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Abstract— Lyapunov-like conditions that utilize generaliza-
tions of energy and barrier functions certifying Zeno behavior
near Zeno equilibria are presented. To better illustrate these
conditions, we will study them in the context of Lagrangian
hybrid systems. Through the observation that Lagrangian
hybrid systems with isolatedZeno equilibria must have a one-
dimensional configuration space, we utilize our Lyapunov-like
conditions to obtain easily verifiable necessary and sufficient
conditions for the existence of Zeno behavior in systems of this
form.

I. I NTRODUCTION

Zeno behavior occurs in a hybrid system if an infinite
number of discrete transitions occur in a finite amount of
time. The goal of this paper is to study a specific type
of Zeno behavior, namely, Zeno behavior that occurs near
isolated Zeno equilibria. A Zeno equilibrium is a set of
points in the continuous domains of a hybrid system that are
invariant under the discrete dynamics (but not the continuous
dynamics). Isolated Zeno equilibria form the Zeno analogue
of isolated equilibria. Just as there can be complicated sets
of equilibria in dynamical systems, there can be much more
complicated sets of Zeno equilibria. Yet as the study of
isolated equilibria of dynamical systems has been hugely
successful, we believe that an important first step to the
understanding of Zeno behavior is the detailed study of
isolated Zeno equilibria.

The two main results of this paper are: Lyapunov-like
sufficient conditions for existence of Zeno behavior near
isolated equilibria, and a characterization of Zeno behavior
near isolated Zeno equilibria of Lagrangian hybrid systems.

Unlike classical Lyapunov theory, our Lyapunov-like con-
ditions for the existence of Zeno behavior actually involve
two functions on each domain. The first function is used in a
manner similar to standard Lyapunov functions, i.e., it is used
to prove positive invariance of compact sets around our Zeno
equilibria. The second function is a barrier function [1] used
to capture explicit information about how long an execution
spends in a continuous domain. In addition, these functions
appear to be searchable via polynomial optimization [2], [3].
Therefore, this result works toward the goal of automated
analysis of hybrid systems.

The second main result presented in this paper gives
necessary and sufficient conditions for Zeno behavior near
isolated Zeno equilibria of Lagrangian hybrid systems, which
model mechanical systems undergoing impacts. To obtain
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these conditions, we first show that Lagrangian hybrid sys-
tems with isolated Zeno equilibria must necessarily have a
one-dimensional configuration space. This simple structure
allows us to explicitly construct the desired Lyapunov-
like functions that prove the existence of Zeno behavior.
Moreover, due to the explicit nature of these functions, we
are able to demonstrate that one can check for the existence
and nonexistence of Zeno behavior by evaluating functions
given in the system description at a single point. This result
represents, to the authors’ knowledge, the only known nec-
essary and sufficient result for Zeno behavior in uncontrolled
hybrid systems. Necessary and sufficent conditions for Zeno
behavior in a significantly different class of controlled hybrid
systems were found in [4].

Although results presented in this paper make gains toward
a better understanding of Zeno behavior, they also indicate
possible future research directions. The most compelling
of these is motivated by the fact that isolated Zeno equi-
libria only occur in Lagrangian hybrid systems with one-
dimensional configuration spaces, indicating that to under-
stand Zeno behavior in Lagrangian hybrid systems, more
complicated sets of Zeno equilibria must be studied. Also,
due to the Lyapunov-like nature of the sufficient conditions
presented, the hope is that in the future these conditions could
be automated. Finally, the Lyapunov-like conditions given
in this paper also imply that Zeno executions converge to
the Zeno equilibria; that is, Zeno behavior is closely related
to the stability of Zeno equilibria. This relationship was
first noticed in [5], where theasymptoticstability of Zeno
equilibria was studied; in fact, the Lyapunov-like conditions
presented in that work are very similar to the conditions
presented in this paper. Yet, the claim made in [5] that the
asymptotic stability of Zeno equilibria implies the existence
of Zeno behavior has since proven to be incorrect. Therefore,
the connection between the stability of Zeno equilibria
and Zeno behavior still remains to be made, although this
paper provides strong evidence for the existence of such a
connection.

Due to the subtle and complex nature of Zeno behavior,
it has been studied in many forms and from many different
perspectives. Most of the conditions for Zeno behavior are
necessary and tend to be very conservative; see [6], [7],
[8] for general hybrid systems, and [9], [10] for linear
complementarity systems. Obtaining sufficient conditions for
the existence of Zeno behavior seems to be a much more
challenging task. Therefore, very few such conditions have
been given to date and those that have been obtained apply
to very limited classes of hybrid systems [11]. We also



note that this paper studies Zeno behavior in Lagrangian
hybrid systems, which were studied in [12], [13] and [14]
as motivated by [15]. Finally, the characterization of Zeno
behavior presented in this paper complements the topological
characterization of Zeno behavior presented in [16].

II. H YBRID SYSTEMS & Z ENO EQUILIBRIA

In this section, we introduce the basic notations on which
the rest of the paper will build. That is, we define hybrid
systems, executions, Zeno equilibria and convergence to
Zeno equilibria.

Definition 1: A hybrid system on a cycleis a tuple:

H = (Γ, D, G,R, F ),

where

• Γ = (Q, E) is a directed cycle, with

Q = {q0, . . . , qk−1},
E = {e0 = (q0, q1), e1 = (q1, q2),

. . . , ek−1 = (qk−1, q0)} .

We denote the source of an edgee ∈ E by source(e)
and the target of an edge bytarget(e).

• D = {Dq}q∈Q is a set ofdomains, where Dq is a
smooth manifold.

• G = {Ge}e∈E is a set of guards, where Ge ⊆
Dsource(e) is and embedded submanifold ofDsource(e).

• R = {Re}e∈E is a set ofreset maps, whereRe : Ge ⊆
Dsource(e) → Dtarget(e) is a smooth map.

• F = {fq}q∈Q, wherefq : Dq → TDq is a Lipschitz
vector field onDq.

Remark 1: Note that the motivation for considering hy-
brid systems on cycles, rather than hybrid systems on general
graphs, is that cycles are indicative of Zeno behavior (see [6]
and [8]). Therefore, beginning with hybrid systems defined
on cycles will greatly simplify our analysis, while still
capturing characteristic types of Zeno behavior.

Definition 2: An executionof a hybrid systemH =
(Γ, D, G,R, F ) is a tuple:

χ = (Λ, I, ρ, C)

where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing
set,

• I = {Ii}i∈Λ where for eachi ∈ Λ, Ii is defined as
follows: Ii = [τi, τi+1] if i, i + 1 ∈ Λ and IN−1 =
[τN−1, τN ] or [τN−1, τN ) or [τN−1,∞) if |Λ| = N ,
N finite. Here, for all i, i + 1 ∈ Λ, τi ≤ τi+1 with
τi, τi+1 ∈ R, andτN−1 ≤ τN with τN−1, τN ∈ R.

• ρ : Λ → Q is a map such that for alli, i + 1 ∈ Λ,
(ρ(i), ρ(i + 1)) ∈ E. This is thediscrete componentof
the execution.

• C = {ci}i∈Λ is a set ofcontinuous trajectories, and
they must satisfẏci(t) = fd(i)(ci(t)) for t ∈ Ii.

We require that wheni, i + 1 ∈ Λ,

(i) ci(t) ∈ Dρ(i) ∀ t ∈ Ii

(ii) ci(τi+1) ∈ G(ρ(i),ρ(i+1))

(iii) R(ρ(i),ρ(i+1))(ci(τi+1)) = ci+1(τi+1).
(1)

When i = |Λ| − 1, we still require that (i) holds.

Note that the continuous initial condition of an execution
χ is given byc0(τ0) ∈ Dρ(0). The discrete initial condition
is given byρ(0).

The object of study in this paper will be Zeno executions,
which are defined in the following manner:

Definition 3: An executionχ is Zeno if Λ = N and

lim
i→∞

τi = τ0 +
∞∑

i=0

τi+1 − τi = τ∞

for some finiteτ∞ ∈ R.
A hybrid systemH is Zeno1 if there exists a Zeno

executionχ such thatτi+1 − τi 6= 0 for somei ∈ N.

Zeno behavior can be likened to stability, in that both types
of behavior involve convergence. This motivates the study
of the type of equilibria associated to Zeno behavior: Zeno
equilibria. For more on Zeno behavior and Zeno equilibria,
see [12].

Definition 4: A Zeno equilibriaof a hybrid systemH =
(Γ, D, G,R, F ) is a setz = {zq}q∈Q satisfying the following
conditions for allq ∈ Q:

• For the unique edgee = (q, q′) ∈ E

– zq ∈ Ge,
– Re(zq) = zq′ ,

• fq(zq) 6= 0.

A Zeno equilibriumz = {zq}q∈Q is isolated if there are
neighborhoodsWq ⊂ Dq, q ∈ Q, such that there does not
exist another Zeno equilibrium̂z = {ẑq}q∈Q with ẑq ∈ Wq

for all q ∈ Q.

Note that, in particular, the conditions given in Definition
4 imply that for all i ∈ {0, . . . , k − 1},

Rei−1 ◦ · · · ◦Re0 ◦Rek−1 ◦ · · · ◦Rei
(zi) = zi.

That is, the elementzi is a fixed point under the reset maps
composed in a cyclic manner.

Definition 5: An executionχ with Λ = N convergesto a
zeno equilibriumz = {zq}q∈Q if given any neighborhoods
Wq with zq ∈ Wq for all q ∈ Q, there existsj ∈ Λ such that
ck(t) ∈ Wρ(k) for all k ≥ j and all t ∈ Ik.

III. L YAPUNOV-L IKE CONDITIONS FOR THEEXISTENCE

OF ZENO BEHAVIOR

This section presents Lyapunov-like sufficient conditions
for the existence of Zeno behavior in hybrid systems on
cycles. These results apply to a general class of hybrid

1The motivation for this definition is that we want to exclude the
possibility that a hybrid system is “trivally” Zeno, i.e., the only Zeno
executions are executions that begin at a Zeno Equilibria



systems, and are fundamental in establishing the results
presented in the Section V.

Conditions for Zeno behavior. We begin by introducing
the conditions that will imply the existence of Zeno behavior.
These involve conditions on the continuous and discrete
portion of the hybrid system, together with the “convergence
conditions” that indicate how executions will tend toward
Zeno equilibria. As these conditions are, in some sense,
analogous to stability conditions, it is not surprising that they
involve Lyapunov-like functions. In fact, on each domain,
they utilize two such functions—one is analogous to a
standard Lyapunov function, while the other is analogous
to a Barrier function [1]—that will interact through the
“convergence conditions.” Our conditions closely resemble
the conditions given in [5] but avoid problems arising from
slow convergence by enforcing geometric convergence inC1.

Let {zq}q∈Q be a Zeno equilibrium of a hybrid system
H , zq ∈ Wq ⊂ Dq be open neighborhoods ofzq for all
q ∈ Q, Vq, Bq ∈ C1(Wq, R) and r < 1, a > 0 and b >
0 be constants. With this notation, consider the following
conditions:

Continuous Conditions for Events:

EC1: Vq(x) > 0 for all x ∈ Wq \ {zq} and
Vq(zq) = 0 for all q ∈ Q.

EC2: V̇q(x) = dVq(x)·fq(x) ≤ 0 for all x ∈ Wq

andq ∈ Q.

EC3: Bq(x) ≥ 0 for all x ∈ Wq andq ∈ Q.

EC4: Ḃq(x) = dBq(x) · fq(x) < 0 for all x ∈
Wq, andq ∈ Q.

Discrete Condition for Events:

ED1: Vq′(Re(x)) ≤ Vq(x) for all x ∈ Ge ∩Wq,
q ∈ Q and the unique edgee = (q, q′).

Convergence Conditions:

C1: There existsq ∈ Q such thatVq′(Re(x)) ≤
rVq(x) for all x ∈ Ge ∩Wq.

C2: Bq(x) ≤ b(Vq(x))a for all x ∈ Rê(Gê) ∩
Wq, q ∈ Q and the unique edgêe = (q′, q).

With these conditions in hand, we now present the main
result of this section.

Theorem 1: Let{zq}q∈Q be an isolated Zeno equilibrium
of a hybrid systemH . If conditionsEC1-EC4, ED1, C1 and
C2 hold, then there exists a neighborhoodZq of zq for all
q ∈ Q such that for allx0 ∈ Zq there exists a Zeno execution
χ = (Λ, I, ρ, C) with c0(τ0) = x0. Therefore,H is Zeno.

We prove this theorem using two lemmas.

Lemma 1: Let x(t) be the solution toẋ = fq(x). If
conditionsEC1-EC4 hold, then there exists a compact set
Ωα

q ⊂ Wq, indexed byα > 0, and a positive constantγq

with the following properties:

• There exists an open setZq such thatzq ∈ Zq ⊂ Ωα
q .

• There exists a time

τ ≤ Bq(x(0))
γq

< ∞

such thatx(τ) ∈ Ge when x(0) ∈ Ωα
q , where here

e = (q, q′).
Proof: Similar to Lyapunov’s theorem,EC1 implies

that whenα > 0 is small enough, the connected component
of the set:

Sα
q = {x ∈ Wq : Vq(x) ≤ α} (2)

containingzq is compact and contains a neighborhood ofzq.
So we can restrictWq to a neighborhood̄Wq so that

Ωα
q = {x ∈ W̄q : Vq(x) ≤ α} (3)

is connected and compact. Further,Ωα
q contains a neighbor-

hoodZq of zq.
Since we have only a finite number of domains, we can

pick W̄q and a singleα such thatΩα
q is connected and

compact for each domain.
From EC2, if x(0) ∈ Ωα

q , thenx(t) ∈ Ωα
q for all t ≥ 0

as long asx(t) ∈ Dq. That is,x(t) remains inΩα
q unless an

event occurs.
Now we useEC3 andEC4 to show that events occur in

finite time. Let
−γq = max

x∈Ωα
q

Ḃq(x) (4)

SinceΩα
q is compact andḂq(x) < 0 for x ∈ Ωα

q ⊂ Wq, we
must haveγq > 0. So for t ≥ 0

Bq(x(t)) = Bq(x(0)) +
∫ t

0

Ḃq(x(σ))dσ ≤ Bq(x(0))− γqt.

Therefore,x(t) must reach the guard within timet∗ =
Bq(x(0))/γq by EC3.

Lemma 2: If conditions EC1-EC4 and ED1 hold, then
for eachx0 ∈ Ωα

q , withα > 0 sufficiently small, there exists a
unique executionχ = (Λ, I, ρ, C) with c0(τ0) = x0, ρ(0) =
q and Λ = N.

Proof: Continuity ofRe and (ED1) imply that forα >
0 as in Lemma 1 and alle = (q, q′) ∈ E, Re(Ge ∩ Ωα

q ) ⊂
Ωα

q′ .
Let c0(τ0) = x0 ∈ Ωα

q . Assume without loss of generality
that q = q0. Then, since our hybrid system evolves on a
directed cycle, conditions (i)-(iii) in (1) imply that

ρ(i) := qī, ī := i mod |Q|

So by construction,c0(τ0) ∈ Ωα
ρ(0).

Now, inductively assume thatci(τi) ∈ Ωα
ρ(i) for some

i ≥ 0. From Lemma 1, we can extendci(τi) to a solution
ci(t) of ẋ = fρ(i)(x) such that at some finite timeτi+1, we
haveci(τi+1) ∈ Geī

∩ Ωα
ρ(i). From above,Reī

(ci(τi+1)) ∈
Ωα

ρ(i+1). Thereforeci(τi) ∈ Ωα
ρ(i) implies thatci+1(τi+1) ∈

Ωα
ρ(i+1).
The above argument holds inductively, so ifc0(τ0) ∈ Ωα

q0
,

then c0(τ0) extends to a unique executionχ = (Λ, I, ρ, C)
with Λ = N.

We will now use Lemmas 1 and 2 to prove Theorem 1

Proof: [of Theorem 1] Take x0 ∈ Ωα
q0

. Let χ be the
unique infinite execution withc0(τ0) = x0 ∈ Ωα

q0
. We show

the total time spent inDq0 is finite.



Repeated applications ofC1 show that

Vq0(cj|Q|(τj|Q|)) ≤ rjVq0(c0(τ0)). (5)

SinceΛ = N and cj|Q|(t) ∈ Wq0 for all j ≥ 0, t ∈ Ij|Q|
we can assume without loss of generality thatcj|Q|(τj|Q|) ∈
Re|Q|(Ge|Q|) ∩ Wq0 . Lemma 1 guarantees that the interval
Ij|Q| has lengthτj|Q|+1 − τj|Q| ≤ Bq0(cj|Q|(τj|Q|))/γq0 .
Thus we see the total time spent inDq0 is

∞∑
j=0

(τj|Q|+1 − τj|Q|) ≤ 1
γq0

∞∑
j=0

Bq0(cj|Q|(τj|Q|))

≤ b

γq0

(Vq0(c0(τ0)))
a
∞∑

j=0

(ra)j

< ∞,

where second inequality follows fromC2 and (5), and the
final inequality follows sincer < 1 anda > 0.

The same argument shows that the execution spends only
a finite amount of time in domainDq for all q ∈ Q.

Corollary 1: Any executionχ with Λ = N and c0(τ0) ∈
Zρ(0) converges to{zq}q∈Q.

IV. SIMPLE HYBRID MECHANICAL SYSTEMS

Mechanical systems undergoing impacts are naturally
modeled as hybrid systems. In this section, we will consider
hybrid systems of this form and demonstrate how one obtains
such systems from hybrid Lagrangians, which are the hybrid
analogue of Lagrangians. For more on hybrid Lagrangians
and Lagrangian hybrid systems, see [12], [13] and [14].

Lagrangians. Consider a configuration space2 Θ and a
LagrangianL : TΘ → R given in coordinates by:

L(θ, θ̇) =
1
2
θ̇T M(θ)θ̇ − U(θ) (6)

whereM(θ) is positive definite and symmetric andU(θ) is
the potential energy. For the sake of simplicity, we assume
Θ ⊂ Rn since all our results are local, i.e., we can work
within a coordinate chart. The equations of motion are then
given in coordinates by the Euler-Lagrange equations:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0.

In the case of Lagrangians of the form given in (6), the
Euler-Lagrange equations become:

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ) = 0,

where C(θ, θ̇) is the Coriolis matrix and N(θ) = ∂U
∂θ (θ).

Setting x = (θT , θ̇T )T , the Lagrangian vector field,fL,
associated toL takes the familiar form

ẋ = fL(x) =
(

θ̇

M(θ)−1(−C(θ, θ̇)θ̇ −N(θ))

)
. (7)

This process of associating a dynamical system to a La-
grangian will be mirrored in the setting of hybrid systems.
First, we introduce the notion of a hybrid Lagrangian.

2Note that we denote the configuration space byΘ rather thanQ, due to
the fact thatQ denotes the vertices of the graph of a hybrid system.

Definition 6: A hybrid Lagrangian is a tuple, L =
(Θ, L, h), where

• Θ ⊂ Rn is the configuration space,
• L : TΘ → R is a Lagrangian of the form give in (6),
• h : Θ → R is a unilateral constraint function, where

we assume that0 is a regular value ofh.

Domains from constraints. Given a smooth (unilateral
constraint) functionh : Θ → R on a configuration space
Θ such thath−1(0) is a smooth manifold, i.e., 0 is a regular
value ofh, we can construct a domain and a guard explicitly.
To this constraint function we have an associated domain,
Dh, defined to be the manifold (with boundary):

Dh = {(θ, θ̇) ∈ TΘ : h(θ) ≥ 0}.

Similarly, we have an associated guard,Gh, defined as the
following submanifold ofDh:

Gh = {(θ, θ̇) ∈ TΘ : h(θ) = 0 and dhθ θ̇ ≤ 0},

where dh(θ) =
(

∂h
∂θ1

(θ) · · · ∂h
∂θn

(θ)
)
. Note that the

requirement that0 is a regular value ofh is equivalent to
requiring thatdh(θ) 6= 0 whenh(θ) = 0.

Lagrangian Hybrid Systems. Given a hybrid Lagrangian
L = (Θ, L, h), the Lagrangian hybrid system associated to
L is the hybrid system

HL = (Γ = ({q}, {(q, q)}), DL, fL, GL, RL),

whereDL = {Dh}, fL = {fL}, GL = {Gh} and RL =
{Rh} with Rh(θ, θ̇) = (θ, P (θ, θ̇)), where

P (θ, θ̇) = (8)

θ̇ − (1 + e)
dh(θ)θ̇

dh(θ)M(θ)−1dh(θ)T
M(θ)−1dh(θ)T .

Example 1: To provide an example of the concepts intro-
duced in this paper, we will consider the hybrid system mod-
eling a pendulum impacting the ground. This system has as
its hybrid Lagrangian the tupleLpend = (R, Lpend, hpend),
whereLpend(θ, θ̇) = 1

2ml2θ̇2 −mgl sin(θ) andhpend(θ) =
sin(θ), with θ the angle of the pendulum from horizontal,
m the mass of the bob,l the length of the rod andg the
acceleration due to gravity.

From the hybrid LagrangianLpend, we obtain the hybrid
model of the pendulum:

Hpend = (Γ = ({q}, {(q, q)}), Dpend, Gpend, Rpend, Fpend),

where Dpend = {Dhpend}, Fpend = {fLpend}, Gpend =
{Ghpend} andRpend = {Rhpend} with

Dhpend =
{(

θ

θ̇

)
∈ R2 : sin(θ) ≥ 0

}
Ghpend =

{(
θ

θ̇

)
∈ R2 : sin(θ) = 0 and θ̇ ≤ 0

}
Rhpend(θ, θ̇) =

(
θ

−eθ̇

)
fLpend(θ, θ̇) =

(
θ̇

− g
l cos(θ)

)



where here0 ≤ e ≤ 1 is the coefficient of restitution.
We note that(0, 0) and(π, 0) are isolated Zeno equilibria

of Hpend. Moreover, it is easy to verify through Theorem 2
that this system is Zeno, although we will use the results
presented in the next section to establish this fact. Also
note that this hybrid system is actually characteristic of
Lagrangian hybrid systems that have isolated Zeno equilibria
and are Zeno as will be seen in the next section.

V. ZENO BEHAVIOR IN LAGRANGIAN HYBRID SYSTEMS

In this section, we characterize Zeno behavior in La-
grangian hybrid systems with isolated Zeno equilibria. This
characterization relies, in a fundamental fashion, on the
following proposition.

Proposition 1: If the Lagrangian hybrid systemHL has
an isolated Zeno equilibrium, then

L1: Θ is one-dimensional.

L2: The Zeno equilibria takes the form

z =
{(

θ∗

0

)}
.

L3: P (θ, θ̇) = −eθ̇, where 0 ≤ e ≤ 1 is the
coefficient of restitution.

Proof: L1: If z = {(θ∗, θ̇∗)T } is an isolated Zeno
equilibrium of HL, then there exists a neighborhoodW of
(θ∗, θ̇∗)T that contains no equilibria of (7) and no other Zeno
equilibria. It follows that that(θ∗, θ̇∗)T is the unique fixed
point of Rh in W . Now for (θ, θ̇) ∈ GL, h(θ) = 0 and
dh(θ) 6= 0 so using the fact thatM(θ)−1 is positive definite,
it follows that:

Rh(θ, θ̇) = (θ, θ̇) ⇐⇒ (dh(θ)θ̇)M(θ)−1dh(θ)T = 0
⇐⇒ dh(θ)θ̇ = 0.

Therefore, if dim(TθΘ) ≥ 2 then dh(θ)θ̇ = 0 defines a
hyperplane inTθΘ of points in the guard, each of which is
a fixed point ofRh. Thus, whendim(Θ) ≥ 2, there can be
no isolated Zeno equilibria.

L2 andL3 follow from L1.

Notation 1: From this point on, we adopt the following
notation: dh(θ) = h′(θ) and ∂U

∂θ (θ) = U ′(θ), since we
will be interested inh andU that are functions of one real
variable as a result of Proposition 1.

A Characterization of Zeno Behavior. We have shown that
hybrid Lagrangian systems with isolated Zeno equilibria are
necessarily quite simple. The main result in this section gives
an explicit characterization of isolated Zeno equilibria for
Lagrangian hybrid systems. We note that ifz = {(θ∗, 0)T } is
an isolated Zeno equilibrium of a Lagrangian hybrid system
HL, then we can setθ∗ = 0 without loss of generality by
translating coordinates.

Theorem 2: Let HL be a Lagrangian hybrid system. If
z = {0} is an isolated Zeno equilibrium ofHL, then there is
a neighborhoodW of 0 such that for allx ∈ W there exists
a unique Zeno executionχ = (Λ, I, ρ, C) with c0(τ0) = x
converging to{0} if and only if

1) The coefficient of restitutione < 1
2) sign(h′(0)) = sign(U ′(0))
Before proving this theorem, we note that the following

functions:

V (θ, θ̇) =
1
2
M(θ)θ̇2 + U(θ)− U(0) (9)

B(θ, θ̇) =
M(0)
U ′(0)

θ̇ +

√
M(0)2

U ′(0)2
θ̇2 + 2

M(0)
U ′(0)

θ (10)

and constants:

a =
1
2

(11)

b = 2
√

2

∣∣∣∣∣
√

M(0)
U ′(0)

∣∣∣∣∣ (12)

r = e2 (13)

will be shown to satisfy the conditions in Theorem 1, thus
giving a proof of Zeno behavior in a neighborhoodZ of 0.

Proof:
(⇐) We show that whensign(h′(0)) = sign(U ′(0)) and

e < 1, the functions and constants as by equations (9)-(13),
satisfy all the conditions of Theorem 1.

First, since fL(0) 6= 0 and {0} is an isolated Zeno
equilibrium, we can choose an open ballW around0 such
that W contains no other Zeno equilibria andW contains
no equilibria offL. Let W1 be the projection ofW on the
θ-axis.

We will also repeatedly use the fact that elements in(Gh∪
Rh(Gh))∩W take the form(0, θ̇) ∈ R2. Indeed, if(θ, θ̇)T ∈
Gh∩W , thenh(θ) = 0, by definition ofGh. By L3,h(θ) = 0
imples that(θ, 0)T is a Zeno equilibrium in the ballW .
Thereforeθ = 0 since,0 is the only Zeno equilibrium inW .
Elements ofRh(Gh) ∩W have the same form byL3.

EC1: Proving thatV is positive onW \ {0} is equivalent
to showing thatU(θ) > U(0) on W1 \ {0}. By taking the
Taylor series expansion ofh(θ) about θ = 0, it follows
that sign(h(θ)) = sign(h′(0)θ). Now, from the Taylor series
expansion ofU , we see that

U(θ)− U(0) = U ′(0)θ + O(θ2). (14)

Since we are assuming thatsign(h′(0)) = sign(U ′(0)),
h(θ) > 0 implies h′(0)θ > 0 and thusU ′(0)θ > 0 on
W1 \ {0}. So U(θ) − U(0) > 0 on W1 \ {0} and EC1
holds.

EC2: Follows from conservation of energy.

EC3: SinceΘ is one dimensional byL1, the vector field
fL becomes:(

θ̇

θ̈

)
= fL(θ, θ̇) =

(
θ̇

− 1
M(θ)

(
1
2M ′(θ)θ̇2 + U ′(θ)

)) .

(15)
Since this vector field has no equilibrium points:

θ̈(0, 0) = −U ′(0)
M(0)

6= 0. (16)



Moreover,M(0) > 0 andU ′(0)θ ≥ 0 imply M(0)
U ′(0)θ ≥ 0.

So for (θ, θ̇)T ∈ W , we have√
M(0)2

U ′(0)2
θ̇2 + 2

M(0)
U ′(0)

θ ≥
∣∣∣∣M(0)
U ′(0)

θ̇

∣∣∣∣ .
Therefore, definingB as in equation (10), we haveB(θ, θ̇) ≥
0 on W . Thus we have shown thatEC3 holds.

EC4: Taking the time derivative ofB, we see that

Ḃ(θ, θ̇) =
M(0)
U ′(0)

θ̈ +
M(0)
U ′(0) θ̇√

M(0)2

U ′(0)2 θ̇2 + 2 M(0)
U ′(0)θ

(
1 +

M(0)
U ′(0)

θ̈

)
From equation (16), it follows that

M(0)
U ′(0)

θ̈(0, 0) = −1.

ThereforeḂ is continuous at(0, 0)T and Ḃ(0, 0) = −1.
Thus Ḃ(θ, θ̇) < 0 in W andEC4 holds.

ED1 andC1: V (Rh(0, θ̇)) = e2V (0, θ̇), by L3 of Propo-
sition 1, and the definition ofV .

C2: For (0, θ̇)T ∈ Rh(Gh) ∩W ,

B(0, θ̇) =
M(0)
U ′(0)

θ̇ +

√(
M(0)
U ′(0)

θ̇

)2

≤ 2
∣∣∣∣M(0)
U ′(0)

∣∣∣∣ |θ̇|
= 2

√
2

∣∣∣∣∣
√

M(0)
U ′(0)

∣∣∣∣∣V (0, θ̇)1/2.

Thus the relative size conditionC2 holds with constants
defined by equations (11), (12).

(⇒) Suppose that there is a neighborhoodW of 0 such
that for all x ∈ W there exists a unique Zeno execution
χ = (Λ, I, ρ, C) with c0(τ0) = x that converges to{0}.

sign(h′(0)) = sign(U ′(0)): Assume thatsign(h′(0)) 6=
sign(U ′(0)). Since{0} is a Zeno equilibrium,U ′(0) 6= 0 by
(16). Similar to the proof ofEC1, h(θ) > 0 impliesh′(0)θ >
0 andU ′(0)θ < 0 near0. So given any neighborhoodW of
0, there exists a neighborhoodN of 0 such thatN × {0} ⊂
W and for all θ ∈ N \ {0}, U(θ) < U(0). If χ satisfies
c0(τ0) = (θ0, 0)T ∈ N × {0}, then ci(t) never reaches the
open set

{(θ, θ̇)T : V (θ, θ̇) > U(θ0)}

which contains the origin. Thusχ does not converge to the
origin.

e < 1: Now assume thatsign(h′(0)) = sign(U ′(0)) but
e = 1. Then there is a neighborhoodW of the origin such
that V (θ, θ̇) > 0 on W \ {0} from the proof ofEC1. If
an executionχ has c0(τ0) = (θ0, θ̇0) ∈ W \ {0}, then
V (ci(t)) = V (θ0, θ̇0) for all i ∈ Λ and t ∈ Ii. Thus ci(t)
never reaches the open set

{(θ, θ̇)T : V (θ, θ̇) < V (θ0, θ̇)}

which contains the origin. Thusχ does not converge to the
origin.

Example 2: Consider the hybrid systemHpend, defined
in Example 1, modeling a pendulum impacting the ground.
From the pendulum’s Lagrangian, if follows that

Upend(θ) = mgl sin(θ) = mgl(hpend(θ)),

and so
sign(U ′

pend(0)) = sign(h′pend(0)).

Therefore, the conditions of Theorem 2 hold if and only if the
coefficient of restitutione < 1. Thus, there is a neighborhood
W of (0, 0)T such that for all(θ, θ̇)T ∈ W , there is a Zeno
executionχ = (Λ, I, ρ, C) with c0(τ0) = (θ, θ̇) converging
to {(0, 0)T } if and only if e < 1.

An analogous statement holds for the Zeno equilibrium
{(π, 0)T }. As a result of Theorem 2, to prove that the
pendulum is Zeno we only needed to evaluate two known
functions at a single point.
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