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Abstract— This paper systematically decomposes a
quadruped into bipeds to rapidly generate walking gaits, and
then recomposes these gaits to obtain quadrupedal locomotion.
We begin by decomposing the full-order, nonlinear and hybrid
dynamics of a three-dimensional quadrupedal robot, including
its continuous and discrete dynamics, into two bipedal systems
that are subject to external forces. Using the hybrid zero
dynamics (HZD) framework, gaits for these bipedal robots
can be rapidly generated (on the order of seconds) along with
corresponding controllers. The decomposition is performed in
such a way that the bipedal walking gaits and controllers can
be composed to yield dynamic walking gaits for the original
quadrupedal robot — the result, therefore, is the rapid
generation of dynamic quadruped gaits utilizing the full-order
dynamics. This methodology is demonstrated through the rapid
generation (3.96 seconds on average) of four stepping-in-place
gaits and one diagonally symmetric ambling gait at 0.35 m/s on
a quadrupedal robot — the Vision 60, with 36 state variables
and 12 control inputs — both in simulation and through
outdoor experiments. This suggested a new approach for fast
quadrupedal trajectory planning using full-body dynamics,
without the need for empirical model simplification, wherein
methods from dynamic bipedal walking can be directly applied
to quadrupeds.

I. INTRODUCTION

The control of quadrupedal robots has seen great exper-
imental success in achieving locomotion that is robust and
agile, dating back to the seminar work of Raibert [26]. These
results have been achieved despite the fact that quadrupedal
robots have more legs, degrees of freedom, and richer con-
text scenarios when compared to their bipedal counterparts.
Bipedal robots (while seeing recent successes) still have yet
to experimentally demonstrate the dynamic walking behav-
iors in real-world settings that quadrupeds are now displaying
on multiple platforms. Yet, due to the lower degrees of
freedom and, importantly, simpler contact interactions with
the world, gait generation for bipedal robots based upon the
full-order dynamics has a level of rigour not yet present in the
quadrupedal locomotion literature (which largely leverages
heuristic and reduced-order models). It is this gap between
bipedal and quadrupedal robots that this paper attempts to
address: can the formal full-order gait generation methods
for bipeds be translated to quadrupeds while preserving the
positive aspects quadrupedal locomotion?
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Fig. 1. A conceptual illustration of the full body dynamics decomposition,
where the 3D quadruped — the Vision 60 — is decomposed into two
constrained 3D bipedal robots.

To achieve walking on quadrupeds, model reduction tech-
niques are widely used for controller design. For example,
the massless legs [6], [9], linear inverted pendulum model
[20], [10] and assuming the 3D quadrupedal motion can be
simplified to a planar motion [7], [11] are often utilized
methods to mitigate the computational complexity of the
quadrupedal dynamics so that online control techniques such
as QP, MPC, LQR can be applied [8]. While these methods
are very effective in practice, it often requires some add-on
layers of parameter tuning due to the gap between model and
reality. This is particularly prevalent for bigger and heavier
robots whose physical properties play a larger role.

In the context of bipedal robots, due to their inherently
unstable nature, detailed model and rigorous controller de-
sign have been long been developed. A specific methodology
that leverages the full-order dynamics of the robot to make
formal guarantees is Hybrid Zero Dynamics (HZD) [30], [5],
[2] which has seen success experimentally for both walking
and running [29], [23], [27]. A key to this success has been
the recent developments in rapid HZD gait generation using
collocation methods [17], with the ability to generate gaits
for high-dimensional robots in some cases in seconds [19].
Recently, the HZD framework was translated to quadrupedal
robots both for gait generation and controller design [22], [3].
Although the end result was the ability generate walking,
ambling and trotting for the full-order model, the high
dimensional and complex contacts of the system made the
gait generation complex with the fast gait being generated in
43 seconds and hours of post-processing needed to guarantee
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Fig. 2. On the left is the the robot in MuJoCo, and on the right is the
illustration of the configuration coordinates for the robot. The leg indices
l∗ are shown on the vertices of the body link. Each leg has three actuated
joints and equipped with a point contact toe.

stability. The goal of this paper is, therefore, to translate the
positive aspects of HZD gait generation to quadrupeds while
mitigating the aforementioned drawbacks.

Pioneers in robotics have observed the correlation between
bipedal and quadrupedal locomotion, for example, [26], [25]
applied a variety bipedal gaits on quadrupedal robots and
[11], [12] provided stability analysis for a planar abstract
hopping robot. The ZMP condition of two bipeds was used to
synthesis stability criteria for a quadruped in [21]. However,
these results still rely on the model reduction methods such
as the 2D modelling and massless legs. Additionally, the
focus were on composing bipedal controllers to stabilize
quadrupedal locomotion rather than decomposing the dy-
namics of quadrupeds to bipedal systems while considering
the evolution of the internal connection wrench. Notably,
they lack a systematic approach of producing trajectories
for the control of bipeds as a decomposed system from the
quadrupeds.

The main contribution of this paper is the exact decompo-
sition of quadrupeds into bipeds, wherein gaits can be rapidly
generated and composed to be realized on the quadruped
from which they were derived. Specifically, the main results
of this paper are twofold: 1) A systematic decomposition of
the three-dimensional full body dynamics of a quadruped,
which involved both the continuous and discrete dynamics,
into two bipedal hybrid systems subject to external forces; 2)
An optimization algorithm that generates gaits for the bipedal
system rapidly utilize the framework of HZD, wherein they
can then be composed to yield gaits on the quadruped. The
end result is that we are able to generate various bipedal
gaits that can be recomposed to quadrupedal behaviors within
seconds, and these behaviors are implemented successfully
in simulation and experimentally in outdoor environments.

This paper is organized as follows: Section II introduces
the general idea of decomposing the hybrid full body dy-
namics of a quadrupedal robot into lower dimensional half
body dynamics of two identical bipeds. Based on this, we
produced trajectories for stepping-in-place and ambling on a
quadrupedal robot Vision60 in Section III. The efficiency
is shown by an analysis of its computation performance
compared against the full-body dynamics optimization for
gait generation. In Section IV, we validate the resultant

Fig. 3. The cyclic directed graph for the single-domain hybrid dynamics
of the diagonally supporting ambling behavior.

trajectories in MuJoCo1 and five outdoor experiments to
demonstrate the feasibility of theses trajectories that are
built based on decomposed bipedal dynamics. Section V
concludes the paper and proposes several future directions.

II. DYNAMICS DECOMPOSITION

In this section, we decompose the full body dynamics
and control of quadrupedal robots into two identical bipedal
systems. The nonlinear model of quadrupedal locomotion is
a hybrid dynamical system, which is an alternating sequence
of continuous- and discrete-time dynamics. The order of the
sequence is dictated by contact events.

A. Full body dynamics of a quadruped

This full body dynamics of quadrupedal robots have been
detailed in [22] and will be briefly revisited here to setup
the problem properly. Note that in this section, we only
focus on the most popular quadrupedal robotic behavior —
the diagonally supporting amble (see Fig. 3). We refer the
readers to [22] for other contact scenarios and the multi-
domain setups.

1) State space and inputs: The robot begin considered —
the Vision 60 V3.2 in Fig. 2 — is composed of 13 links: a
body link and 4 legs, each of which has three sublinks —
the hip, upper and lower links. Utilizing the floating base
convention [15], the configuration space is chosen as q =
(q>b , θ

>
0 , θ

>
1 , θ

>
2 , θ

>
3 )> ∈ Q ⊂ R18, where qb ∈ R3 × SO(3)

represents the Cartesian position and orientation of the body
linkage, and θi ∈ R3 represents the three joints: hip roll,
hip pitch and knee on the leg i ∈ {0, 1, 2, 3}. All of these
leg joints are actuated, with torque inputs ui ∈ R3. This
yields the system’s total DOF n = 18 and control inputs
u = (u>0 , u

>
1 , u

>
2 , u

>
3 )> ∈ Rm, m = 12. Further, we can

define the state space X = TQ ⊆ R2n with the state vector
x = (q>, q̇>)>, where TQ is the tangent bundle of the
configuration space Q.

2) Continuous dynamics: The continuous-time dynamics
in Fig. 3, when toe1 and toe2 are on the ground, are modelled
as constrained dynamics:

D(q) q̈ +H(q, q̇) = Bu+ J>1 (q)λ1 + J>2 (q)λ2

J1(q) q̈ + J̇1(q, q̇) q̇ = 0

J2(q) q̈ + J̇2(q, q̇) q̇ = 0

(1)

1A commercial physical engine, see www.mujoco.org.



when x ∈ D, where

D := {x ∈ X : ḣ1(q, q̇) = ḣ2(q, q̇) = 0, hz1(q) = hz2(q) = 0}.

In this formulation, we utilize the following notation: D(q) ∈
Rn×n is the inertia-mass matrix; H(q, q̇) ∈ Rn contains
Coriolis forces and gravity terms; h1(q), h2(q) ∈ R3 are
the Cartesian positions of toe1 and toe2 and their Jacobians
are J∗ = ∂h∗/∂q; hz1(q), hz2(q) are these toes’ height;
λ1, λ2 are the ground reaction force on toe1 and toe2;
B ∈ Rn×m is the actuation matrix. Essentially, we use a
set of differential algebra equations (DAEs) to describe the
dynamics of the quadrupedal robot that is subject to two
holonomic constraints on toe1 and toe2.

3) The discrete dynamics: On the boundary of domain D
we impose discrete-time dynamics to encode the perfectly
inelastic impact dynamics as toe0 and toe3 impact the ground
(and suppressing the dependence of D and J∗ on q and q̇):

D(q̇+ − q̇−) = J>0 Λ0 + J>3 Λ3

J0q̇
+ = 0

J3q̇
+ = 0

(2)

by using conservation of momentum while satisfying the next
domain’s holonomic constraints, which is that toe0 and toe3
stay on the ground after the impact event. We denoted q̇− and
q̇+ as the pre- and pose-impact velocity terms, Λ0,Λ3 ∈ R3

are the impulses exerted on toe0 and toe3.

B. Continuous dynamics decomposition

We now decompose the quadrupedal full body dynamics
into two bipedal robots. First, as shown in Fig. 1, the open-
loop dynamics can be equivalently written as (and suppress-
ing the dependence on q and q̇ for notational simplicity):

OL-Dyn:



Df q̈f +Hf = J>f2 λ2 +Bfuf − J>c λc (3)

Jf2 q̈f + J̇f2 q̇f = 0 (4)
Drq̈r +Hr = J>r1λ1 +Brur + J>c λc (5)

Jr1 q̈r + J̇r1 q̇r = 0 (6)
q̈br − q̈bf = 0 (7)

wherein we utilized the following notation: qbr , qbf ∈ R3 ×
SO(3) are the coordinates for the body linkages of the
front and rear bipeds (see Fig. 1); qf = (q>bf , θ

>
0 , θ

>
2 )> and

qr = (q>br , θ
>
1 , θ

>
3 )> are the configuration coordinates for

the front and rear bipeds; Df(qf), Dr(qr) ∈ R12×12 are the
inertia-mass matrices of the front and rear bipedal robots;
The Jacobians Jf2 = ∂hf2/∂qf , Jr1 = ∂hr1/∂qr with the
Cartesian positions of toe1 — hf2(qf) and toe2 — hr1(qr);
The Jacobian matrix for the connection constraint (7) is Jc =
∂(qbr−qbf )/∂qf ; uf = (u>0 , u

>
2 )> and ur = (u>1 , u

>
3 )>. Note

that the Cartesian position of toe2 only depends on qf , which
is due to the floating base coordinate convention.

Proposition 1. The dynamical system (OL-Dyn) is equivalent
to the system (1).

Proof. We can write (3) and (5) as:Dbf Db0 Db2

D>b0 D0 0
D>b2 0 D2

q̈bfq̈0
q̈2

+

Hbf

H0

H2

 = Bfuf + J>f2λ2 − J>c λcDbr Db1 Db3

D>b1 D1 0
D>b3 0 D3

q̈brq̈1
q̈3

+

Hbr

H1

H3

 = Brur + J>r1λ1 + J>c λc

where each entry has a proper dimension to make the
equations consistent. Expanding them yields:

Dbf Db0 0 Db2 0
D>b0 D0 0 0 0

0 0 0 0 0
D>b2 0 0 D2 0

0 0 0 0 0



q̈bf
q̈0
q̈1
q̈2
q̈3

+


Hbf

H0

0
H2

0

=


−λc

u0

0
u2

0

+J>2 λ2,


Dbr 0 Db1 0 Db3

0 0 0 0 0
D>b1 0 D1 0 0

0 0 0 0 0
D>b3 0 0 0 D3



q̈br
q̈0
q̈1
q̈2
q̈3

+


Hbr

0
H1

0
H3

=


λc

0
u1

0
u3

+J>1 λ1.

Now, these two equations can be combined together with the
holonomic connection constraint qbf −qbr ≡ 02, with the end
result being the dynamics given in (1). It is worthwhile to
note that all the terms appeared in these equations can be
verified using traditional rigid body dynamics and the cor-
responding details of the structure and necessary properties
of the inertia-mass matrices can be found from the branch
induced sparsity [13].

Note that (7) can be equivalently replaced by summating
the first 6 equations of (3) and (5):

(Dbf +Dbr)q̈bi +

3∑
j=0

Dbj q̈j +Hbf +Hbr = J>r1,bλ1 + J>f2,bλ2

Denoted by: hc(qf , q̇f , q̈f , λ2, qr, q̇r, q̈r, λ1) = 0 (8)

where i = f, r and Jr1,b, Jf2,b are the corresponding subma-
trices:

Jr1 =
[
Jr1,b Jr1,θ

]
, Jf2 =

[
Jf2,b Jf2,θ

]
.

Consider a system obtained from (3), (4), and (8) which
defines the front biped (see Fig. 1):

(f) :


Df q̈f +Hf = J>f2 λ2 +Bfuf − J>c λc
Jf2 q̈f + J̇f2 q̇f = 0

hc(qf , q̇f , q̈f , λ2, qr, q̇r, q̈r, λ1) = 0

(9)

which is a dynamical system with feedforward terms
(qr, q̇r, q̈r, λ1). The dynamics of the rear biped (r), can be
similarly obtained using (5), (6), and (8). We have thus
decomposed the dynamics of a quadrupedal robot (1) to two
bipedal dynamical systems (f) and (r), as shown in Fig. 1.

Example 1. The idea of dynamics decomposition can be
illustrated using a simple example (Fig. 4). Note that each
subsystem is not subject to any constraints. The half-body
dynamics of a single cart with an inverted pendulum are:

2 X ≡ Y means: X(t) = Y (t) for all t they are defined on.



Fig. 4. The full body dynamics are composed of two invert pendulum
carts, both rotational joints are actuated with inputs uf , ur. The mass of the
cart is 2M and each of the pendulum weights m with length l.[

M +m −ml cos θi
−ml cos θi ml2

] [
ẍi
θ̈i

]
+

[
mlθ̇i sin θi
−mgl sin θi

]
=

[
±λc

ui

]
where i ∈ {f, r}. Note that the sign for λc is negative for the
front system while positive for the rear system. We can use a
joint-space PD controller uf(θf , θ̇f), ur(θr, θ̇r) to achieve a
desired behavior such that the two invert pendulums vibrate
symmetrically, i.e., θf = −θr. Then from (8) we can have
(2M + 2m)ẍi = 0, which yields ẍi = 0 and the internal
connection force: λc = −ml cos θf θ̈f + mlθ̇f sin θf . This
means, when the two invert pendulums move symmetrically,
both carts have zero acceleration. This physics example is
rather trivial, but it suggested an insight on why a bipedal
system (or a single invert pendulum) is difficult to stabilize
while a quadrupedal system (or a parallel double invert
pendulum) is easier to remain stationary even though it has
more DOF.

C. Control decomposition

To achieve the desired behavior — diagonally symmetric
amble — we now add a controller to track desired time-
based trajectories. The algorithm we used to produce these
trajectories will be detailed in the next section. We define
outputs (virtual constraints) for the biped i with i ∈ {f, r} as
yi = yai (qi) − Bi(t), with t the time and B(t) a 5th order
Beźier polynomial. For a simple case study, we chose yai (qi)
as the actuated joints:

yaf =

[
θ0
θ2

]
, yar =

[
θ1
θ3

]
.

By imposing that the output dynamics on yi act like those of
a linear system (as can be enforced through control), we have
the closed-loop dynamics of the decomposed bipeds subject
to control as follows:

Df q̈f +Hf = J>f2λ2 +Bfu
c
f − J>c λc

Jf2 q̈f + J̇f2 q̇f = 0

ÿf = k1ẏf + k2yf
hc(qf , q̇f , q̈f , λ2, qr, q̇r, q̈r, λ1) = 0

(10)


Drq̈r +Hr = J>r1λ1 +Bru

c
r + J>c λc

Jr1 q̈r + J̇r1 q̇r = 0

ÿr = k1ẏr + k2yr
hc(qf , q̇f , q̈f , λ2, qr, q̇r, q̈r, λ1) = 0

(11)

where uci are the control inputs imposing the output dynamics
as desired. The output dynamics implemented here is an im-
plicit version of input-output feedback linearization, details
of this implementation can be found in [16], [4].

However, to design a proper trajectory and determine the
control inputs for the biped (f), we need to know all of

the feedforward terms (qr, q̇r, q̈r, λ1) for the time t ∈ [0, T ],
with T the time duration of a step. Therefore, the following
equation is used to encode the desired correlation between
the motion of the front and rear bipeds:

Br(t) = MBf(t) + b. (12)

Here, we consider a widely used motion on quadrupedal
robots — the diagonally symmetric gait, where the joints
of leg3 is a mirror of leg0 and those of leg1 is a mirror
of leg2. In this case we have M a diagonal matrix whose
nonzero entries are (−1, 1, 1,−1, 1, 1) and b = 0. Note that
one can specify other motions as well, for example, a torso-
leaned motion can be achieved by offsetting b. Optimizing
these correlation parameters will be a future work.

Since the connection constraint qbf ≡ qbr is always satis-
fied by mechanical wrenches λc, then on the zero dynamics
(ZD) surface [28], i.e., yi(qi)= yai (qi)− Bi(t) ≡ 0, we have
the following correlation between the two bipeds:

qr ≡ Aqf + b, where A =

[
I

M

]
. (13)

In addition, to determine λ1 of the biped (r), we also need
to impose the constraint (6), wherein system (10) becomes:

Df q̈f +Hf = J>f2 λ2 +Bfu
c
f − J>c λc

Jf2 q̈f + J̇f2 q̇f = 0

ÿf = k1ẏf + k2yf = 0

Jr1Aq̈f + J̇r1Aq̇f = 0

hc(qf , q̇f , q̈f , λ2, Aqf + b, Aq̇r, Aq̈r, λ1) = 0.

We can subtract the dynamics of biped (f) from (8) to further
simplify the expression to

CL-Dyn-f:



Df q̈f +Hf = J>f2λ2 +Bfu
c
f − J>c λc (14)

ÿf = 0 (15)
Jf2 q̈f + J̇f2 q̇f = 0 (16)
Jr1Aq̈f + J̇r1Aq̇f = 0 (17)

D̂fAq̈f + Ĥr = J>r1,bλ1 (18)

with D̂f ∈ R6×12, Ĥf ∈ R6 the first 6 rows of Df and
Hf , respectively. We now have the decomposed dynamics of
system (f) that is independent from the feedforward terms.
We can view this system as a dynamical system (14) subject
to virtual constraint (15) with inputs ucf and mechanical
constraints (16), (17), and (18) with inputs λ1, λ2, and λc.

D. Impact dynamics of the decomposed system

With the continuous dynamics written as (OL-Dyn), we
can similarly expand the impact dynamics (2) as:

Df(q̇
+
f − q̇

−
f ) = JTf2 Λ2 − JTc Λc

Jf2 q̇
+
f = 0

Dr(q̇
+
r − q̇−r ) = JTr1Λ1 + JTc Λc

Jr1 q̇
+
r = 0

Jc(q̇
+
r − q̇+f ) = 0

(19)

The proof is similar to that of continuous dynamics decompo-
sition and thus omitted. On the ZD surface, where both of the
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Fig. 5. A comparison between the solution of bipedal walking dynamics obtained from the decomposition based optimization and a simulated step of
the full-order quadrupedal dynamics using the composed bipedal gaits; here MATLAB ODE45 was used.

bipedal systems (f) and (r) have zero tracking errors (we will
use an optimization algorithm to determine those gaits that
are hybrid invariant, i.e., have hybrid zero dynamics (HZD)
[14], [24], [4]), we then have the following correlation:

q−r = Aq−f + b, q+r = Aq+f + b

The impact dynamics of the decomposed system can there-
fore be obtained:

∆ :


Df(q̇

+
f − q̇

−
f ) = JT

f2Λ2 − JT
c Λc (20)

Jf2 q̇
+
f = 0 (21)

DrA(q̇+f − q̇
−
f ) = JT

r1Λ1 + JT
c Λc (22)

Jr1Aq̇
+
f = 0 (23)

⇔

 Df −JT
f2

0 JT
c

Jf2 0 0 0
DrA 0 −JT

r1 −JT
c

Jr1A 0 0 0


q̇

+
f

Λ1

Λ2

Λc

 =

 Df q̇
−
f

0
DrAq̇

−
f

0

 (24)

One may notice that the system (24) has 12+3+12+3 = 30
equations but only 12 + 3 + 3 + 6 = 24 unknowns. Theoret-
ically we can remove 6 equations from this overdetermined
system to offload some computational cost. However this
is not desirable in practice, because this manipulation can
result in numerically ill-posed computation such that it loses
numerical stability. This can be more severe for robots with
lighter legs. Moreover, the implicit optimization method
discussed in the next section can solve this system accurately
and efficiently without this manipulation.

III. DECOMPOSITION BASED TRAJECTORY
OPTIMIZATION

Past work has investigated the formal analysis and con-
troller design for the full body dynamics of quadrupeds [3],
[22]. Although we were able to produce trajectories that are
stable solutions to the closed-loop multi-domain dynamics
for walking, ambling and trotting, the computational com-
plexity make realizing these methods difficult in practice: it
typically takes minutes to generate a trajectory and hours
to post-process the parameters to guarantee its stability.
However, by using the dynamics decomposition method, we
are able to produce bipedal walking gaits that can be com-
posed to obtain quadrupedal locomotion while maintaining
the efficiency of computing the lower dimensional dynamics
of bipedal robots. In this section, we will detail this process
using a nonlinear programming (NLP).

Given the constrained bipedal dynamics (CL-Dyn-f) and
the impact dynamics (24), the target is to find a solution

to the closed-loop dynamical system as shown in Fig. 3
efficiently. The nonlinear program is formulated as:

min
Z

2N+1∑
j=1

‖q̇bf‖
2
2 (25)

s.t. C1. dynamics (CL-Dyn-f) j = 1, 3, ...2N + 1

C2. collocation constraints j = 2, 4, ...2N

C3. impact dynamics(20)(22) j = 2N + 1

C4. periodic continuity j = 1, 2N + 1

C5. physical feasibility j = 1, 2, ...2N + 1

with the following notation: 2N+1 = 11 is the total number
of collocation grids; the decision variable is defined as

Z = (α, tj , qjf , q̇
j
f , u

j
f , λ

j
1, λ

j
2, λ

j
c,Λ

j
1,Λ

j
2,Λ

j
c);

and α ∈ R36 are the coefficients for the Beźier polyno-
mial that defines the desired trajectory Bf(t); �j is the
corresponding quantities at time tj with t2N+1 = T . In
short, the cost function is to minimize the body linkage’s
vibration rate to achieve a more static torso movement
for experiments. The constraints C1-C3 solve the hybrid
dynamics of bipedal robots subject to external forces. Details
regarding the numerical optimization can be found in [16]. In
particular, the Hermite-Simpson collocation formulation can
be found in equations (C1,C2) in [16]. Here, the periodic
continuity constraint C4 enforces state continuity through
an edge, i.e., the post-impact states q+, q̇+, are equivalent
to the initial states q1, q̇1. Therefore, the resultant trajectory
is a periodic solution to the bipedal dynamic system.
C5 imposed some feasibility conditions on the dynamics,
including torque limits ‖ui‖∞ ≤ 50, joint reachable space
limitation (qi, q̇i) ∈ X , foot clearance and the friction
pyramid conditions. Note that we posed these constraints
conservatively to reduce the difficulties implementing the
optimized trajectories in experiments.

Once the optimization (25) converged to a set of param-
eters α for the front bipedal robots’ walking gait Bf(t),

TABLE I
COMPUTATING PERFORMANCE

gait1 gait2 gait3 gait4 amble
frequency (Hz) 2.5 2.3 2.2 2.6 2.83
clearance (cm) 11 12 15 13 13
# of iterations 96 122 98 46 147
time of IPOPT (s) 1.60 2.10 1.62 0.81 2.59
time of evaluation (s) 1.94 3.24 2.10 0.94 2.86
NLP time(s) 3.54 5.34 3.72 1.75 5.45



Fig. 6. Tiles of the experimental realization of the stepping in place gait4 on the Vision 60 quadruped.
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Fig. 7. The limit cycles of the two stepping gaits, the left is stepping at
2.2 Hz, the right is stepping at 2.6Hz. HR*, HP*, K* are short for hip roll,
hip pitch and knee joints accordingly.

we can use (12) to obtain the trajectory for the rear biped
Br(t). We then can recompose them to get the parameters
for the quadrupedal locomotion. For validation purposes,
we simulated an ambling step of the quadrupedal dynamics
using the composed bipedal gaits. As shown in Fig. 5, we
have the constraint wrench (ground reaction force) on toe1
λ1,z and toe2 λ2,z of the quadruped matched with those
corresponding external force to the bipedal dynamics. And
the position terms matched as well. The details of controlling
quadrupedal dynamics using a nonlinear controller can be
found in [22].

In order to solve the optimization problem (25) efficiently,
we used a toolbox FROST [17], [18], which parses a hybrid
system control problem into a nonlinear programming (NLP)
based on direct collocation methods, in particular, Hermite-
Simpson collocation. It is worthwhile to mention that a key
factor of the high efficiency of FROST comes from the
implicit formulation of the dynamics. Matrix inversion is
avoided in every step in this formulation due to its computa-
tional complexity: O(n3), with n the dimension of a matrix.
Inspired by this, we remark the dynamics decomposition
method proposed in this manuscript also only used differen-
tial algebra equations (DAEs) instead of ordinary differential
equations (ODEs), which requires matrix inversion both for
the inertia matrix and the closed-loop controller formulation.

A. Rapid gait generation and computing performance

We now take advantage of the high efficiency of the de-
composition based optimization to generate several different
walking patterns for the front biped, then recompose them
to obtain quadrupedal stepping-in-place behaviors. This is
done by adjusting the constraint bounds in the NLP (25).
For example, by changing the upper bound Tmax and lower

bound Tmin of time duration T , we can synthesize a higher
or lower stepping frequency gait. Or, by changing the bounds
of the nonstance foot height δmin ≤ hnsf,z(qf) ≤ δmax, we
can obtain a higher or lower stepping gait. In addition to the
stepping behaviors, we also generated a bipedal walking gait
that can be recomposed to a diagonally ambling gait for the
quadruped with a speed of 0.35 m/s. This is done simply by
releasing the constraint that the nonstance foot has to land
on the same position that it lifts from. See Fig. 7 for the
phase portrait of the slowest and fastest stepping gaits and
Fig. 6 for the experimental implementation.

The end result of the methods presented is the ability
to rapidly generate quadrupedal gaits. This can be seen
by considering the computing performance for each of the
quadrupedal locomotion patterns generated, as is shown at
Table I. To summarize, with the objective tolerance config-
ured as 10−8 and equality constraint tolerance configured
as 10−5 , we have the average computation time as 3.96
second, and time per iteration averages 0.039 second. The
computation test was conducted on a Linux laptop with
an i7-6820HQ CPU @2.70 GHz and 16 GB RAM. In a
comparison with the regular full model based optimization
methods from [22], the decomposition based optimization is
an order of magnitude faster.

IV. IMPLEMENTATION

One of the motivations for realizing rapid gaits using the
full-order dynamics of the quadruped, i.e., without model
simplifications, is to allow for the seamless translation of
gaits from theory and simulation to hardware. With this
as context, we first validated the gaits produced by the
decomposition based optimization problem in simulation.
These gaits includes four stepping in place and a diag-
onally symmetric ambling behavior. Then we conducted
experiments with the same gaits and control infrastructure
as in simulation in an outdoor environment (specifically,
a tennis court). For both simulation and experiments, the
implemented controller is a PD approximation of the input-
output linearizing controllers used to track the time-based
trajectories given by the optimization:

u(qa, q̇a, t) = −k1
(
ẏa − Ḃ(t)

)
− k2

(
ya − B(t)

)
(26)

for both the simulation and experiments. Note that the
switching detection and the event functions are also given



TABLE II
AVERAGE TORQUE INPUTS IN MUJOCO SIMULATION

gait1 gait2 gait3 gait4 amble
ūHR(N·m) 7.80 9.23 10.27 8.68 8.06
ūHP(N·m) 6.78 9.14 10.71 6.64 7.27
ūK(N·m) 18.49 18.38 18.45 18.61 19.03

TABLE III
AVERAGE TORQUE INPUTS IN EXPERIMENTS

gait1 gait2 gait3 gait4 amble
ūHR(N·m) 5.04, 4.83 4.16 5.14 7.11
ūHP(N·m) 3.65 5.24 5.26 3.77 6.28
ūK(N·m) 16.45 16.50 16.86 16.95 18.36

by the optimized trajectories, meaning the walking controller
will switch to the next step when t = T .

A. Simulation

In this paper, we used a third party physics engine,
MuJoCo, to validate the dynamic stability of the five gaits
and controllers produced by the optimization. As a result, the
averaged absolute joint torque inputs are reported in Table
II, all of which are well within the hardware limitations.
PD gains are chosen as kp = 70, 60, 40 and kd =
0.07, 0.1, 0.07 for the hip roll, hip pitch, knee joints respec-
tively. The ground coefficients are set as 0.8, 0.05, 0.0001
for the sliding, torsional and rolling friction.

B. Experiments

Now that the quadrupedal dynamics have been decom-
posed into bipeds, optimized, recomposed and validated
through MATLAB and MuJoCo simulations, we are ready
to apply this method to the physical robot, the Vision 60 in
Fig. 2. For all of the five optimal gaits including stepping and
ambling, we set the PD gains to: kp = 230, 230, 300 and
kd = 5 for the hip roll, hip pitch, knee joints, respectively.
The result is that the Vision 60 quadruped can step and amble
in a outdoor tennis court in a sustained fashion. Importantly,
this is without any add-on layers of implementation or
modification, i.e., without heuristics, and achieved by only
changing the gait parameters α for each experiment (obtained
from the different NLP optimization problems with different
constraints and thus yielding different walking gaits). See
[1] for the video of Vision 60 in both simulation and
experiments. As demonstrated in the video, we remark that
the proposed method has rendered a good level of robustness
against rough terrain with slopes, wet dirt and surface roots.
Hence periodic stability has been obtained in both simulation
and experiment. Fig. 8 shows a side to side comparison of
the simulated amble and experimental snapshots. We also
recorded the averaged torque inputs in Table III for theses
experiments. The tracking performance for the ambling gait
in simulation and experiment are shown in Fig. 9.

In addition, it is interesting to note that time-based control
law (26) normally does not provide robustness against terrain
dynamics, perturbations or uncertainty in the dynamics, due
to its open-loop nature. However, the fact that all of the
trajectory based controllers achieved dynamic stability in
simulations and experiments with an unified control setup

speaks to the benefits of generating gaits using the full-
body dynamics of the quadruped: even with an open-loop
controller that does not leverage heuristics, the quadruped
is still stable. Due to the decomposition of the full-body
dynamics into bipeds, even through the quadruped is high-
dimensional with complex contacts, we can generate gaits
rapidly on the order of seconds.

V. CONCLUSION

In this paper, we decomposed the full-body dynamics of
a quadrupedal robot — the Vision 60 with 18 DOF and 12
inputs — into two lower-dimensional bipedal systems that
are subject to external forces. We are then able to solve
the constrained dynamics of these bipeds quickly through
the HZD optimization method, FROST, wherein the gaits
can be recomposed to achieve locomotion on the original
quadruped. The end result is the ability to rapidly generate
walking gaits. Specifically, by changing a constraint, we
are able to produce different bipedal and thus quadrupedal
walking behaviors from stepping to ambling in 3.9 seconds
on average. Furthermore, the implementation in simulation
and experiments where successful using a single simple
controller and without the need for additional heuristics.

Without sacrificing the model fidelity of the full-body
dynamics of the quadruped, the ability to exactly decom-
pose these dynamics into equivalent bipedal robots makes
it possible to rapidly generate gaits that leverage the full-
order dynamics of the quadruped. Importantly, this allows for
the rapid iteration of different gaits necessary for bringing
quadrupeds into real-world environments. Moreover, the fact
that these gaits can be generated on the order of seconds
suggests that with code optimization on-board and real-time
gait generation may be possible in the near future. The goal is
to ultimately use this method to realize a variety of different
dynamic locomotion behaviors on quadrupeds.
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