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Direct Collocation for Dynamic Behaviors with
Nonprehensile Contacts:

Application to Flipping Burgers
Shishir Kolathaya1, William Guffey2, Ryan W. Sinnet2, and Aaron D. Ames3

Abstract—To realize robotic systems in real-world settings,
e.g., in restaurants, it will be necessary to achieve dynamic
manipulation of non-trivial objects. In this context, this paper dis-
cusses methodologies used to realize trajectories in a robotic arm
platform; specifically, applied to flipping burgers as an example of
nonprehensile object manipulation. Flipping of burgers involves
a series of tasks—going to the burger location, scooping, picking
up and flipping. Since the goal is to obtain these trajectories in
a reasonably fast manner, we employ direct collocation based
multi-segmented trajectory optimization. We will first describe
the problem setup, and then describe the constraints, decision
variables employed, and then, to conclude, we will demonstrate
these behaviors in a 6-DOF robot experimentally.

Index Terms—Trajectory Optimization, Dynamic Motion Plan-
ning, Nonprehensile Contacts, Manipulation Planning.

I. INTRODUCTION

A standard medium sized burger patty requires 90 seconds
to have its one side cooked completely. The burger is then

flipped over and cooked for 60 more seconds. This process of
picking and flipping a burger by using a standard size spatula
appears to be a straightforward task for us humans, but there
are a series of challenges that need to be addressed if we wish
to translate this in a robotic arm platform. Some of the major
challenges are given as follows:

• The trajectory needs to be optimal. For example, for a
simple task such as transportation of a burger, the robot
has to take minimum time, torque, power or energy.

• The trajectory is multi-segmented, i.e., given the burger
location, the robot has to a) go to the location b) slide
underneath the burger that is hot, soft and greasy c)
pick the burger off the grill while maintaining friction
constraints, and finally d) either flip the burger so that
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Fig. 1: Figure showing a typical burger cooking apparatus. The
grill is where the burger is cooked, and the table is where the
freshly cooked burger is placed. We are using this setup for
deploying the techniques described in the paper as it cooks
burgers in real-world restaurants. A video demonstration is
shown in this footnote1.

the top side is facing the hot grill, or place the burger on
a side table.

• The trajectory has to satisfy dynamic constraints, i.e.,
no-slipping conditions of the burger with the spatula.

• The trajectory has to incorporate space limits, i.e., oper-
ate within the boundaries of the walls and grill.

• Optimization needs to be fast, typically less than 20
seconds per trajectory. Sometimes up to 4−5 burgers are
placed on the grill at a time, and the optimizer should be
able to generate trajectories for all these 5 burgers in 90
seconds.

The problem of flipping burgers can be classified as a non-
prehensile object manipulation problem [1]. Existing literature
has established techniques for prehensile contacts [2], like
pick-and-place [3], surgery [4], and grasping [5], but very few
techniques for nonprehensile contacts (see [6]). Nonprehensile
contacts do not involve grasping, but use friction, gravity
and other external forces for manipulation. The goal is to

1https://vimeo.com/234073915. Here the flipping is achieved by obtaining
an optimal end-effector trajectory and then using inverse kinematics to obtain
the desired joint angle trajectories for the robot.

https://vimeo.com/234073915
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manipulate burgers with contact only on one side, while
satisfying friction constraints, and also operate within some
space limits (task space limits). The problems associated with
nonprehensile contacts are well documented in [6], where the
object has multiple degrees of freedom, and the number of
inputs are limited. Sequential quadratic programming based
solutions were proposed to obtain optimal trajectories in [1],
hierarchical methods were proposed to handle multi-contact
manipulation in [7]. Our focus in this paper is from an
application viewpoint, and specifically with obtaining optimal
trajectories for a 6-DOF robot for nonprehensile frictional
contacts in a reasonably fast manner.

Since the main objective of this paper is flipping burgers,
we studied and implemented the methods developed in [8] in
detail, which demonstrated flipping of pancakes by obtaining
optimal trajectories for the pose (SE(3)) of the end-effector.
We also made an extension to this method by formulating
this into a nonlinear program (NLP)1. This type of end-
effector space optimization, even though fast (< 1 second),
does not necessarily guarantee feasibility in a non-trivial arm
configuration (like a 6-DOF arm with rotary joints Fig. 1). The
inverse kinematics solver, which computes the desired joint
angles given the desired end-effector pose, fails frequently for
a sizeable number of test locations on the grill. This motivates
the approach taken in this paper.

Main contribution. The main contribution of this paper is
the generation of optimal joint-space trajectories via a well
known technique called direct collocation. We will be using
the toolkit called FROST [9], which was successfully used to
realize walking and running behaviors in bipedal robots [10],
[11]. The goal is to obtain joint angle trajectories to achieve
two main tasks in the robot: 1. Translate burger behavior and
2. Pickup and flip burger behavior. Translate burger behavior
involves moving the Cartesian position of the spatula (end-
effector) from one point to another while maintaining friction
constraints to prevent the burger from slipping. Similarly, for
pickup and flip burger behavior, the robot has to pick the
burger using its spatula and flip in such a way that the under
side of burger faces up after the completion of flip.

Related work on direct collocation. Direct collocation based
trajectory optimization [12] has been successfully realized in a
wide variety of robotic systems like bipeds [11], [13]. Similar
in flavor to our problem statement is the throwing of balls [14],
which not only focuses on obtaining optimal trajectories but
also on the shape of the end-effector. Our problem statement
requires searching for multi-segmented trajectories for a 6-
DOF robot. [13] also used direct methods along with linear
complementarity constraints in order to handle multiple types
of contact conditions. The key difference with our methods is
the Lagrangian formulation of the dynamics and the use of
defect variables that resulted in faster optimization (see [11]).

Section II consists of the robot model, Section III provides
a brief review on direct collocation. Section IV consists of a
detailed description of the constraints utilized to realize various
types of behaviors in the 6-DOF robot arm. Finally, Section
V describes the experimental results, and gives concluding
remarks.

Fig. 2: Figure showing the spatula holding a freshly cooked
burger. Accelerations and orientations along x,y,z directions
are shown.

II. MODEL

This section describes the basic model of a typical burger
cooking platform. Fig. 1 shows a robot along with the cooking
setup consisting of a grill and a table. The robot considered
is of the form given by Fig. 1 that allows the end-effector to
be fitted with a spatula of appropriate size (based upon the
diameter and weight of the burger). See Fig. 2 for an example
spatula that is holding a freshly cooked burger. We will
briefly describe the robot model first and then the remaining
components, namely the spatula and the burger.

A. Robot model

We consider a n-DOF robot manipulator (n = 6), and the
corresponding configuration space Q. The configuration q =
(q1, q2, q3, q4, q5, q6) ∈ Q consists of n joint angles. Therefore,
we denote the state x := (q, q̇) ∈ TQ. We will denote the
torque input u, which is of dimension m (= 6). Given the
states, and the inputs, the Euler-Lagrangian dynamics are given
by:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (1)

where D(q) ∈ Rn×n is the positive definite inertia ma-
trix, C(q, q̇) ∈ Rn×n is the Coriolis-centrifugal matrix, and
G(q) ∈ Rn is the gravity vector, B ∈ Rn×m is the one-on-
one mapping of the torques to the joints. Equation (1) can be
represented in state space form in the following fashion:

ẋ = f(x) + g(x)u, (2)

where f and g can be appropriately obtained [15, eqn. (13)].

B. End-effector or spatula model

Let px, py , pz be the positions, vx, vy , vz be the velocities,
and ax, ay , az be the accelerations of the spatula center along
x, y, z directions respectively. We can put these variables in
vector form as

p =

pxpy
pz

 , v =

vxvy
vz

 , a =

axay
az

 . (3)
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The orientation of the spatula is also similarly defined: o =
[ox, oy, oz]

T . Note that the positions are functions of the
configuration q, velocities are functions of the state (q, q̇),
and the accelerations are functions of the state and angular
accelerations (q, q̇, q̈). Having defined the positions, velocities,
accelerations and orientations of the robot end-effector, we
have the first set of constraints imposed due to hardware and
workspace limitations of the robot.

Constraint 1: Position p, velocity v, acceleration a, and
also the orientation o have lower and upper bounds i.e., there
exist δ�,min, δ�,max > 0, where � ∈ {p, v, a, o}, such that

δp,min < p < δp,max, δv,min < v < δv,max

δa,min < a < δa,max, δo,min < o < δo,max. (4)

The center of the burger may not necessarily be aligned
with the center of the spatula. This is overcome by imposing
friction constraints at multiple points on the spatula. For the
purposes of analysis, we will assume that the centers are
perfectly aligned. We can now describe the burger model and
also the interactive forces between the burger and the spatula.

C. Burger model
For the burger model, we consider a disc of constant

diameter d and of rigid mass m kg. The mass distribution
is assumed to be uniform. It is also further assumed that the
co-efficient of friction between the spatula and the burger is
not lower than µ. Let lw be the width and ll be the length
of the spatula. Given the robot model (1), and the associated
position, velocity, accelerations of the spatula center, we have
the following description of the normal force normalized by
the mass of the burger (see Fig. 3):

Fn
m

(a, o) = gc(ox)c(oy) + azc(ox)c(oy)− ays(ox)s(oy),

where s(ox) := sin(ox), c(ox) := cos(ox), and g is acceler-
ation due to gravity. Given the normalized normal force Fn

m ,
the goal is to restrict the tangential forces Fx, Fy acting along
the horizontal directions of the robot. These are given by
Fx
m

(a, o) = −ayc(ox)c(oy)− gs(ox)s(oy)− azs(ox)s(oy)

Fy
m

(a, o) = −axc(ox)c(oy) + gs(ox)s(oy) + azs(ox)s(oy).

In order to prevent slipping of the burger, the normal force
acting on the burger must be positive, and must be at least as
much as µ−1 times the tangential forces, i.e.,

Fn(a, o) ≥ 0

|Fx(a, o)| ≤ µFn(a, o)

|Fy(a, o)| ≤ µFn(a, o). (5)

Having described the model, we will now describe the behav-
iors to be realized in the robot.

D. Behaviors
We will provide a brief description of the two behaviors

translate burger behavior and pickup and flip burger behavior
below.

Fig. 3: Figure indicates the forces acting on the burger. The
tangential force must be restricted by the friction forces.

1) Translate burger behavior: This behavior is required if
the user has to transport the burger from point A to point B.
This task is mainly used to move a freshly cooked burger from
the grill to the table. Slipping constraints need to be satisfied
in order to execute this task.

2) Pickup and flip burger behavior: This behavior can be
further divided into five subbehaviors:
• Go to burger location: Given the burger location in x,y,z

coordinates, the spatula is moved from its home position
to scoop-ready position. In this subbehavior, the spatula
is tilted in such a way that its tip is in contact with the
grill, waiting for the next action.

• Scoop: The tip of the spatula is made to slide on the grill
in such a way that the spatula slides under the burger.

• Pickup: The spatula is moved upwards along with the
burger. This subbehavior is required in order to prepare
for the flipping behavior.

• Flip: The spatula is turned by almost 180◦ in such a way
that the burger lands on its other side on the grill. The
take-off angular velocity from the spatula is crucial for a
perfect landing of the burger.

• Turn back: Spatula is rotated back to 0◦, waiting for a
new task request.

See Fig. 4 for the pictorial representation of each of the sub-
behaviors of pickup and flip burger behavior. These behaviors
are used as templates for the creation of optimal trajectories
via trajectory optimization [11]. This is explained more in the
next section.

III. TRAJECTORY OPTIMIZATION

Trajectory optimization involves designing an optimal tra-
jectory via some measure of performance while satisfying
a set of constraints. For the robotic system considered in
this paper, the measure of performance can be either power
consumption, torque inputs or even the time duration of the
trajectory. The set of constraints includes an array of equalities
and inequalities that includes limits, terminal conditions, and
also friction conditions.

The problem of trajectory optimization is typically solved
via transcription [16]. As mentioned previously, the end-
effector space optimization yields feasible solutions reasonably
fast, but with a risk: the inverse kinematics solver needed to
convert back to joint-space could be infeasible. We will instead
employ the joint-space optimization technique that will yield
optimal joint angle, velocity and control trajectories, x(t),
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(a) Starting position of the robot. Burger is located on the grill. (b) The spatula goes to the scoop-ready position.

(c) Scooping action is executed. (d) With the burger on top, the spatula is lifted.

(e) Flipping action is executed. (f) After flipping, spatula is rotated back, waiting for its next task.

Fig. 4: Figures showing each of the subbehaviors throughout the course of the flipping trajectory.

u(t), as functions of time. This paper utilizes the following
general optimization problem:

(x∗(t), u∗(t)) = argmin
x,u

Cost(x, u) :=

∫ T

0

Φ(x(t), u(t))dt

s.t. ẋ(t) = f(x(t)) + g(x(t))u(t)

Other constraints,

where Cost is the objective function that is desired to be
minimized subject to a list of constraints. By a slight abuse of
notations, here we are searching for x, u in the function space:
x : R≥0 → TQ, u : R≥0 → Rm. The function Φ is the cost
at each time instant t. The process of transcription is applied
to this optimization problem to obtain an NLP formulation.

Essentially, we discretize based on evenly spaced time ti,
where i = 0, 1, 2...N is defined as the grid index. Let xi =

(qi, q̇i) and ẋi be the state and its derivative at node i. Similarly
let ui be the control law that is applied at ti. If we choose to
minimize torque, we have the following objective function2:

Cost(u0,u1, . . . ) :=

N∑
i=0

u2
i , (6)

along with the following dynamics constraint:

2Note that the experimental robot platform uses its own PD based position
control laws for tracking. After obtaining the optimal joint angle trajectories,
these are seeded as desired positions and velocities to the robot. Torque
minimization might seem counter-intuitive, but this procedure results in lower
differences between a model based and a PD based control law on the
trajectory. For example, like in [17], linear feedback laws yield lower ultimate
bounds for trajectories that require lower torque inputs.
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Fig. 5: Figure showing the defect constraints. δi corresponds
to (8) and ξi corresponds to (9). We chose the number of nodes
to be 21, N = 20.

Constraint 2: For each ti (each node), we have the follow-
ing dynamics based constraint, written as a function of states
and accelerations:

D(qi)q̈i + C(qi, q̇i)q̇i +G(qi) = Bui, (7)

which is used as an implicit constraint in the optimization
scheme. This type of constraint is preferred over (2), since the
evaluation of f ,g involves the computation of D−1.

Constraint 3: We use the following collocation scheme:

x̄i =
xi−1 + xi+1

2
+ Mti

ẋi−1 − ẋi+1

8

xi+1 − xi−1 −
1

6
Mti(ẋi−1 + 4 ˙̄xi + ẋi+1) = 0

δi = xi − x̄i = 0 (8)
ξi = ẋi − ˙̄xi = 0, (9)

where Mti = ti+1 − ti−1. δi, ξi are the defect variables (see
Fig. 5).

In summary, the nonlinear dynamics are treated as an equal-
ity constraint with the use of implicit Runge-Kutta methods
and defect variables [12]. Given the objective function (6) and
the Constraints 2-3, the general optimization can be trans-
formed to the following direct collocation based optimization
problem:

Z∗ = argmin
Z

J(Z) (10)

s.t. Zmin ≤ Z ≤ Zmax (11)

Cmin ≤ C(Z)≤ Cmax, (12)

where Z = {(qi, q̇i, q̈i, ui) : 0 ≤ i ≤ N} is the set of
decision variables, J(Z) = Cost(uo,u1, . . . ) is the objective
function, and C(Z) is a collection of constraints. Z�, C�

with � ∈ {min,max} are the limits. By utilizing this NLP
along with additional constraints, we are able to generate the
desired behaviors within seconds, whereas previous methods
would require minutes or even hours to converge to a feasible
solution [18]. We will describe additional constraints next.

IV. ADDITIONAL CONSTRAINTS

We will describe the additional constraints used to obtain
translate and flipping trajectories in the robot. Position, ve-
locity, acceleration and orientation limits of the spatula were
described previously (Constraint 1). We will describe the
remaining constraints below.

Constraint 4: Joint angle, velocity and acceleration limits:
similar to Constraint 1, we have lower and upper limits
on the joint states and accelerations. Therefore, we have
qmin,qmax,q̇min,q̇max and q̈min,q̈max such that

qmin ≤ qi ≤ qmax

q̇min ≤ q̇i ≤ q̇max

q̈min ≤ q̈i ≤ q̈max, i = 0, 1, 2, . . . , N. (13)

Hereafter we will assume that i ∈ {0, 1, 2, . . . , N} unless
otherwise mentioned.

Constraint 5: Torque limits: we have constant vectors umin

and umax such that

umin ≤ ui ≤ umax. (14)

A. Desired trajectory polynomials

The desired trajectories for each subbehavior are Beziér
polynomials [11, eqn. (11)]:

Pj(t) =

6∑
k=0

tk(1− t)6−kαkj
6!

(6− k)!
, t ∈ [0, T ], (15)

where j = 1, 2, . . . , 6 and α0j , α1j , . . . are the coefficients
of the polynomial for joint j. The time t varies from 0 to T .
It is important to note that the parameters αkj and the total
time T are also NLP variables that can be optimally obtained
along with the rest of the NLP variables.

Constraint 6: For Tmin,Tmax > 0, we have the terminal
constraints on time as

Tmin ≤ T ≤ Tmax, t0 = 0, tN = T. (16)

For 6 joint angles, we have six polynomials P1(t), P2(t),
P3(t), . . . , and the corresponding output vector form

y(q, t) =
[
q1 − P1(t), q2 − P2(t), . . . , q6 − P6(t)

]T
, (17)

where the goal is to drive this output vector y → 0. We
therefore impose the following constraints (see [11, C5, C6,
C10, C11] for the motivation for these, wherein they enforce
convergence of the outputs):

Constraint 7: For each ti and for some desired rate ε > 0

ÿ(qi, q̇i, q̈i, ti) + 2εẏ(qi, q̇i, ti) + ε2y(qi, ti) = 0

y(q0, 0) = 0, ẏ(q0, q̇0, 0) = 0. (18)

B. Friction cone constraints

The friction constraints used in the NLP formulation are
slightly different than the inequalities specified in (5). Given
the orientation of the spatula described as a function of the
configuration q: o(q) = [ox(q), oy(q), oz(q)]

T , we can define
rotation matrices Rx(q), Ry(q), Rz(q) that define the rotations
around x,y,z axes respectively. With these rotation matrices,
we have the total orientation of the spatula (end-effector) as
R(q) = Rz(q)×Ry(q)×Rx(q). The orientation of the normal
vector of the spatula (axis perpendicular to the spatula) is
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described as Fn(q) := R(q) ×
[
0 0 1

]T
. Similarly, we

denote the normalized acceleration Fa of the burger as

Fa(q, q̇, q̈) =
1√

a2x + a2y + a2z

axay
az

 , (19)

where the arguments for ax,ay ,az are suppressed for conve-
nience. Having defined the normal vector Fn and the normal-
ized acceleration vector Fa, we have the following constraint.

Constraint 8: Given the coefficient of friction µ, we have
the inner product of these two vectors satisfying the following:

〈Fn(qi), Fa(qi, q̇i, q̈i)〉 ≥ cos(µ), (20)

which ensures that the burger does not slip.

C. Subbehavior based constraints

We have the following subbehavior based constraints:
1) Constraints for translate burger behavior: Given the

current configuration of the robot, with the burger on the
spatula, the goal is to attain a desired position and orientation
for the spatula while maintaining the burger on the spatula.
Therefore, for this type of subbehavior, we have the friction
cone constraints (Constraint 8) satisfied along with the follow-
ing additional constraints.

Constraint 9: Let qs be the starting configuration of the
robot, and let pN , oN be the desired final position and
orientation of the end effector respectively. We have

q0 = qs, q̇0 = 0, q̇N = 0,

p(qN ) = pN , o(qN ) = oN . (21)

We will now describe the constraints for each subbehavior in
the pickup and flip burger behavior.

2) Constraints for go to burger location: For this subbe-
havior, given the location of the burger pb = [pbx, p

b
y, p

b
z]
T and

the starting configuration qs, the spatula is tilted in the positive
pitch direction (oy) by around o∗y = 0.314 rad (in order to get
ready for the scoop subbehavior), and its tip is placed very
close to the edge of the burger (pbx − 1

2d). Accordingly, we
have the following constraints.

Constraint 10: Go to burger constraints:

p(qN ) =

pbx − 1
2d−

1
2 ll cos(o∗y)

pby
pbz + 1

2 ll sin(o∗y)

 , ṗ(qN ) = 0

o(qN ) =

 0
o∗y
0

 , ȯ(qN ) = 0

q0 = qs, q̇0 = 0. (22)

3) Constraints for scoop: For the scoop action, the con-
straints imposed for the end points of the previous subbehavior
are now imposed for the starting points of this behavior. The
end points of this behavior are in turn constrained such that
the spatula is perfectly lying flat below the burger.

Constraint 11: Scoop behavior constraints:

p(q0) =

pbx − 1
2d−

1
2 ll cos(o∗y)

pby
pbz + 1

2 ll sin(o∗y)

 , o(q0) =

 0
o∗y
0


p(qN ) = pb, o(qN ) = 0. (23)

The front edge of the spatula should be touching the grill:
Constraint 12: Given the grill height hg , we have

pz(qi)−
1

2
ll sin(oy(qi)) = hg. (24)

4) Constraints for pickup: For the pickup action, the start-
ing points in turn satisfy the end point constraints of the
previous subbehavior (which will be omitted for this and also
the remaining subbehaviors to avoid repetition), and the end
points will be such that the burger is lifted around 2cm forward
and 5 cm above pb.

Constraint 13: Pickup constraints:

p(qN ) =

pbx + 0.02
pby

pbz + 0.05

 , o(qN ) =

 0
−0.05

0

 . (25)

5) Constraints for flipping: For the flipping action, the
trajectory is designed in such a way that the friction cone
constraints are satisfied for 60% of the total time. The spatula
is also forced to point downwards and stay clear of the grill
when the trajectory reaches its end. In addition, we also
ensure that the spatula has minimal yaw angle throughout the
trajectory, in order to prevent twisting of the arm. Therefore,
we have the following constraints.

Constraint 14: Burger flipping constraints:

〈Fn(qi), Fa(qi,q̇i, q̈i)〉 ≥ cos(µ), 0 ≤ i ≤ 0.6N

[−0.5,−0.5,−1]T ≤ Fn(qN ) ≤ [0, 0.5,−0.8]T

[0.6,−1,−1]T ≤ R(qi)× [1, 0, 0]T ≤ [1, 1, 1]T

hg + 0.1 ≤ pz(qN ) ≤ hg + 0.4. (26)

6) Constraints for turning back: For the turn back action,
the spatula that is pointing downwards is rotated back. In ad-
dition, we typically enforce the robot to its home configuration
qhome so that it can be ready for its new task.

Constraint 15: Turning back constraints:

o(qN ) = 0, qN = qhome. (27)

Final NLP formulation. Due to the addition of the constraints
and also other parameters like αkj’s and T , we have the new
set of augmented decision variables {α, T,Z }. The trajectory
optimization problem in its NLP formulation extending (10)
is now described as

{α∗, T ∗,Z ∗} = argmin
α,T,Z

J(α,T,Z ) (28)

s.t. Zmin ≤ Z ≤ Zmax

αmin ≤ α ≤ αmax

Tmin ≤ T ≤ Tmax

Cmin ≤ C(α,T,Z) ≤Cmax,
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Fig. 6: Comparison between the actual (blue) and desired (red)
end-effector positions during the translation of a burger across
six points.

where C consists of the list of constraints. For each subbe-
havior α ∈ R42, T ∈ R≥0 and Z ∈ R504. So the total number
of decision variables is 547. This NLP is then solved using
IPOPT with the linear solver ma57 [19].

D. End-point constraints

We need to ensure that the trajectories switch smoothly from
one subbehavior to another. An alternative option would have
been to include the decision variables of all the subbehaviors in
one optimization problem. Due to constraints on optimization
time, we generate the optimal trajectories sequentially and feed
to the robot one after the other. Accordingly, we need to ensure
that starting states for the current subbehavior match with that
of the previous subbehavior.

Constraint 16: Let x− = (q−, q̇−) be the ending state of
the previous subbehavior. We have constraints on the starting
state as

q0 = q−, q̇0 = q̇−, (29)

which are included in the constraint set C in (28).

V. RESULTS AND CONCLUSIONS

We will describe the experimental results in this section. For
verifying translate burger behavior, we created six key points,
three on the grill and three on the tray side of the robot. The
optimal trajectories were generated from each key point to
the next key point. Fig. 6 shows the comparison between the
simulated (desired) and experimental (actual) trajectories for
each of the joints of the robot.

For verifying pickup and flip, we placed a burger patty on
the grill and obtained its location via the camera (by employing
machine learning techniques). With this information and also
the current configuration of the robot, the optimization for the
five subbehaviors: go to burger location, scoop, pickup, flip,
and rotate back were executed one after the other. Note that the
robot stores these trajectories as soon as they are available, and
its internal scheduler has its own time set for the execution of

these trajectories. Fig. 7 shows the comparison between sim-
ulated (desired) and experimental (actual) trajectories of the
end-effector. Videos demonstrating both the main behaviors
in the robot are provided in Table I.

Location

p = (pbx, p
b
y , p

b
z)(m)

Success ratio (out of 10 trials)

scoop pickup flip
(+0.64,−0.33, 0.073) 7/10 7/10 7/10
(+0.75,+0.00, 0, 073) 10/10 9/10 9/10
(+0.76,+0.09, 0.072) 10/10 10/10 10/10
(+0.64,−0.33, 0.072) 10/10 10/10 10/10
(+0.68,−0.31, 0.072) 10/10 10/10 10/10
(+0.69,−0.16, 0.072) 10/10 10/10 10/10
(+0.73,−0.13, 0.072) 9/10 9/10 9/10
(+0.73,−0.18, 0.072) 10/10 10/10 10/10
(+0.75,−0.45, 0.072) 10/10 10/10 10/10
(+0.84,+0.12, 0.072) 10/10 10/10 10/10
Video list:
Behaviors: https://youtu.be/cBhngkE0WLY
Robustness: https://youtu.be/Gau0hgkZSbg

TABLE I: Table showing the success ratio of scoop, pickup
and flip subbehaviors for different locations on the grill.

Robustness. To analyze the success ratio of the flipping
trajectories, we picked ten arbitrary locations, widely spread
across the grill area. These locations are provided in the first
column of Table I. Optimal trajectories were obtained for these
ten locations and executed in the robot. We mainly focused
on determining the success ratio of scoop, pickup and flip
operations (contacts are made only during these three sub-
behaviors). The scoop operation is considered successful if at
least half of the burger is over the spatula after the completion
of this behavior. Similarly, pickup is considered successful if
the spatula is successfully able to separate the burger from
the grill, and finally, the flip operation is considered a success
if the burger maintains contact for at least 60% of the entire
duration, and then lands on its other side. In addition, the
burger has to fall in the designated area within some acceptable
margins (5cm in x and y directions). The success ratio for each
subbehavior is shown in Table I. A robustness video for some
of these trials is also given in Table I.

Burger flipping with the described method is very sensi-
tive to location, including grill height. Even millimeter-level
changes result in different outcomes (compare the first and
fourth row in Table I, and also see the robustness video to
view the perturbation analysis on the x− y plane). There are
also indirect factors that affect the success ratio. For example,
too much grease makes the burgers slippery, and low grill
temperature makes the burgers sticky. Success ratio is affected
even further if the burgers are partially twisted, damaged or
torn.
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