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Coupled Control Systems: Periodic
Orbit Generation With Application

to Quadrupedal Locomotion
Wen-Loong Ma , Noel Csomay-Shanklin , and Aaron D. Ames , Senior Member, IEEE

Abstract—A robotic system can be viewed as a collec-
tion of lower-dimensional systems that are coupled via
reaction forces (Lagrange multipliers) enforcing holonomic
constraints. Inspired by this viewpoint, this letter presents
a novel formulation for nonlinear control systems that
are subject to coupling constraints via virtual “coupling”
inputs that abstractly play the role of Lagrange multipliers.
The main contribution of this letter is a process—mirroring
solving for Lagrange multipliers in robotic systems—
wherein we isolate subsystems free of coupling constraints
that provably encode the full-order dynamics of the coupled
control system from which it was derived. This dimension
reduction is leveraged in the formulation of a nonlinear
optimization problem for the isolated subsystem that yields
periodic orbits for the full-order coupled system. We con-
sider the application of these ideas to robotic systems,
which can be decomposed into subsystems. Specifically,
we view a quadruped as a coupled control system consist-
ing of two bipedal robots, wherein applying the framework
developed allows for gaits (periodic orbits) to be gener-
ated for the individual biped yielding a gait for the full-
order quadrupedal dynamics. This is demonstrated on a
quadrupedal robot through simulation and walking exper-
iments on rough terrains.

Index Terms—Robotics, cooperative control,
optimization.

I. INTRODUCTION

TO ACHIEVE dynamic walking on high-dimensional
robotic systems, methods that assume simplified mod-

els have been applied, such as embedding the central pattern
generators to multi-legged locomotion [4]. Through another
methodology — dimension reduction, hybrid zero dynamics
(HZD) has proven to be a successful approach as a result of
its ability to make theoretic guarantees [19] and yield walking
for complex humanoids [13], [17] without assuming model
simplifications. The main idea behind this approach is that the
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Fig. 1. Conceptual illustration of the full body dynamics decomposition,
where the 3D quadruped — the Vision 60 — is decomposed into two
constrained 3D bipedal robots.

full-order dynamics of the robot can be reduced to a lower-
dimensional surface on which the system evolves. The system
can then be studied via the low-dimensional dynamic repre-
sentation and, importantly, guarantees made can be translated
back to the full-order dynamics, i.e., periodic orbits (or walk-
ing gaits) in the low-dimensional system imply corresponding
periodic orbits in the full-order system. The goal of this let-
ter is to capture this dimension reduction in a more general
context—that of coupled control systems, which shows the
ability to decompose a complex system into low-dimensional
subsystems.

Another means of dimension reduction for robotic systems
comes from isolating subsystems and coupling these subsys-
tems at the level of reaction forces, i.e., Lagrange multipliers
that enforce holonomic constraints. This is the idea underly-
ing the highly efficient method for calculating the dynamics
of robotic systems: Spatial vector algebra [5]. For example, a
double pendulum can be decomposed into two single pendula
connected via a constraint at the pivot joint [6]. More gener-
ally, one can consider two equivalent ways of expressing the
dynamics of a robotic system [12]:

D(q)q̈ + H(q, q̇) = u
︸ ︷︷ ︸

Full-Order Dynamics

⇔
{

Di(qi)q̈i + Hi(qi, q̇i) = ui + J�
hi

λ

s.t. hi(q) = 0
︸ ︷︷ ︸

Reduced-Order Coupled Dynamics

for i = 1, 2, where h is a coupling (holonomic) con-
straint that is enforced via the Lagrange multiplier λ allowing
for the higher-dimensional q to be decomposed into lower-
dimensional qi, i.e., q = (q1, q2). For example, a quadrupedal
robot can be decomposed into two bipeds as in Fig. 1. Thus,
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if one can make guarantees on the reduced-order coupled
systems, they can be translated to the full-order dynamics.

The study of coupled control systems has a long and rich
history from which the framework presented in this letter has
taken inspiration. The most prevalent example is that of multi-
robot systems [11], the consensus problem [14], [20], and
interconnected systems [2]. In the context of mechanical and
robotic systems on graphs, network synchronization has been
studied [3], [16]. Port-Hamiltonian systems also capture the
notion of coupling present in general mechanical systems [18].
Finally, the coordination of quadruped and human reaction
forces has recently been studied [7]. While not explicitly dis-
cussed due to space constraints, many of these formulations fit
within the general setting of coupled control systems presented
here.

This letter generalizes the aforementioned methods — zero
dynamics and system decomposition through coupling con-
straints — and unifies them through a novel formulation:
coupled control systems. We then utilize zero dynamics to
reduce to a subsystem dependent on coupling constraints
which is then eliminated via coupling relations to yield the
final isolated subsystem. The main result of this letter is that
solutions to the isolated subsystem are solutions to the full-
order system, and thus periodic orbits on the subsystem yield
periodic orbits on the full-order system. This result is lever-
aged to construct a nonlinear optimization problem utilizing
collocation methods to generate these periodic solutions.

Our motivating application is gait (periodic orbit) genera-
tion for quadrupedal robots. Previously, HZD methods were
applied to quadrupedal walking [9]; yet the high complexity
of this system made it computationally expensive to gener-
ate gaits when compared to their bipedal analogs. To address
this shortcoming, recent work has aimed at decomposing
quadruped into bipedal robots [10]—it is this methodol-
ogy that this letter formalizes and extends. In this letter,
we consider quadrupedal robots utilizing the coupled con-
trol system paradigm, wherein this system can be reduced
to lower-dimensional isolated subsystems on which periodic
orbits (gaits) can be generated. We demonstrate the results
through the realization of these generated gaits experimentally
to achieve stable walking on rough terrains.

II. COUPLED CONTROL SYSTEMS

This section introduces the notion of coupled control
systems, for which a collection of differential equations are
coupled via algebraic coupling condition. The goal is to
present the basic paradigm used throughout this letter.

We first introduce a bidirectional graph � = (N, E) where
the vertices N = {1, 2} represent the indices of the subsystems
and edges E = {(1, 2), (2, 1)} represent their connections. We
then denote X = {Xi}i∈N as a set of internal states, Z =
{Zi}i∈N as a set of coupled states, and U = {Ui}i∈N as a set of
admissible control inputs. In addition, we assume i �= j ∈ N
and e = (i, j), e = (j, i) ∈ E throughout this letter.

We can now define the main object of interest.
Definition 1: A coupled control system (CCS) CC is defined

on a graph � and a conditional expression:

CC �

⎧

⎪
⎨

⎪
⎩

ẋi = fi(xi, zi) + gi(xi, zi)ui + ğe(xi, zi, zj)λe
żi = pi(xi, zi) + qi(xi, zi)ui + q̆e(xi, zi, zj)λe
s.t. ce(zi, zj) = −cē(zj, zi) ≡ 0

λe = −λe,

(1)

where, xi ∈ Xi, zi ∈ Zi, ui ∈ Ui, ce(zi, zj) ≡ 0 is a cou-
pling constraint enforced by the coupling inputs λe, and ≡
represents the identical equality of functions.

Fig. 2. Left: the configuration of the quadruped, each leg of which has a
point contact toe. Right: the decomposition of a quadrupedal robot into
two bipedal systems.

We additionally denote x = (x�
1 , x�

2 )� ∈ X , z =
(z�

1 , z�
2 )� ∈ Z, u = (u�

1 , u�
2 )� ∈ U and λ = (λ�

e , λ�̄
e )�

throughout this letter.
Solutions: We define solutions to coupled control systems

by assuming the existence of feedback control laws: u(x, z) �
{u1(x1, z), u2(x2, z)}. Applying these controllers to (1) yields
a coupled dynamical system (CDS):

DC �

⎧

⎨

⎩

ẋi = f cl
i (xi, z) + ğe(xi, z)λe

żi = pcl
i (xi, z) + q̆e(xi, z)λe

s.t. ce(z) ≡ 0, λe = −λē

(2)

where, f cl
i � fi(xi, zi) + gi(xi, zi)ui(xi, z), and pcl

i � pi(xi, zi) +
qi(xi, zi)ui(xi, z). Then the solution of the coupled dynamic
system, DC , is a set of solutions:

{(x1(t), z1(t), λe(t)), (x2(t), z2(t), λē(t))} s.t. (2) ∀t ∈ I ⊂ R

with initial condition: {(x1(0), z1(0), λe(0)), (x2(0), z2(0),
λē(0))}, and I ⊂ R is the time interval of their existence. Per
the above notation, we will sometimes denote the solutions by
(x(t), z(t), λ(t)) with initial condition (x(0), z(0), λ(0)).

Coupling constraints: Importantly, the solutions must satisfy
the coupling constraints at all time. Therefore,

ce(z) ≡ 0 ⇒ ċe(z, ż) ≡ 0 (3)

⇒ ∂ce(zi, zj)

∂zi
︸ ︷︷ ︸

�J(i,j)
c (z)

żi + ∂ce(zi, zj)

∂zj
︸ ︷︷ ︸

�J(j,i)
c (z)

żj ≡ 0

⇒ ċe(x, z) = J(i,j)
c (z)

(

pcl
i (xi, z) + q̆e(xi, z)λe

)

+ J(j,i)
c (z)

(

pcl
j (xj, z) + q̆ē(xj, z)λē

)

≡ 0. (4)

Hence, to solve for the coupling inputs λe that satisfy the
coupling constraints, it is necessary to solve an equation that
depends on the states of both subsystems. To address this, we
present a method for isolating a subsystem via conditions on
the controllers of the other systems in the next section. Before
doing this, we utilize the following example to illustrate the
concepts of coupled control systems.

Application to quadrupedal robots: The motivating applica-
tion considered here, is to compute periodic solutions to the
quadrupedal dynamics. As Fig. 2 shows, we decompose this
quadruped into two bipeds, whose dynamics are on a CCS
graph (according to definition 1): � � (N = {f, r}, E = {e =
(f, r), ē = (r, f)}), where f, r label the front and rear bipedal
systems, correspondingly. We pick the coordinates for these
two subsystems as qf = (ξ�

f , θ�
L2

, θ�
L0

)�, qr = (ξ�
r , θ�

L1
, θ�

L3
)�

with ξi ∈ R
3 × SO(3) and the leg joints θL∗ ∈ R

3. Since
all leg joints are actuated, the inputs are ui ∈ U ⊂ R

6. The
(continuous-time) dynamics of a quadruped as two coupled
bipedal systems are given by a set of Differential Algebraic
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Equations (DAEs):

RQ �

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Diq̈i + Hi = J�
i Fi + Biui + J�

e λe (5)

Jiq̈i + J̇iq̇i = 0 (6)
s.t. ce(ξi, ξj) = ξi − ξj ≡ 0 (7)

λe = −λē (8)

with Di(qi) ∈ R
n×n the mass-inertia matrix, Hi(qi, q̇i) ∈ R

n

the drift vector, and Bi = [

06×6 I6×6
]

the actuation matrix.
The contact (holonomic) constraint hi(qi) ≡ 0 is enforced via
ground reaction forces Fi ∈ R

3, whose second derivative is
given in (6). More details of these notations can be found
in [10]. Note that Fi can be eliminated by the solving (5)-(6)
to have a shorter form: Diq̈i+H̄i = B̄iui+J̄�

e λe. The derivation
is straightforward hence omitted.

To obtain a CCS as in (1), we pick “normal form” type
coordinates (see [15]), with the “output” (also known as virtual
constraint [19]) that we wish to zero, given by

yi(qi, αi) = ya(qi) − yd(ξi, αi), (9)

where ya, yd are the actual and desired outputs, ξi represents
a parameterization of time and αi ∈ R

6×6 are the coefficients
for six 5th-order Beźier polynomials that are designed by
the optimization algorithm in Section IV. Since our goal is
to find a symmetric ambling gait for quadrupeds, we chose
αr = Mαf, with the matrix M representing a mirroring rela-
tion. It is important to note that the output coordinate here
utilizes a state-feedback structure, instead of the time-based
construction of [10]. We can then construct our internal states
xi = (y�

i , ẏ�
i )�, leaving the coupled states as zi = (ξ�

i , ξ̇�
i )�.

The end result is a CCS of the form given in (1) for this
mechanical system:

ẋi =
[

ẏi

J̇yi q̇i − JyiD
−1
i H̄i

]

︸ ︷︷ ︸

fi(xi,zi)

+
[

0
JyiD

−1
i B̄i

]

︸ ︷︷ ︸

gi(xi,zi)

ui +
[

0
Jyi D

−1
i J̄�

e

]

︸ ︷︷ ︸

ğe(xi,zi,zj)

λe

żi =
[

ξ̇i

−Jξ D−1
i H̄i

]

︸ ︷︷ ︸

pi(xi,zi)

+
[

0
Jξ D−1

i B̄i

]

︸ ︷︷ ︸

qi(xi,zi)

ui +
[

0
Jξ D−1

i J̄�
e

]

︸ ︷︷ ︸

q̆e(xi,zi,zj)

λe

s.t. ce(zi, zj) = zi − zj ≡ 0, λe = −λē,

where Jyi = ∂yi(qi)/∂qi, Jξ = ∂ξ/∂q = [

I6×6 06×6
]

, and we
suppressed the dependency on xi, zi for all entries.

III. ISOLATING CONTROL SUBSYSTEMS

The main idea in approaching the analysis and design of
controllers for coupled control systems is to isolate subsys-
tems that encode the behavior of the overall CCS. This section
outlines the procedure for isolating the subsystems through a
two-step approach: restricting systems to the zero dynamics
manifold, and leveraging this to explicitly calculate the cou-
pling conditions. We then can reduce the full-order CCS to
a subsystem that no longer depends on the internal states of
the other subsystem. We establish the main result of this letter
encapsulating these constructions: solutions to the subsystem
yield solutions to the full-order dynamics.

A. λ-Coupled Subsystem
Given a CCS CC , we define the zero dynamics manifold for

each subsystem i ∈ N as:

Zi � {(x, z) ∈ X × Z | xi ≡ 0}. (10)

Thus, the zero dynamics manifold for ith subsystem consists
of the internal states, xi, being zero, i.e., the system evolves
only according to the coupled states z.

The key idea underlying the analysis of CCSs is to reduce
the entire coupled system into the behavior of a single subsys-
tem. This is achieved through the above constructions related
to the zero dynamics. We start by designing controllers for
the overall CCS on the zero dynamics of subsystem j ∈ N.
A controller uZ,λ

j (xj, z) is said to render the zero dynamics
manifold Zj invariant if it satisfies:

0 ≡ fj(0, zj) + gj(0, zj)u
Z,λ
j (0, z) + ğē(0, z)λē (11)

where uZ,λ
j implicitly depends on λē for ē = (j, i) ∈ E. By

applying uZ,λ
j , we obtain a λ-coupled control subsystem (λ-

CCSub) for the ith subsystem:

CZ,λ
i �

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ẋi = fi(xi, zi) + gi(xi, zi)ui + ğe(xi, z)λe
żi = pi(xi, zi) + qi(xi, zi)ui + q̆e(xi, z)λe

żj = pj(0, zj) + qj(0, zj)u
Z,λ
j (0, z) + q̆ē(0, z)λē

s.t. ce(z) ≡ 0, λe = −λē

(12)

Thus, the ith subsystem evolves according to its own dynamics
and the zero dynamics of all remaining systems—all of which
are coupled via the coupling inputs λ.

B. Explicit Coupling Conditions
The coupling between the control systems (1) is enforced

via λ and the coupling constraints of the form (4). Similarly,
even in the reduction to a subsystem (12), the coupling is still
achieved through λ. We wish to generalize this so as to remove
the coupling, i.e., isolate subsystems, while still preserving the
overall behavior of the full system. We first define the coupling
relation that allows the use of the controllers uZ,λ

j to eliminate
the dependence on the controllers and internal states of the
other subsystem.

Definition 2: For a λ-CCSub CZ,λ
i and i ∈ N, a coupling

relation is a functional relationship on the coupling inputs

λZ
e (xi, z; ui) = AZ

e (xi, z)ui + bZ
e (xi, z), (13)

that satisfies the coupling constraint (3) for all e = (i, j) ∈ E.
The coupling relation is then summarized in the following:
Lemma 1: For a CCS CC , if we have

Q̆(xi, z) �
[

gj(0, zj) −ğē(0, z)
J(j,i)

c qj(0, zj) J(i,j)
c q̆e(xi, z) − J(j,i)

c q̆ē(0, z)

]

invertible, there exists a controller uZ
j that renders Zj invariant

and a coupling relation in (13), given by:
[

uZ
j (0, z; ui)

λZ
e (xi, z; ui)

]

= Q̆−1
([

0
−J(i,j)

c qi(xi, zi)

]

ui

+
[ −fj(0, zj)

−J(i,j)
c pi(xi, zi) − J(j,i)

c pj(0, zj)

])

(14)

Proof: Evaluating (3) along the zero dynamics manifold Zj,
i.e., xj ≡ 0, yields: J(i,j)

c (z)(pi(xi, z)+qi(xi, z)ui+q̆e(xi, z)λe)+
J(j,i)

c (z)(pj(0, z) + qj(0, z)ui + q̆ē(0, z)λe) = 0 Combining this
with (11) and simultaneously solving for uZ

j and λZ
e yields the

desired result.
Recall that the controller uZ,λ

j that renders the zero dynamics
surface invariant implicitly depends on λē via (11). Now with
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a coupling relation, the dependence of λē is removed, and as
a result we say that uZ

j renders the zero dynamics manifold Zj
invariant if:

0 ≡ f Z
j (0, z) + gZ

j (0, z)ui + gj(0, zj)
(

uZ
j (0, z; ui) − ui

)

(15)

where uZ
j is now a function of ui and
{

f Z
j (xj, z) � fj(xj, zj) − ğē(xj, z)bZ

e (xi, z),

gZ
j (xj, z) � gj(xj, zj) − ğē(xj, z)AZ

e (xi, z).
(16)

Returning to (4), given a coupling relation we can rewrite
this coupling constraint as:

ċe(xi, z) = J(i,j)
c (z)

(

pZ
i (xi, z) + qZ

i (xi, z)ui

)

+ J(j,i)
c (z)

(

pZ
j (xi, z) + qZ

j (xi, z)ui

)

≡ 0 (17)

where for the subsystem CZ,λ
i we have

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

pZ
i (xi, z) � pi(xi, zi) + q̆e(xi, z)bZ

e (xi, z)
qZ

i (xi, z) � qi(xi, zi) + q̆e(xi, z)AZ
e (xi, z)

pZ
j (xi, z) � pj(0, zj) + qj(0, zj)uZ

j (0, z) − q̆ē(0, z)bZ
e (xi, z)

qZ
j (xi, z) � −q̆ē(0, z)AZ

e (xi, z)

(18)

C. Isolating Subsystems
We now arrive at the key concept for which all of the

previous constructions have built — reducing a CCS to a sin-
gle subsystem that can be used to give guarantees about the
entire CCS. This is based on the following definition.

Definition 3: For a CCS CC , and i �= j ∈ N, assume a
coupling relation λZ

e such that there exist uZ
j rendering the

zero dynamics manifold Zj invariant. Then the ith control
subsystem (CSub) associated with the CCS CC is given by:

CZ
i �

⎧

⎨

⎩

ẋi = f Z
i (xi, z) + gZ

i (xi, z)ui

żi = pZ
i (xi, z) + qZ

i (xi, z)ui

żj = pZ
j (xi, z) + qZ

j (xi, z)ui

(19)

where f Z
i (xi, z) � fi(xi, zi) + ğe(xi, z)bZ

e (xi, z), gZ
i (xi, z) �

gi(xi, zi) + ğe(xi, z)AZ
e (xi, z), and pZ

i , qZ
i , pZ

j , qZ
j are given

in (18). Furthermore, when a feedback controller ui(xi, z) is
applied to CZ

i , the result is a dynamical system, denoted by DZ
i .

Note that the coupling constraint (17) was not explicitly
stated in the CSub CZ

i . This was because it was solved for via
the coupling relation λZ

e . That is, the system naturally evolves
on the constraint manifold: C � {(x, z) ∈ X × Z : ce(z) ≡
0, ∀ e ∈ E}. This is made formal in the following result.
Additionally, it will be seen that solutions to the ith subsystem,
denoted by (xi(t), z(t), λ(t)), can be used to construct solutions
to the full-order CCS. Before formally stating the ultimate
result of this letter, we need some notation. Let (xi, z) ∈ Xi×Z
and consider the canonical embedding ι : Xi × Z ↪→ X × Z
given by ι(xi, z) = (x, z), where x = {xi, xj} and xj = 0.

Theorem 1: Let CC be a CCS, and for the jth system
assume there exist uZ

j that render the zero dynamics mani-
fold Zj invariant. Let CZ

i be the corresponding λ-CCSub for
the ith subsystem. Given a feedback controller ui(xi, z) for
the CSub with corresponding dynamical subsystem DZ

i with
solution (xi(t), z(t)) for t ∈ I ⊂ R. If

ι(xi(0), z(0)) ∈ C ⇒ ι(xi(t), z(t)) ∈ C ∀ t ∈ I ⊂ R

then (ι(xi(t), z(t)), λZ(t)) with

λZ(t) =
{

λZ
e (xi(t), z(t); ui(xi(t), z(t)))

}

e∈E

is a solution to DC , the CDS obtained by applying ui, uZ
j .

Proof: The condition that (x(0), z(0)) ∈ C is equivalent
to ce(z(0)) = 0. Concretely, ce(zi(0), zj(0)) = 0. Since
λZ

e is a coupling relation, it satisfies (4) and more explic-
itly (17); therefore, and being explicit about the arguments,
ċe(x(t), z(t)) = 0 for all t ∈ I and all e ∈ E. It follows that
ce(z(t)) = 0 for all t ∈ I and e ∈ E.

The fact that (ι(xi(t), z(t)), λZ(t)) is a solution to DC assum-
ing that (xi(t), z(t)) is a solution to DZ

i follows trivially
from the fact that the zero dynamics Zj are invariant, i.e.,
ι(xi(t), z(t)) ∈ Zj, ∀ t ∈ I.

Periodic Orbits: In the context of quadrupedal dynamics, we
will be interested in generating periodic solutions, i.e., walk-
ing. A solution to a CDS DC is periodic of period T > 0 if
for some initial condition (x(0), z(0), λ(0)):

(x(t + T), z(t + T), λ(t + T)) = (x(t), z(t), λ(t))

with the resulting periodic orbit: O = {(x(t), z(t)) ∈ X ×
Z | 0 ≤ t ≤ T}. As a result of Theorem 1, periodic orbits in
a subsystem correspond to the periodic orbits in the full-order
dynamics.

Corollary 1: Under the conditions of Theorem 1, assume
that (xi(t), z(t)) is a periodic solution to DZ

i with period T > 0
and corresponding orbit Oi = {(xi(t), z(t)) ∈ Xi × Z | 0 ≤
t ≤ T}. Then (ι(x(t), z(t), λZ(t)) is a periodic solution to
the CDS with period T > 0 and corresponding periodic
orbit O = ι(Oi).

Application to quadrupeds: For the quadrupedal dynamics
RQ, since the output (9) has (vector) relative degree 2 with
respect to ui (see [19]), we can explicitly design the controller
uZ,λ

j that renders Zj invariant:

uZ,λ
j = (JyiD

−1
j B̄j)

−1
(

JyjD
−1
j H̄j − J̇yj q̇j − JyiD

−1
j J̄�

e λe

)

,

as given by Lemma 1. Hence, this controller satisfies (11) and
renders a λ-coupled CSub, as in (12).

For robotic systems, we take these ideas one step further
to obtain “bipeds” that are the isolated subsystems associated
with quadrupeds. Operating on the invariant zero dynamics
manifold Zj yields yj(qj, αj) ≡ 0, hence

θa ≡ H−1
a yd(ξj, αj) and qZ

j (ξj) ≡
(

ξ�
j , (H−1

a yd(ξj, αj))
�)�

⇒ q̈Z
j (ξj, ξ̇j, ξ̈j) = Jz(ξj)ξ̈j + J̇z(ξj, ξ̇j)ξ̇j.

where Jz = ∂qZ
j (ξj)/∂ξj. In another word, if uZ,λ

j exists and
is applied to jth subsystem, the jth bipedal dynamics given by
in (5)-(6) are equivalent to:

{

Djq̈
Z
j (ξj, ξ̇j, ξ̈j) + Hj = J�

j Fj + Bju
Z
j + J�

e λe (20)

Jjq̈
Z
j (ξj, ξ̇j, ξ̈j) + J̇jq̇

Z
j (ξj, ξ̇j) = 0 (21)

where for simplicity we have suppressed the dependencies of
Dj(qj(ξj)), Jj(qj(ξj)) and Hj(qj(ξj), q̇j(ξj, ξ̇j)). We then leverage
a specific structure of rigid-body dynamics when using the
floating base convention: Bjuj + J�̄

e λe = (λ�̄
e , u�

j )�. Utilizing
this, (21) and the first 6 rows of (20) yield the following
“bipedal” dynamics:

RZj

B �
{

DZ
j ξ̈j + HZ

j = Ĵ�
j Fj + λe

JZ
j ξ̈j + wZ

j = 0
(22)
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with DZ
j = D̂jJz, HZ

j = D̂jJ̇zξ̇j + Ĥj, JZ
j = JjJz, and wZ

j =
JjJ̇zξ̇j + J̇jJ̇zξ̇i. Here, we denote �̂ as the first 6 rows (block)

of the a variable. Hence, RZj

B represents the dynamics of a
subsystem j on Zj, i.e., (22) evolves according to (11) where
Fj can be uniquely determined.

IV. COUPLED SYSTEM OPTIMIZATION

With the previous construction of coupled control systems,
we present a general optimization framework to solve for
the solution to the ith CSub in (19) associated with the
CCS, while synthesising the controllers that render forward
invariance of the zero dynamics manifolds. The approach we
will take is a locally direct collocation based optimization
method [8], which has been widely applied to finding solutions
to dynamical systems such as [13]. We now pose the previous
formulations as a set of constraints to represent the controlled
dynamics of CZ

i . Along this process, the problem formula-
tion of our target application — the control of quadrupedal
walking, will be used as an example to illustrate this method.

Optimization setup: We first discretized the time horizon
t ∈ [0, T] evenly to obtain the grid indices κ = 0, 1, . . . , K,
i.e., tκ = Tκ/K. We define the decision variable associated
with the ith control subsystem CZ

i as:

X �
{

ϑκ
}

κ=0,1,...,K, ϑκ � {xκ
i , ẋκ

i , zκ
i , żκ

i , zκ
j , żκ

j , uκ
i , uZ,κ

j }
Note that we abbreviated the dependency on time t as �κ �
�(tκ) for notational simplicity.

Recall that given a coupling relation, we have associated
zero dynamics invariance conditions given by (15). We will
enforce these conditions in the optimization to ensure that uZ,κ

j
renders Zj invariant as:

Fzero(ϑ
κ) � f Z

j (0, zκ ) + gZ
j (0, zκ)uκ

i + gj(0, zκ
j )

(

uZ,κ
j − uκ

i

)

,

where f Z
j and gZ

j are given as in (16).
Next, following from the constructions in Section III-C, we

define constraints corresponding to the dynamics of the ith con-
trol subsystem CZ

i (as obtained from the coupling relation).
Denote χκ = (xκ

i , zκ
i , zκ

j ) and

F(χκ, uκ
i ) �

⎧

⎨

⎩

f Z
i (xκ

i , zκ) + gZ
i (xκ

i , zκ)uκ
i

pZ
i (xκ

i , zκ) + qZ
i (xκ

i , zκ )uκ
i

pZ
j (xκ

i , zκ) + qZ
j (xi, z)uκ

i

to obtain the dynamic constraints as

Fdyn(ϑ
κ) � χ̇ κ − F(χκ, uκ

i ) = 0, (C.2)

which is an equality constraint imposed on the κ th node to
enforce all of the states and controllers satisfy the dynamics
in (19). Further, to guarantee that those local solutions satis-
fying (C.2) stay on the same vector flow, i.e., belong to one
unique solution, we employ an implicit stage-3 Runge-Kutta
method for formulating this objective as an equality constraint.
Concretely, we use Hermite interpolation to compute the inter-
polated value of χκ

c and its slope χ̇ κ
c (see [8, eq. (8)]) at

the center of the subinterval [tκ , tκ+1]. Then the collocation
constraints are formed as:

d(χκ, χκ+1, uκ
i ) � χ̇ κ

c − F(χκ
c , uκ

i ) = 0 (C.3)

Physical Constraints & Periodic Constraints: A set of
inequality constraints (path constraints) p(ϑκ) ≥ 0 are used to
enforce conditions along the time horizon. For robotics, these

are widely applied as obstacle avoidance conditions, and some
feasibility conditions for the dynamical system, representing
real-world physics. In our application — the walking dynam-
ics of quadrupeds, the inequality constraints are used to define
the friction cone condition and maximum ground clearance of
the swing foot to be higher than 8 cm.

In addition, a set of equality constraints are imposed on the
decision variables at t = 0, T to “connect” the initial and final
condition: b(χ0, χK) = 0, so that the optimal solution to the
optimization is a periodic solution to the dynamical system.
Particularly, the dynamics of quadrupedal locomotion include
both continuous and discrete dynamics, forming a hybrid con-
trol system. To find a periodic solution (ambling motion), we
have the periodic constraint as:

b(q0
i , q̇0

i , qK
i , q̇K

i ) =
[

(qK
i )q̇K

i − q̇0
i

qK
i − q0

i

]

= 0 (C.6)

where (·) represents the plastic impact dynamics that maps
the pre-impact velocity q̇K

i to its post-impact term.
Optimization problem: To find the periodic solution to

dynamical system (19), we now parse this coupled controlling
problem of the isolated ith subsystem as:

argmin
X

�(X) (NLP)

s.t. Fzero(ϑ
κ) = 0 κ = 0, 1 . . . , K (C.1)

Fdyn(ϑ
κ) = 0 κ = 0, 1 . . . , K (C.2)

d(χκ, χκ+1, uκ
i ) = 0 κ = 0, 1 . . . , K − 1 (C.3)

ϑκ ∈ X × Z × U κ = 0, 1 . . . , K (C.4)

p(ϑκ) ≥ 0 κ = 0, 1 . . . , K (C.5)

b(X) = 0 (C.6)

where �(·) ∈ R is the cost function. Here, we pick the cost
function as the acceleration of the torso orientation to yield a
less energetic motion for the ease of experiments. (C.4) defines
the upper and lower bounds of the decision variables, i.e., that
they live in the admissible space of values. In the application
of walking, this was used to define the feasible configura-
tion space and the actuator torque less than 40N·m. The other
constraints are as stated as above.

Solutions: As a result, the optimization (NLP) can
simultaneously produce trajectories (solutions) of the states
{xi(t), z(t)}, uZ

j (t) that renders the zero dynamics manifold
Zj invariant and the open-loop controller ui(t), ∀t ∈ [0, T]
for which these solutions are defined. Note that one can also
enforce the dynamics ẋκ

i +εxκ
i = 0 with ε > 0 to guarantee the

convergence attribute of the ith isolating subsystem, in which
case the controller ui(xi, z) is equivalently an input-output
feedback linearization controller. Per Theorem 1, given uZ

j
that renders invariant Zj and the feedback controller ui(xi, z),
we can compute λZ(t) using (13), hence (ι(xi(t), z(t)), λZ(t))
is a solution to the original CDS. Further, by imposing the
periodic condition on the solution’s boundary condition, the
optimization produced a periodic solution to period T to the
CCS. Therefore, according to Corollary 1, (ι(xi(t), z(t), λZ(t))
is a periodic solution to the CDS with period T .

Application to quadrupeds: When posing the control
problem of quadrupeds, we leverage the subsystems represent-
ing the front and rear bipeds: RZf

B and RZr
B, as given in (22).

Note that these subsystems are still coupled through λ—while
this could be explicitly solved for via Lemma 1, we keep
it implicit due to the complexity of inverting the mass-inertia
matrix for this particular robotic application. The ith subsystem
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Fig. 3. Top: Snapshots showing a full step of the ambling gait in an outdoor lawn. Bottom: The periodic trajectory produced by optimization (NLP)
(in red) vs. the experimental tracking data (in cyan) vs. RaiSim simulation data (in green) in the form of phase portrait (limit cycle) using 18 seconds’
data.

yield (C.1), (C.2) and (C.3) for (NLP). Specifically for all of
the grid indices κ = 0, 1, . . . , 5, we have the decision vari-
ables: ϑκ = {qκ

f , q̇κ
f , ξκ

r , ξ̇ κ
r , uκ

f , Fκ
f , Fκ

r , αf, λ
κ
e }. Finally, the

optimization converges to a periodic solution to the isolated
bipedal system, which can then be composed to obtain the
ambling motion of the quadruped (shown in Fig. 3) accord-
ing to Theorem 1. We report that the optimization took 17.6s
and 295 iterations of searching, which is over 58% faster than
the previous full-model based approach in [9]. The compu-
tational complexity is mitigated mainly due to the dimension
reduction of the state space which is enabled by the repre-
sentation of the quadrupedal dynamics as bipedal subsystems.
For validation purposes, both simulations in a physics engine
– RaiSim – and hardware experiments were conducted with
a unified, time-based PD approximation of input-output lin-
earizing controllers to track the desired outputs (represented
by αf, αr = Mαf):

ui(qi, q̇i, t) = −kp

(

ẏa(qi) − yd
t (t, αi)

)

− kd

(

ya(qi) − ẏd
t (t, αi)

)

with kp, kd the PD gains. The result is successful ambling in
simulation, and experimentally walking on flat and outdoor
uneven terrains (see video [1]). See Fig. 3 for walking tiles
and the tracking performance. Remark that the averaged abso-
lute torque inputs are 11.16 N·m, which are well within the
hardware limits.

V. CONCLUSION

As inspired by robotic systems, this letter presented a new
formulation of coupled control systems: control systems that
are connected via coupling relations and coupling inputs. We
demonstrated how these systems can be reduced to a single
subsystem that encodes the behavior of the full-order coupled
system; this was achieved through leveraging zero dynamics
and coupling relations. The main result of this letter was that
solutions to these isolated subsystems are solutions to the full-
order systems. Building on this, we constructed a nonlinear
optimization problem on only a given subsystem that yields
periodic orbits for the full-order dynamics. Finally, the applica-
tion of these ideas were considered for coupled control systems
from which a specific example includes quadrupeds. This was
demonstrated through experiments on hardware. The general
formulation of the CCS problem allows for a wide variety of
applications, such as coupling bipedal locomotion to get walk-
ing on sloped terrain, stair climbing, and trotting behaviors for
multi-legged systems.
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