Furthermore, our
experiments indicate that the local solutions have almost the
same robustness as the centralized one for robot locomotion.
To compare the performance of centralized and distributed
QPs, we inject noise into the velocity components of the front
subsystem (in numerical simulations) with a signal-to-noise
ratio (SNR) of 1 (dB). As a result, we notice noisy torques in
the front subsystem under both the control schemes. However,
for the hind subsystem, noise propagates only with the central-
ized QP-based controller. The distributed QP-based controller
significantly rejects the noise (see Fig. 3(b)). In particular, the
computed SNR of the torque signal for one stance domain is
increased from 18.35 (dB) in the centralized QP to 37.37 (dB)
in the distributed QP. This property can be primarily related
to the fact that each subsystem deals with its own Lie deriva-
tives and decoupling matrices arising from (15) in the structure
of (5).
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V. CONCLUSION

This letter presented a formal foundation to decompose QP-
based nonlinear controllers into a network of low-dimensional
and distributed QP-based controllers with an inherent feedback
structure for the general class of legged locomotion models.
The proposed network of local QPs is developed based on
a one-step communication delay protocol and preserves the
steady-state solution of the centralized QP on periodic orbits.
Properties of the local QPs were studied to establish a set of
sufficient conditions under which the solutions of the local QPs
asymptotically converge to the steady-state solution of the cen-
tralized QP. The theoretical results were then applied for the
synthesis of distributed I-O linearizing controllers for realiz-
ing agile quadrupedal locomotion. In particular, the analytical
results’ effectiveness was verified via rigorous numerical and
experimental studies for the blind and robust locomotion of
the A1 quadrupedal robot in the presence of disturbances and
terrain uncertainties. It is shown that the total solve time of the
local QPs is reduced by 3.82 times in comparison to the cen-
tralized QP. Additionally, a simulated case study demonstrated
that favoring the proposed distributed QP structure presents
better noise-rejection properties.

For future work, we will examine the performance of dis-
tributed QPs while considering a larger number of subsystems
(e.g., each leg of the robot). Evaluation of the proposed con-
troller beyond trot gaits will also be a topic of consideration.
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