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Abstract—Lyapunov-like conditions that utilize generaliza- these conditions, we first show that Lagrangian hybrid sys-
tions of energy and barrier functions certifying Zeno behavior  tems with isolated Zeno equilibria must necessarily have a
near Zeno equilibria are presented. To better illustrate these  on6_gimensional configuration space. This simple structure
cond_ltlons, we will study them in the context of Lagrangian allows us to explicitly construct the desired Lvapunov-
hybrid systems. Through the observation that Lagrangian ¢ > phcitly : yap .
hybrid systems with isolated Zeno equilibria must have a one- like functions that prove the existence of Zeno behavior.
dimensional configuration space, we utilize our Lyapunov-like Moreover, due to the explicit nature of these functions, we
conditions to obtain easily verifiable necessary and sufficient gre able to demonstrate that one can check for the existence
conditions for the existence of Zeno behavior in systems of this 5,4 nonexistence of Zeno behavior by evaluating functions
form. given in the system description at a single point. This result

|. INTRODUCTION represents, to t.h.e authors’ knowledge, theT or_1|y known nec-
. : . . _ .. essary and sufficient result for Zeno behavior in uncontrolled

Zeno behavior occurs in a hybrid system if an infinitg, yiq systems. Necessary and sufficent conditions for Zeno
number of discrete transitions occur in a finite amount ofenavior in a significantly different class of controlled hybrid
time. The goal of this paper is to study a specific typ%ystems were found in [4].
of Zeno behavior, namely, Zeno behavior that occurs near ajihough results presented in this paper make gains toward
isolated Zeno equilibria A Zeno equilibrium is a set of 4 petier understanding of Zeno behavior, they also indicate

points in the continuous domains of a hybrid system that ag,ssiple future research directions. The most compelling
invariant under the discrete dynamics (but not the continuoys ihese is motivated by the fact that isolated Zeno equi-

dyr_1amics). Isol_a_tec_i Zeno equilibria form the Zeno_ analogugyria only occur in Lagrangian hybrid systems with one-
of isolated equilibria. Just as there can be complicated S€fgnensional configuration spaces, indicating that to under-
of equilibria in dynamical systems, there can be much morg,nq zeno behavior in Lagrangian hybrid systems, more
complicated sets of Zeno equilibria. Yet as the study ofympjicated sets of Zeno equilibria must be studied. Also,
isolated equilibria of dynamical systems has been hugely,e to the Lyapunov-like nature of the sufficient conditions
successful, we believe that an important first step {0 thgesented, the hope is that in the future these conditions could
understanding of Zeno behavior is the detailed study ¢fe aytomated. Finally, the Lyapunov-like conditions given
isolated Zeno equilibria. _ _in this paper also imply that Zeno executions converge to
The two main results of this paper are: Lyapunov-likgne zeng equilibria; that is, Zeno behavior is closely related
sufficient conditions for existence of Zeno behavior neagy the stability of Zeno equilibria. This relationship was
isolatgd equilibria, and a characterizatio_n of Zeqo behavigfist noticed in [5], where th@symptoticstability of Zeno
near isolated Zeno equilibria of Lagrangian hybrid systemgqilibria was studied; in fact, the Lyapunov-like conditions
Unlike classical Lyapunov theory, our Lyapunov-like conyresented in that work are very similar to the conditions
ditions for the existence of Zeno behavior actually i”V°|V9presented in this paper. Yet, the claim made in [5] that the
two functions on each domain. The first function is used in gsymptotic stability of Zeno equilibria implies the existence
manner similar to standard Lyapunov functions, i.e., it is usegk zeno behavior has since proven to be incorrect. Therefore,
to prove positive invariance of compact sets around our ZeRRe connection between the stability of Zeno equilibria
equilibria. The second function is a barrier function [1] usegnq zeno behavior still remains to be made, although this

to capture explicit information about how long an executiorbaper provides strong evidence for the existence of such a
spends in a continuous domain. In addition, these functioRg)nnection.

appear to be searchable via polynomial optimization [2], [3]. pue to the subtle and complex nature of Zeno behavior,

Therefore, this result works toward the goal of automateg has peen studied in many forms and from many different

analysis of hybrid systems. o ~ perspectives. Most of the conditions for Zeno behavior are
The second main result presented in this paper givgfecessary and tend to be very conservative; see [6], [7],

necessary and sufficient conditions for Zeno behavior negs] for general hybrid systems, and [9], [10] for linear

isolated Zeno equilibria of Lagrangian hybrid systems, whicBomplementarity systems. Obtaining sufficient conditions for

model mechanical systems undergoing impacts. To obtajRe existence of Zeno behavior seems to be a much more

. ) ) challenging task. Therefore, very few such conditions have

A. Lamperski and A. D. Ames are with Control and Dynamical Sys-

tems Department, California Institute of Technology, Pasadena, CA 9115?-5:"en giV?n .tO date and those th?-t have been obtained apply
{andyl,ames }@cds.caltech.edu to very limited classes of hybrid systems [11]. We also



note that this paper studies Zeno behavior in Lagrangidaife require that whem, i +1 € A,
hybrid systems, which were studied in [12], [13] and [14] .
a)sl motiv{;lted by [15]. Finally, the characl;tegizgticgn of Z[enl) (1) ci(t) € Doy ¥ t €L
behavior presented in this paper complements the topologicap?,) i(Ti+1) € Go(0) p(i+1) @
characterization of Zeno behavior presented in [16]. (i) Riptiyp() (€i(Ti41)) = Ciga(Tiga).
Wheni = |A| — 1, we still require that (i) holds.
Note that the continuous initial condition of an execution
In this section, we introduce the basic notations on whicl iS given bycy(7o) € D, (). The discrete initial condition
the rest of the paper will build. That is, we define hybrids given byp(0).
systems, executions, Zeno equilibria and convergence toThe object of study in this paper will be Zeno executions,
Zeno equilibria. which are defined in the following manner:

Definition 1: A hybrid system on a cyclis a tuple: Definition 3: An executiony is Zenoif A = N and

II. HYBRID SYSTEMS & ZENO EQUILIBRIA

A = (T,D,G,R,F -
( YT e )7 hm Ti:TO+ZTi+1_Ti:Too
i—00

where =0
« I'=(Q,E) is a directed cycle, with for some finiter, € R.
A hybrid system.# is Zend if there exists a Zeno
Q = {q, - qr-1}, executiony such thatr;.; — 7; # 0 for somei € N.
E = {eo=(q90,q01),e1=(q1,9), Zeno behavior can be likened to stability, in that both types
oven—1 = (qr-1,q0)} . of behavior involve convergence. This motivates the study

of the type of equilibria associated to Zeno behavior: Zeno
We denote the source of an edgec E by source(e)  equilibria. For more on Zeno behavior and Zeno equilibria,

and the target of an edge byrget(e). see [12].
« D = {Dy}4eq is a set ofdomains where D, is a Definition 4: A Zeno equilibriaof a hybrid systemy# =
smooth manifold. (I,D,G,R,F)isaset = {z,}4c0 satisfying the following
e G = {G.}ecr is a set ofguards where G. C  gnditions for allg € Q:

Dgource(e) i1s and embedded submanifold B rce(e)-

H _ !
e R={R.}.cp Is a set ofreset mapswhereR, : G, C « For the unique edge = (¢,¢') € &

Dsource(e) - Dtarget(e) is a smooth map. - Zq € Ge,
o F = {f,}4eq, Wheref, : D, — TD, is a Lipschitz — Re(zg) = 2¢,
vector field onD,. o fy(zq) #0.

Remark 1: Note that the motivation for considering hy- A Zeno equilibriumz = {z,},cq is isolatedif there are
brid systems on cycles, rather than hybrid systems on genef@ighborhooddV, C D,, ¢ € @, such that there does not
graphs, is that cycles are indicative of Zeno behavior (see [6KiSt another Zeno equilibriura = {Z,},eq with 2, € W,
and [8]). Therefore, beginning with hybrid systems definefPr all ¢ € Q.
on cycles will greatly simplify our analysis, while still Note that, in particular, the conditions given in Definition
capturing characteristic types of Zeno behavior. 4 imply that for alli € {0,... .k — 1},

Definition 2: An executionof a hybrid systemsZ =
(T,D,G, R, F) is a tuple: Y y Re,jo---0ReyoRe, 0 0Re (2)= 2.
That is, the element; is a fixed point under the reset maps

composed in a cyclic manner.

where Definition 5: An executiony with A = N convergedo a
zeno equilibriumz = {z,},cq If given any neighborhoods
W, with z, € W, for all ¢ € Q, there existg € A such that

x=(A1,p,C)

« A =1{0,1,2,...} C Nis a finite or infinite indexing

set, .

o I = {I;};cn Where for eachi € A, I; is defined as ck(t) € Wy for all k = j and allt € Iy
follows: I; = [ri, 7ita] if 4,0 +1 € AandIn-1 = ||| LyapuNOV-LIKE CONDITIONS FOR THEEXISTENCE
[Tn—1,7n] OF [Tn—1,7n) OF [Ty_1,00) if |A] = N, OF ZENO BEHAVIOR

N finite. Here, for alli,i +1 € A, 7; < 711 with ] ] ] o N
.71 € R, and7y_; < 7y With 7y_1, 7y € R. This section presents Lyapunov-like sufficient conditions

« p: A — Qis a map such that for all,i + 1 ¢ A, for the existence of Zeno behavior in hybrid systems on
(p(i), p(i + 1)) € E. This is thediscrete componerdf cycles. These results apply to a general class of hybrid

the execution. . i _ L

C = kY . t of fi traiectoriesand The motivation for this definition is that we want to exclude the
® = {Cz}zeA !S a set orcontinuous trajectorie possibility that a hybrid system is “trivally” Zeno, i.e., the only Zeno

they must satisfy; () = fqe(ci(t)) for t € I;. executions are executions that begin at a Zeno Equilibria



systems, and are fundamental in establishing the results such thatz(r) € G. whenz(0) € Qf, where here
presented in the Section V. e=(q,q).
Conditions for Zeno behavior. We begin by introducing Proof: Similar to Lyapunov's theorem=C1 implies

the conditions that will imply the existence of Zeno behaviorthat whena > 0 is small enough, the connected component
These involve conditions on the continuous and discretf the set:
portion of the hybrid system, together with the “convergence Sy ={reW,:Vy(z) <a} 2
conditions” that indicate how executions will tend toward - . . .
. " . containingz, is compact and contains a neighborhood pf
Zeno equilibria. As these conditions are, in some sens . . -
o . o - b we can restrictV, to a neighborhoodV, so that
analogous to stability conditions, it is not surprising that they B
involve Lyapunov-like functions. In fact, on each domain, Qp ={zeW,:Vy(z) <a} 3)
they utilize two such functions—one is analogous to a . .
standard Lyapunov function, while the other is analogouI connected and compact. Furth@f contains a neighbor-
. . S ood Z, of z,.
to a Barrier function [1]—that will interact through the Sincé we %ave onlv a finite number of domains. we can
“convergence conditions.” Our conditions closely resembleick W and a sin I)e/z such thatQe is connecte,d and
the conditions given in [5] but avoid problems arising fro a glea a
slow convergence by enforcing geometric convergen€g&lin compact for each domain.
o . From EC2, if z(0) € Qf, thenxz(t) € Qf forall t > 0
Let {z4}qeq be a Zeno equilibrium of & hybrid system as long ase(t) € D That is x(t) remains inQ2 unless an
I, zg € Wy C D, be open neighborhoods af, for all g « ' a

L event occurs.
q € Q Vo, By € C. (quR) and.r <L @ > 0 andb > . Now we useEC3 andEC4 to show that events occur in
0 be constants. With this notation, consider the followmqinite time. Let

conditions:

] N —v, = max By(x (4)
Continuous Conditions for Events: 1 weag @)
ECL: Vy(x) > 0 forall z € W, \ {2} and SinceQy is compact and3,(z) < 0 for z € Q% C W, we
Vy(zg) =0 forallg € Q. must havey, > 0. So fort >0
EC2: V,(z) = dVy(z)- fy(x) <Oforall z € W, -
andqg € Q. By(2(t)) = By(2(0)) +/ By(2(0))do < By(x(0)) —gt.
0

EC3: By(x) >0 for all z € W, andq € Q.
EC4: B,(x) = dB,(z) - f,(x) < 0 for all = €
W,, andg € Q.

Therefore, z(t) must reach the guard within timg* =
B, (2(0))/~, by EC3. m

Discrete Condition for Events: Lemma 2: If conditions ECl—I_EQ4 and ED1 hold, then
_ for eachzy € Q%, with o > 0 sufficiently small, there exists a
EDL: Vi (Re(2)) < Vy(x) for all 2 € Ge 0 W, unique executiony = (A, I, p, C) with co(10) = xo, p(0) =
q € @ and the unique edge= (¢,q’). gandA = N.

Convergence Conditions: Proof: Continuity of R, and ED1) imply that fora >

Cl: There existg € Q such thal/y/ (Re(z)) < 0 asinLemma 1 and at = (q,¢') € E, Re(GeNQZ) C
rVy(x) for all z € G N W,. Qo
C2: By(z) < b(Vy(x))* for all x € Re(Ge) N Let co(0) = zo € 2. Assume without loss of generality
Wy, g € @ and the unique edge= (¢, q). that ¢ = ¢o. Then, since our hybrid system evolves on a
With these conditions in hand, we now present the maiflirected cycle, conditionsi)¢(iii) in (1) imply that
result of this section. (i) = g;, i:=14 mod |Q|

Theorem 1: Let{z,},cq be anisolated Zeno equilibrium So b . Qo
of a hybrid systenv#. If conditionsEC1-EC4,ED1,Cland =% %Y constructiongo (7o) € €2). N
C2 hold, then there exists a neighborhogg of z, for all Now, inductively assume thati(r:) € €1, for some
¢ € Q such that for allz, € Z, there exists a Zeno execution? = V- From Lemma 1, we can extend|(7;) to a solution
x = (A, I, p, C) with (7o) = a0. Therefore,# is Zeno. ci(t) of & = f,;)(x) such that at some finite timg, 1, we
. , havec;(ri11) € Ge; N Q). From aboveR, (ci(Ti+1)) €
We prove this theorem using two lemmas. Qg(iJrl)' Thereforec; (7;) € QZ‘@ implies thatci i (ri1) €
Lemma 1: Let z(¢) be the solution toz = f,(z). If 1)
conditionsEC1-EC4 hold, then there exists a compact set The'above argument holds inductively, sedfry) € O

. . 90’
Qy C W,, indexed bya > 0, and a positive constant;  then¢,(r,) extends to a unique execution= (A, I, p, C('))

with the following properties: with A = N. ]
« There exists an open sgf, such thatz, € Z, C Q. We will now use Lemmas 1 and 2 to prove Theorem 1

« There exists a time Proof: [of Theorem L Take 2y € Q2. Let x be the

< B, (z(0)) < o unique infinite execution witl(79) = z¢ € €25 . We show

Yq the total time spent iD, is finite.



Repeated applications @1 show that Definition 6: A hybrid Lagrangianis a tuple, L =
(©, L, h), where

V,, (c; ; <rV, (a . 5
_ w(¢1QI(Tie)) < 17 Va (¢o(70)) ®) « © C R" is the configuration space,
Since A = N and c;q((t) € Wy, for all j > 0, t € Ijq) o L:TO — R is a Lagrangian of the form give in (6),
we can assume without loss of generality thag (7q|) € « h:© — R is aunilateral constraint functionwhere

Re o (Geyg) N Wy,. Lemma 1 guarantees that the interval  we assume tha is a regular value of.

Ljjq) has lengthr;igi1 — Tjiq) < Ba(¢jiQl(TiiQ)))/7a0-  Domains from constraints. Given a smooth (unilateral
Thus we see the total time spentin,, is constraint) functionh : © — R on a configuration space

0 1 & © such thath=1(0) is a smooth manifold, i.e., 0 is a regular
Z(TjIQIH —Tjlql) < o Z By (¢j1Q1(Tj1q1)) value ofh, we can construct a domain and a guard explicitly.
j=0 % j=0 To this constraint function we have an associated domain,
< b (Vi (co(70))° Z (ray? Dy, defined to be the rT1an|foId (with boundary):
Tao i=0 Dy, = {(0,0) € TO : h(6) > 0}.
< 00,

Similarly, we have an associated gua€d,, defined as the
where second inequality follows frol82 and (5), and the following submanifold ofDj:
final inequality follows since- < 1 anda > 0. . .
The same argument shows that the execution spends only Gn ={(0,0) € TO : h(0) = 0 and dhgt < 0},

a finite amount of time in domai, for all ¢ € Q. " wheredh(6) = ( %(9) %(9) ). Note that the
Corollary 1: Any executiony with A = N and ¢y(79) € requirement thad is a regular value of, is equivalent to

Z5(0) converges to{z,}4eq- requiring thatdh(6) # 0 whenh(#) = 0.
IV. SIMPLE HYBRID MECHANICAL SYSTEMS Lagrangian Hybrid Systems. Given a hybrid Lagrangian

= (9, L, h), the Lagrangian hybrid system associated to

Mechanical systems undergoing impacts are natural% is the hybrid system

modeled as hybrid systems. In this section, we will consider
hybrid systems of this form and demonstrate how one obtains 74, = (I = ({¢},{(¢,9)}), D1, fr,GL, RL),

such systems from hybrid Lagrangians, which are the hybrid

analogue of Lagrangians. For more on hybrid Lagrangialéhere Du = {Dn}, fu = {fr}, G = {Gn} and Ry, =
and Lagrangian hybrid systems, see [12], [13] and [14]. £} With R,.(6,0) = (6, P(6,6)), where

Lagrangians. Consider a configuration sp&c® and a  P(6,6) = (8)

LagrangianL : T®© — R given in coordinates by: ) dh(0)6
0=+ @) Tan@)”

. - o _ _ Example 1: To provide an example of the concepts intro-
where M (0) is positive definite and symmetric aid(6) is  duced in this paper, we will consider the hybrid system mod-
the potential energy. For the sake of simplicity, we assumging a pendulum impacting the ground. This system has as

© C R" since all our results are local, i.e., we can workts hybrid Lagrangian the tup/&pena = (R, Lpend; hpend )

within a coord!nate chart. The equations of motioq are thefhere L,c,4(6, 6) = %mﬂg? — mglsin(0) and hpena(6) =

given in coordinates by the Euler-Lagrange equations:  gin(g), with # the angle of the pendulum from horizontal,
d oL 0L m the mass of the bob, the length of the rod ang the
dt 90 00 0. acceleration due to gravity.

In the case of Lagrangians of the form given in (6), the From the hybrid Lagrangiafipenq, We obtain the hybrid

Euler-Lagrange equations become: model of the pendulum:

M)~ tdn(9)T.

L(6,6) = %éTM(e)é —U(h) (6)

M(0)d + C(0,0)8 + N (0) = 0, Hpena = (I'=({a}:1(0: 9}): Dpend; Gpend; Fpend; Fpena),
where C(6,0) is the Coriolis matrix and N(¢) = 27 (¢). Where Dpend = {Dhyena}s Frend = {fLpnats Gpend =

. 96 i .
Setting z = (07,07)T, the Lagrangian vector fieldfr, {Ghpena} 8NA Rpend = {Rh,..na } With
associated td. takes the familiar form 0 5 .
Dppy = {( p ) R : sin(0) > O}

0
Y = = * . . 7
0= 10 = ( o rccomi-xay ) O AU ~
_ o . hpend : R= :sin(f) =0and 6 <0
This process of associating a dynamical system to a La- ¢
grangian will be mirrored in the setting of hybrid systems

R, (0,0) = o
First, we introduce the notion of a hybrid Lagrangian. hpena (0,0) = e

2Note that we denote the configuration spacedbyather thanQ, due to fr (9 9)
the fact thatQ denotes the vertices of the graph of a hybrid system. pend 377



where hered < e < 1 is the coefficient of restitution. 1) The coefficient of restitution < 1

We note that(0,0) and(w,0) are isolated Zeno equilibria  2) sign(h’(0)) = sign(U’(0))
of H#pend. Moreover, it is easy to verify through Theorem 2 gefore proving this theorem, we note that the following
that this system is Zeno, although we will use the result§nctions:
presented in the next section to establish this fact. Also

note that this hybrid system is actually characteristic of  V(6,0) = §M(9)92 +U(0) —U(0) 9)
Lagrangian hybrid systems that have isolated Zeno equilibria
. . . ) M . M(0)2 . M
and are Zeno as will be seen in the next section. B(0,6) = U/Eg;,g + U’E8;2 62 + 2(}/2839 (10)
V. ZENO BEHAVIOR IN LAGRANGIAN HYBRID SYSTEMS
In this section, we characterize Zeno behavior in La@nd constants:
grangian hybrid systems with isolated Zeno equilibria. This 0 - 1 (11)
characterization relies, in a fundamental fashion, on the )
following proposition. M
o . . b = 2V2 VMIO) (12)
Proposition 1: If the Lagrangian hybrid system?;, has U’(0)
an isolated Zeno equilibrium, then 9
. . . T = e (13)
L1: © is one-dimensional.
L2: The Zeno equilibria takes the form will be shown to satisfy the conditions in Theorem 1, thus

o+ giving a proof of Zeno behavior in a neighborhogdof 0.
Z={( 0 )} Proof:
) ) (<) We show that wherign(h/(0)) = sign(U’(0)) and
L3: P(#,0) = —ef), where0 < e < 1 is the e < 1, the functions and constants as by equations (9)-(13),
coefficient of restitution. satisfy all the conditions of Theorem 1.

Proof: L1: If z = {(6*,6*)T} is an isolated Zeno First, since f.,(0) # 0 and {0} is an isolated Zeno

equilibrium of .7, then there exists a neighborhotid of ~ €duilibrium, we can choose an open bl around0 such
(6*,6%)T that contains no equilibria of (7) and no other zendhat W contains no other Zeno equilibria andl contains
equilibria. It follows that that(¢*, 6*)T is the unique fixed "© equilibria of f.. Let W, be the projection ofV" on the
point of R, in W. Now for (6,6) € Gy, h() = 0 and 0-@iS-

dh(0) # 0 so using the fact that/(9)~" is positive definite, We will also repeatedly use the fact that eIer_nent@Gr;]u
it follows that: Ry (Gp))NW take the form(0, ) € R2. Indeed, if(9, 6)"

) ) ) GpNW, thenh(#) = 0, by definition ofG},. By L3, h(0) =0
Ru(6,0) = (0,0) <= (dh(9)0)M ()" dh(6)T =0 imples that(0,0)7 is a Zeno equilibrium in the ballV.
— dh(e)é = 0. Thereforef) = 0 since,0 is the only Zeno equilibrium if/.

Elements ofR;,(G) N W have the same form bly3.

EC1: Proving thatl/ is positive onW \ {0} is equivalent
to showing thatU7(#) > U(0) on Wy \ {0}. By taking the
Taylor series expansion di(f) aboutd = 0, it follows

Therefore, ifdim(7y©) > 2 then dh(h)d = 0 defines a
hyperplane inly® of points in the guard, each of which is
a fixed point of R;,. Thus, whendim(©) > 2, there can be

no isolated zeno equilibria. thatsign(h(6)) = sign(h’(0)6). Now, from the Taylor series

L2 andL3 follow from L 1. .
) ) ) ~expansion ofU/, we see that
Notation 1: From this point on, we adopt the following

notation: dh() = h'(9) and &5(9) = U’(9), since we U®) —U(0) =U'(0)0 + O(6?). (14)
ill i i h f i f I .
will be interested inh and U that are functions of one rea Since we are assuming thaten(h'(0)) = sign(U"(0)),

iabl It of P ition 1. o
variable as ? re_sut © roposﬂmh h(#) > 0 implies A'(0)¢ > 0 and thusU’(0)0 > 0 on
A Characterization of Zeno Behavior. We have shown that Wi\ {0}. So U(6) — U(0) > 0 on W, \ {0} and EC1

hybrid Lagrangian systems with isolated Zeno equilibria argg)qs.
necessarily quite simple. The main result in this section gives ) .
an explicit characterization of isolated Zeno equilibria for EC2: Follows from conservation of energy.
Lagrangian hybrid systems. We note that i {(6*,0)7} is EC3: Since® is one dimensional by 1, the vector field
an isolated Zeno equilibrium of a Lagrangian hybrid systeniz becomes:

4, then we can sef* = 0 without loss of generality by

0
translating coordinates. <) = fL(gﬁ') — < IR , > )
Theorem 2: Let .73, be a Lagrangian hybrid system. If o - M) <5M 0)6°+U (9))

z = {0} is an isolated Zeno equilibrium of4,, then there is S thi tor field h ilibri ints: (15)
a neighborhood¥ of 0 such that for allx € W there exists ince this vector Tield has no equilibrium points:

. H _ H —_— . /
a unique Zeno executiop = (A, I, p, C) with ¢y(19) = = #(0,0) = _U'(0) 20, (16)

converging to{0} if and only if M (0)



M) g ~ ),

Moreover, M (0) > 0 andU’(0)§ > 0 imply T7(0)

So for (0,6)T € W, we have

M(0)?

U’(0)292+2

10, 210

U'0) = |U(0)

Therefore, defining3 as in equation (10), we have(6, §) >
0 on W. Thus we have shown th&C3 holds.

EC4: Taking the time derivative oB3, we see that

M(0)
B(0,6) = ?fﬁgiw — (1 + f‘f% eo‘)
U/(0)2 92 + 2U’(O)9

From equation (16), it follows that

M(0) -

0 =—1.

07(0) (0,0)

Therefore B is continuous at(0,0)” and B(0,0) = —1.

Thus B(#,6) < 0 in W andEC4 holds.

ED1 andC1: V(Rx(0,0)) = 2V (0,6), by L3 of Propo-
sition 1, and the definition o¥’.

C2: For (0,0)T € Ry(G) N W,

M(0) , M(0) -\
o)t (U’(O) 9)
M(0)
07(0)

_ 9y3 | VM)

B(0,0)

IA

2

10
U'(0)

Thus the relative size conditio@2 holds with constants
defined by equations (11), (12).

V(0,6)/2.

(=) Suppose that there is a neighborhddd of 0 such

that for all x € W there exists a unique Zeno execution

x = (A, I, p,C) with ¢y(79) = = that converges t¢0}.
sign(h’(0)) = sign(U’(0)): Assume thatsign(h’(0)) #
sign(U’(0)). Since{0} is a Zeno equilibrium{/’(0) # 0 by
(16). Similar to the proof oEC1, h(#) > 0 impliesh’(0)6 >
0 andU’(0)0 < 0 near0. So given any neighborhodd” of
0, there exists a neighborhoadd of 0 such thatV x {0} C
W and for alld € N\ {0}, U(0) < U(0). If x satisfies

co(10) = (00,0)T € N x {0}, thenc;(t) never reaches the [11]

open set
{(6,0)T :V(0,0) > U(h)}

which contains the origin. Thug does not converge to the [13]

origin.

e < 1: Now assume thatign(h/(0)) = sign(U’(0)) but
e = 1. Then there is a neighborhodd of the origin such
that V(0,6) > 0 on W\ {0} from the proof of ECL1. If
an executiony has co(m) = (0p,6p) € W\ {0}, then
V(ei(t)) = V(bo,6) for all i € A andt e I;. Thuse;(t)
never reaches the open set

{(6,0)T :V(6,0) < V(6o,6)}

which contains the origin. Thug does not converge to the

origin. ]
Example 2: Consider the hybrid system#?,.,q, defined

in Example 1, modeling a pendulum impacting the ground.

From the pendulum’s Lagrangian, if follows that

Upend(0) = mglsin(0) = mgl(hpena(d)),

and so
Sign(Ull)end<O)) = Sigl’l( ;)end<0))'

Therefore, the conditions of Theorem 2 hold if and only if the
coefficient of restitutiorr < 1. Thus, there is a neighborhood
W of (0,0)7 such that for all(9,6)” € W, there is a Zeno
executiony = (A, I, p,C) with ¢o(9) = (6,6) converging

to {(0,0)T} if and only if e < 1.

An analogous statement holds for the Zeno equilibrium
{(m,0)T}. As a result of Theorem 2, to prove that the
pendulum is Zeno we only needed to evaluate two known
functions at a single point.
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