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Abstract— Dynamic bipedal robot locomotion has achieved
remarkable success due in part to recent advances in tra-
jectory generation and nonlinear control for stabilization. A
key assumption utilized in both theory and experiments is that
the robot’s stance foot always makes no-slip contact with the
ground, including at impacts. This assumption breaks down
on slippery low-friction surfaces, as commonly encountered in
outdoor terrains, leading to failure and loss of stability. In
this work, we extend the theoretical analysis and trajectory
optimization to account for stick-slip transitions at point foot
contact using Coulomb’s friction law. Using AMBER-3M planar
biped robot as an experimental platform, we demonstrate for
the first time a slippery walking gait which can be stabilized
successfully both on a lubricated surface and on a rough no-slip
surface. We also study the influence of foot slippage on reducing
the mechanical cost of transport, and compare energy efficiency
in both numerical simulations and experimental measurements.

I. INTRODUCTION

Tremendous progress in realizing robust bipedal robot
locomotion has been achieved in the last decade. This is in
part due to successful combination of theoretical modeling
and analysis using the framework of hybrid systems [1],
[2], application of advanced methods of nonlinear control
[3], [4], as well as careful mechanical design and hardware
implementation on various experimental platforms such as
AMBER-3M [5], DURUS [6] and Cassie [7]. Underlying all
of these results, along with successes for robots using other
paradigms such as ZMP [8], [9] and spring-loaded inverted
pendulum (SLIP) based models [10], [11], is the assumption
that the foot does not slip. Thus, in all of these cases, the
foot acts as a stationary pivot point. While this assumption
may easily hold in sterile laboratory environments where
the floors can be chosen with sufficiently high friction, it
becomes impractical on natural outdoor terrains, wherein
there are a plethora of slippery or slightly granulated irregular
surfaces. Success in challenging the stationary contact point
assumption include multi-contact walking [12] and bipedal
running [13], [14].
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Fig. 1: Slippage in the beginning of a step: pre-slip on the left and
post-slip on the right.

The goal of this paper is to address this fundamental
assumption of no slippage by embracing its violation while
still being able to demonstrate the ability to achieve stable
walking experimentally. In legged robots, foot slippage is
often treated as an external disturbance which should be
avoided at the gait planning stage [15], [16], or detected and
recovered in real-time by feedback control at the experimen-
tal implementation stage [17], [18]. Some of the most famous
examples are Boston Dynamics’ robots BigDog [19] and
SpotMini [20] successfully recovering from slippage. Con-
versely, legged animals across a wide range of scales show
impressive adaptability to slippery surface on natural terrains.
Stick insects confronted with a slippery surface modulate
their motor outputs to produce normal walking gaits, despite
a drastic change in the loads that these limbs experience
[21]. Slippage in bipedal running of Guinea fowl has been
studied in [22], showing that falling on slippery surfaces is a
strong function of both speed and limb posture at touchdown.
Several works in human biomechanics literature study the
conditions that cause slipping [23], its consequences [24]
and dynamics [25]. Finally, [26] has measured feet motion
in galloping gaits of horses on outdoor racing terrains and
found significant phase of hoof slippage.

Recent theoretical work has incorporated slippage into
classic simple planar models of legged locomotion both
in passive dynamic and actuated walking — the rimless
wheel [27], compass biped [27], [28] and SLIP [29]. The
models use Coulomb’s friction law and account for stick-
slip transitions and friction-bounded inelastic impacts, which
add complexity to the system’s multi-domain hybrid dynam-
ics. Investigating the influence of friction on both passive
dynamics down a slope and open-loop actuated walking, it
has been found in [27], [28] that upon decreasing the friction



coefficient, periodic solutions with stick-slip transitions begin
to evolve while their orbital stability decreases until reaching
stability loss for too low friction. Nonetheless, stability can
be recovered when adding simple PD control to track a ref-
erence trajectory. In addition, it has been found in [27], [28],
[29] that periodic solutions with slipping impact showed a
significant reduction in energetic cost of transport compared
to their no-slip counterparts. Nonetheless, these promising
theoretical results have never been tested and implemented
experimentally on legged robots.

In this work, we bridge this gap by presenting, for the
first time, an experimental realization of stable planar bipedal
robotic walking on a slippery surface. First, we extend
the formulation of the planar bipedal walking as a hybrid
system in order to account for slippage and Coulomb friction
inequalities, leading to multi-domain system with stick-slip
transitions and stick/slip impact laws. Then we utilize the
nonlinear programming (NLP) toolbox FROST developed
in [30] in order to generate gaits with slipping impact
that are amenable to feedback control using the concept
of hybrid zero dynamics [2]. Experiments are implemented
on AMBER-3M planar robot with point feet, walking on a
slippery treadmill. As a result, a conventional no-slip gait
which walks successfully on a rough treadmill fails to walk
on the slippery surface by losing its stability. On the other
hand, a pre-planned gait which incorporates slippage walks
successfully on the slippery surface, showing remarkable
robustness with respect to treadmill speed as well as level of
lubrication. Additionally, this gait even walks stably on the
non-lubricated rough treadmill without slippage.

This manuscript is structured as follows: Section II con-
sists of a detailed description of the hybrid walking dynam-
ics. We stated all possible domains and edges associated
with walking on slippery surfaces, where multiple switching
guards are associated with one unique domain of dynamics.
In Section III, we briefly reveals the optimization algorithm
and analysis the optimal trajectory’s theoretical properties.
Finally, Section IV and V presented the experimental details
of multiple successful AMBER-3M walking on slippery
surfaces and provide analysis on the data.

II. HYBRID DYNAMICS

Walking on a slippery surface involves multiple continuous
phases (or domains) that are related by discrete events; this
naturally leads to a hybrid system model [31]. Therefore, this
section presents the hybrid model corresponding to stick-slip
walking gaits along with the stabilizing controllers.

A. State and input space

For the bipedal robot AMBER3-PF (PF is short for point
foot, see Fig. 2), the configuration space is chosen as
q ∈ Q ⊆ Rn, where n is the number of unconstrained
degrees of freedom (DOF), i.e. without considering contact
constraints. Using the floating base convention [2], we have
q = (qb, ql), where qb are the global coordinates of the body
fixed frame attached to the base linkage (torso), and ql are
the local coordinates representing rotational joint angles and

Fig. 2: On the Left: The AMBER-3M point foot version, constraint
to a planar rail to walk in a 2D environment on a treadmill.
On the right: the model’s configuration coordinates, with 3 global
coordinates and 4 local coordinates.

prismatic joint extensions. For planar walking on AMBER3-
PF, it is chosen as qb = (px, py, φy), where px, py are the
Cartesian positions of the torso and φy are the angle between
the torso and world. The local coordinates are chosen as
ql = (qsk, qsh, qnsh, qnsk), each representing the stance knee,
stance hip, non-stance hip and non-stance knee joint angle.

Further, the continuous-time state space X = TQ ⊆ R2n

has coordinates x = (qT , q̇T )T . Further, the control inputs
u ∈ U ⊆ Rm are for the actuator torques, with m the
total number of motors. For AMBER3-PF, we have 4 motors
on both knee and hip joints. This indicates under-actuated
dynamics for AMBER-3M walking.

B. Hybrid System Model

Due to the mixture of continuous and discrete dynamics,
walking on a slippery surface is naturally modeled as a
hybrid control system [31]. It is composed of two types of
continuous domains: a sticky walking, where the stance foot
stays stationary at the contact point without moving while
the other foot is swing in the air, and slippery walking,
where the stance foot is slipping along x-axis on the ground.
In summary, we define the walking dynamics on slippery

Fig. 3: The cyclic directed graph of the multi-domain hybrid
system for walking on slippery surface. The solid lines are for
transitions without non-stance foot impact events, and dash lines
are for transitions with impact events.



surfaces as a tuple [32]:

H C = (Γ,D,U ,S,∆, FG) (1)

where,
• Γ = {V,E} is a directed graph with vertices V =
{0, s}, where 0 represents sticky walking, and s repre-
sents slippage of the stance foot. The graph’s edges are
given by E = {e0→s, es→0, es→s, e

I
0→0, e

I
0→s, e

I
s→0,

eIs→s}. The superscript ’I’ denote transition via impact,
whereas its absence denotes stick ↔ slip transitions.

• D = {D0,Ds} ⊆ TQ×U is a set of admissible domains
of continuous dynamics,

• U = {U0,Us} is a set of admissible controls,
• S = {S[e] :e ∈ E} is a set of guards referring

to the switching surfaces between domains, which are
associated with transitions represented by the directed
edges in E.

• ∆ = {∆[e] :e ∈ E} is a set of smooth reset maps rep-
resenting the discrete jump in states at each transition.

• FG = {(f0, g0), (fs, gs)} is a set of affine control
systems ẋ = fv(x) + gv(x)u, defined on a domain Dv .

The directed graph Γ is depicted in the Fig. 3. It is very
important to note, the previous research on multi-domain
hybrid dynamics such as [12], [6], [33] have an unique order
of dynamics and events, this is due to the fact each domain is
only associated with one unique event. But walking on slip-
pery surfaces contains infinite possible sequence of motions.
For example, the dynamics can transit from one domain
to another through any of the events. The construction of
individual elements of (1) will be explained in detail below.

C. Continuous-time dynamics for stick/slip domains

A generalized representation of the stick-slip walking
dynamics can be modeled using the constrained Lagrangian
dynamics [34], [27]. A kinematic constraint of zero normal
displacement of the stance foot reads as zs(q) = 0. An
additional no-slip constraint in tangential direction occurs
only in the stick domain, and is given by xs(q) = x0. For
a particular continuous domain (q, q̇) ∈ Dv , the dynamics is
formulated as

D(q)q̈ +H(q, q̇) = Bu+ JTx (q)λx + +JTz (q)λz (2)

where, D(q) ∈ Rn×n is the inertia matrix, H(q, q̇) ∈ Rn
contains the Coriolis, gravity forces, and B(q) is the actua-
tion matrix, all of which are given by the physical parameters
of the robot and remain the same across all continuous
domains. In addition, the Jacobian matrices (constraint gra-

dient vectors) in (2) are defined as Jx(q) =
dxs(q)

dq
and

Jz(q) =
dzs(q)

dq
, and λx, λz are the tangential and normal

forces enforcing the contact constraints. In the domain of
sticking contact, expressions for the contact forces can be
obtained by augmenting the second time-derivative of the
constraints:

J̇(q, q̇)q̇ + J(q)q̈ = 0 , where J(q) =

(
Jx(q)
Jz(q)

)
. (3)

Eliminating q̈ from (2) and substituting into (3), one can
solve for the constraint forces under sticking contact (cf. [34],
[27]):(

λ0x
λ0z

)
=
(
JD−1JT

)−1 (
JD−1(H −Bu)− J̇ q̇

)
, (4)

where the dependencies on q, q̇, u in (4) are suppressed for
brevity. The forces must satisfy Coulomb’s inequality of dry
friction:

|λ0x(q, q̇, u)| ≤ µλ0z(q, q̇, u), (5)

where µ is the coefficient of friction. When the friction is
too low, slippage of the stance foot in tangential direction
begins to evolve, ẋs = Jxq̇ 6= 0. In this case, the equation of
motion (2) still holds while the tangential constraint in (3) is
no longer valid. Instead, the following two equations should
be augmented with (2):

J̇z(q, q̇)q̇ + Jz(q)q̈ = 0 (6)

λx = −sgn(ẋs)µλz (7)

The tangential force during slippage reaches its maximal
magnitude while opposing the slip direction. (Note that we
do not distinguish here between static and dynamic friction
coefficients for simplicity). Combining (2) and (7) to obtain
expressions for the constraint forces during slippage ([27]):

λsz(q, q̇, u) =
(
JzD

−1(Jz − sgn(ẋs)µJx)T
)−1(

JD−1(H −Bu)− J̇z q̇
)

(8)

λsx(q, q̇, u) =− sgn(ẋs)µλz. (9)

Inequality constraints for slippage are λz ≥ 0 and ẋs 6= 0.
Finally, in both domains the non-stance foot must stay above
the ground, zns(q) ≥ 0. We can now introduce both stick and
slip domains and their definition:

D0 = {(x, u) ∈ TQ× U | zs = żs = ẋs = 0,

zns ≥ 0, |λ0x| ≥ µλ0z} (*)

Ds = {(x, u) ∈ TQ× U | zs = żs = 0,

ẋs 6= 0, zns ≥ 0, λsz ≥ 0} (+)

Finally, for a particular domain v ∈ {0, s}, we can convert
the dynamics (2) and constraint forces in (4) or (9) into an
affine control system in state space [1] as:

ẋ = fv(x) + gv(x)u ∀x ∈ Dv (10)

D. Discrete dynamics
The reset maps associated with non-impacting transitions

∆[e0→s],∆[es→0],∆[es→s] are simply an identity matrix:
x+ = x−, where x−,x+ are the pre-event and post-event
states. This means that the transition is smooth in state space.
In the case of collision of the non-stance foot, the transition
involves impact which induces an instantaneous velocity
jump q̇+ = ∆[e]q̇−. The impulse-momentum balance reads
as follows (cf. [35], [27])

D(qc)(q̇
+ − q̇−) = J(qc)Λ = Jx(qc)

TΛx + Jz(qc)
TΛz

(11)



where qc is the robot’s configuration at collision and Λ =
(Λx,Λz)

T are tangential and normal impulses at the colliding
foot. (Note that one has to interchange the stance and non-
stance variables right before impact, so that Jx, Jz are asso-
ciated with velocities of the colliding foot.) The commonly
used model is that of perfectly inelastic impact. Assuming
zero tangential and normal contact velocities at the post-
impact state gives J(qc)q̇

+ = 0. Combining this with (11),
one obtains the contact impulse and post-impact velocity as:

Λ0 =

(
Λ0
x

Λ0
z

)
= −(JD−1JT )−1Jq̇−

q̇+ =
(
I −D−1JT (JD−1JT )−1J

)
q̇−

where I is the identity matrix and D,J are evaluated at q =
qc. This is the sticking impact law, associated with reset maps
∆[e] for transition edges eI0→0, e

I
s→0. This solution holds

only if the impulses satisfy the frictional inequality |Λ0
x| ≤

µΛ0
z . Otherwise, a slipping impact occurs where Jz q̇+ = 0

while Jxq̇
+ 6= 0. The impulses are thus related as Λx =

−sgn(Jx(qc)q̇
+)µΛz . Combining this with (11), one obtains

Λsz = −(JzD
−1J̃T )−1Jz q̇

−

q̇+ =
(
I −D−1J̃T (JzD

−1J̃T )−1Jz

)
q̇−

where J̃ = Jz − sgn(Jx(qc)q̇
+)µJx. This slipping impact

law is associated with reset maps ∆[e] for transition edges
eI0→s, e

I
s→s.

E. Guards

We now define the guards, which are switching surfaces or
conditions for transition between domains. The first guards
are associated with the smooth transitions between sticking
and slipping domains:

S[e0→s] = {(x, u) ∈ D0 | |λ0x| = µλ0z}

S[es→0] = {(x, u) ∈ Ds | ẋs = 0, |λ0x| ≤ µλ0z}

S[es→s] = {(x, u) ∈ Ds | ẋs = 0, |λ0x| > µλ0z}

Note that the last transition above associated with es→s is
reversal of slip direction (cf. [27]). The guards corresponding
to transitions that involve sticking or slipping impacts are
defined as:

S[eI0→0] = {(x, u) ∈ D0 | zns = 0, żns < 0 and |Λ0
x| ≤ µΛ0

z}

S[eIs→0] = {(x, u) ∈ Ds | zns = 0, żns < 0 and |Λ0
x| ≤ µΛ0

z}

S[eI0→s] = {(x, u) ∈ D0 | zns = 0, żns < 0 and |Λ0
x| > µΛ0

z}

S[eIs→s] = {(x, u) ∈ Ds | zns = 0, żns < 0 and |Λ0
x| > µΛ0

z}

These guards represent the conditions for sticking or slipping
impacts as described above. Note that the overall non-smooth
frictional dynamics may have special degenerate cases where
the solution is inconsistent, indeterminate, or singular. These
rare cases are know as Painlevé paradox [36], [37], and lie
beyond the scope of this work.

F. Feedback Controllers

To stably control a continuous domain Dv with v ∈ {0,p},
we used virtual constraint based walking controllers [38].
In this controller, we first define a set of virtual holonomic
constraints:

y(q) = ydαv
(τ(q))− ya(q) (12)

where ydα(τ(q)) is the desired trajectory for the chosen
features defined by ya(q); in this case, simply the four
actuated joints: ya(q) := (θsk, θsh, θnsh, θnsk)T . We use a
monotonically increasing phase variable τ(q) to parameter-
ize the trajectory. The trajectory is described by a set of static
parameters αv ∈ Rm×5 for each domain. Then we applied a
standard input-output feedback linearization to drive y → 0
exponentially, more details can be found in [38]. The key
idea of this methodology is to remove time dependency
and control the dynamics to evolve naturally along the zero
dynamics, i.e., the under-actuated dynamics.

III. AN OPTIMIZATION FORMULATION

To generate a slippery walking gait, we formulate this
control problem as an implicit trajectory optimization prob-
lem. In particular, we used a direct collocation method to
factorize it into a regular nonlinear programming (NLP). A
deep review of collocation methods can be found in [39]. In
essence, this method numerically solves nonlinear dynamics
by minimizing the difference between the approximate and
exact solutions at collocation points. Formally,

min
α,xi,ẋiui

uTi ui i ∈ {1, 2, ...2M + 1} (13)

s.t. C1. closed loop dynamics

C2. hybrid periodic

C3. physical limitations

C4. slipping feasibility

with M the total number of collocation points, and the
target is to minimize torque inputs. For our problem, FROST
(Fast Robot Optimization and Simulation Toolkit) [30] was
employed for its robustness in solving closed-loop trajectory
optimization problems.

A. Constraints

In the FROST formulation, the optimization picks an
optimal state and input trajectory such that they satisfy
the closed-loop dynamics at each node i by using hermite-
simpson method [40]. This is represented by the closed loop
dynamics constraints C1:

ẋi = fv(xi) + gv(xi)ui (14)

ÿi = −2εẏi − ε2yi (15)

for xi ∈ Dv . Note that equality constraint (15) eliminates
the need to invert dynamics (14) for the state dependent
controller u(x). We also enforced periodic constraint C2 so
that the states at the edges of each domain are connected.
For real world implementation, we also considered physical
constraints C2, such as limiting torques less than 40Nm,



Fig. 4: The slippery walking gait from optimization.

joint velocity less than 4rad/s and preventing certain joint to
hyperextend. Put simple, C1-C3 solves the given nonlinear
dynamics in an optimal way. But to yield a slipping gait,
we additionally includes feasibility constraints C4 from
definitions in (*) (+). In our formulation, we pre-specified a
specific ordered sequence of transitions, indicated by the red
line in Fig. 3. Additionally, since a smoother state trajectory
is preferred for experiment robustness, we further forced the
static parameters to be the same across all domains. It is
worthwhile to mention, this constraint is feasible if and only
if the transition between domains within one step does not
involve any jump in states. This yielded a uniform trajectory
for the multi-domain walking dynamics.

B. Optimal gaits

Solving the optimization problem (13), we obtained a two-
domain slippery walking gait with slippage on the stance foot
3cm, shown with snapshots in Fig. 4. The MCOT+ from
optimization is given as 0.001. The positive only mechanical
cost of transport is calculated using

MCOT+ =
P̄

mgv
(16)

with m the total mass, g the gravitational acceleration, v
the average walking speed, and P̄+ is the mean value of
P+ = {P+

i }Ni=1 with i ∈ {1, 2, 3...N} and N is the total
number of sample points. The positive only power at sample
time ti is computed by P+

i =
∑4
k=1 max

(
ui(k) · q̇i(k), 0

)
,

with ui ∈ R4 and qi ∈ R4 torques and velocities of the
actuated joints at time ti.

For a fair comparison against sticky walking, we simulate
the slippery gait based controller in a sticky environment,
i.e., the ground has a much higher friction coefficient so that
no slipping can happen. After 20 ∼ 30 steps, the walking
converged into a new stable patten. with MCOT+ being
0.0024. which is 140% less energy efficient than walking
on a slippery surface. Further at its steady state, the non-
stance foot’s velocities changed from (0.563,−0.359)m/s
to (0, 0)m/s through the sticky impact. The body kinetic
energy changing from 6.87J to 5.84J. However, the original
optimal slippery gait has a non-stance foot impact velocity
changing from (0.371,−0.237)m/s to (0.251, 0)m/s, and
kinetic energy changing from 3.00J to 2.63J. This aligns with
the theories on energy efficiency in [27].

IV. REALIZATION

AMBER-3M is a modularized testbed to study planar
bipedal locomotions. Its robustness and durability was val-
idated in multiple experiments [5], [41]. In this paper, we

Fig. 5: Block diagram for the controller implemented on AMBER3-
PM for the walking gaits considered in this paper.

particularly studied the slippery walking behavior on the
point foot version (with total mass 21.6kg). As detailed in
[5], the planar walking is achieved by constraining the robot
on a planar rail structure and walking on a treadmill (Fig. 2).
Further experimental details will be presented in this section.

A. Experimental controller

The control structure used in experiments for walking on
a slippery surface is shown in Fig. 5. In this block diagram,
we first measures each joint’s position and velocity, including
the global orientation of the torso. Then the phase variable
τ(q) can be obtained. Note that due to the slippage of the
stance foot, we used the linearized-relative hip position to
calculate the phase variable:

τ(q) =
p(q)− p0
p1 − p0

with p(q) = δ(hipx−sfx) and hipx the hip joint’s Cartesian
position calculated from the global coordinates origin, p0
and p1 are its initial and final value. This way, the phase
variable is independent of the noisy measurement of the foot
slippage. Next, the desired outputs are calculated based on
the optimal trajectory parameters α. Together with the actual
outputs ya(q), on the robot we use a PD controller:

uPD = kp(ya − yd) + kd(ẏa − ẏd)

instead of the feedback linearization controller assumed in
the optimization algorithm. This implementation difference
between theory and experiment has been justified for im-
proved robustness in [42].

B. Experiments

To begin with, we placed a “demonstration” walking gait
that was designed for a sticky surface on the slippery surface
covered by lubricant. Its robustness has been challenged
by countless visitors with failure (i.e., lose of stability)
almost never occurring. However, a few drops of lubricant
easily disabled its walking capability (see [43]). To clarify,
we consider falling down and hitting the mechanical limits
of the testbed both as failures. Later, we conducted four
different experimental setups. For experiment 1, 2 and 3,
we increased the amount of lubricant on the treadmill to
induce different slippery walking behaviors, and completely
removed the lubricant for experiment 0. For each fixed
environmental setup, we manually increase the treadmill



Fig. 6: Snapshots of one slippery walking step from Experiment 3. In the first three pictures, the left foot (stance foot) is slipping smoothly
on the lubricated treadmill.

Fig. 7: Phase portrait of 50 seconds’ experimental data from Experiment 3, with walking speed (from left to right): 0.26m/s, 0.3m/s,
0.38m/s, 0.42m/s. Solid lines are for the desired values and dash lines are for the actual measurements.

speed to trigger different walking speeds on the slippery
surface. We logged 50 seconds’ data (sampling period 3ms)
for each experiment to calculate the energy economy. Fig. 7
shows the phase portrait in for experiment 3 which has the
most slippery surface. The result is AMBER-3M is capable
of walking stably on different slipping conditions including
on a sticky surface, proving its robustness and adaptability to
uncertainties between simulation and experiments. See [44]
for the robust walking on slippery surfaces.

C. Energy economy

A previous research [5] on AMBER-3M with a circular
boom has a benchmark on the energy economy of walking
controllers. In this research due to the slippage of stance
foot, it became too noisy to measure the absolute movement
of the Center of Mass. Hence we used the measure (16)
for MCOT+. See Fig. 8 for the energy results. Note that
we only provide positive only power because AMBER-3M’s
hardware cannot do power-regeneration of the negative work.

While the energy efficiency Fig. 8 seems better than [5],
our measure shows experiment energy efficiency is ∼ 10
times worse than simulation, and the efficiency on difference
surfaces does not vary as much as simulation data. This
is not only caused by different external environment such
as inconsistency of the lubricated treadmill and real world
uncertainties, but we posit the dominance of the MCOT+ by
nominal energy usage of the robot. That is, due to the order
of magnitude difference the simulation and experimental
MCOT+, the comparatively small fluctuations in the MCOT
between different walking cannot be observed with the
current experimental setup. Therefore, it is necessary to study

0.25 0.3 0.35 0.4 0.45 0.5
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Fig. 8: MCOT+ of all experiments. Those not included for certain
speeds are failed experiments.

differences in the MCOT+ between slipping and nominal
gaits wherein changes in energy usage can be isolated from
nominal energy usage and the effects of the environment on
the cost of transport. This is the subject of future research.

V. CONCLUDING REMARKS

In this paper, we formally defined dynamical walking on
slippery surfaces from a hybrid system perspective. This
definition made it possible to formally decomposition this
problem into a traditional trajectory optimization problem
and, for the first time, we are able to demonstrate dynam-
ically stable walking on slippery surfaces experimentally;
this walking showed satisfying robustness and agility. Fu-
ture work includes studying different ordered sequences of
domains and more a more comprehensive study on energy
consumption for bipedal robots walking on slippery surfaces.
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