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Coupled Control Lyapunov Functions for
Interconnected Systems, With Application

to Quadrupedal Locomotion
Wen-Loong Ma , Noel Csomay-Shanklin , Shishir Kolathaya , Kaveh Akbari Hamed , and Aaron D. Ames

Abstract�This letter addresses the problem of formally guaran-
teeing the stability of interconnected systems with local controllers
with a view toward stabilizing quadrupeds viewed as coupled
bipeds. In particular, we present a novel framework that views gen-
eral rigid-body systems as a collection of lower-dimensional systems
that are coupled via reaction forces. Stabilizing the corresponding
coupled control system can thus be addressed by stabilizing each
subsystem coupled through the passive dynamics. The main results
of the letter are stability conditions that guarantee convergence for
each control subsystem by formulating coupled control Lyapunov
functions (CCLFs) using the notion of input-to-state stability (ISS).
This theoretical result is illustrated via a simple cart-pole example,
where exponential stability is obtained. Next, building on previ-
ous results where an 18-DOF quadrupedal robot is decomposed
into two interconnected bipedal systems for ef�cient periodic gait
generation, we design model-free quadratic programs (QPs) using
the CCLFs to stabilize the continuous dynamics and thus achieve
experimental walking and simulated hopping and running on the
Vision 60 quadrupedal robot.

Index Terms�Legged robots, motion control , optimization and
optimal control.

I. INTRODUCTION

IN the past decade, dynamic locomotion of high-dimensional
robotic systems such as 3D humanoids and quadrupedal

robots have been a benchmark problem in the fields of control
and computation. The high nonlinearity of these systems often
makes it intractable to design control laws that encode formal
guarantees of stability and robustness while being realizable in
practice. To address this theory-reality gap, various methods
have built on the idea of model simplification to reduce the
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complexity of locomotion control. The linear inverted pendulum
(LIP) model was popularly used to control bipedal systems [1],
[2]. The Zero Momentum Point (ZMP) [3] method gives a robust
but restrictive condition to prevent foot-rolling. Further, the
whole-body control [4] and centroidal dynamics [5] take account
of the dominating effect of center of mass to control bipedal and
quadrupedal locomotion [6]. Yet these methods lack guarantees
with respect to the full-order dynamics.

From a formal perspective, hybrid zero dynamics (HZDs) [7],
[8] reduces the stability of the full-order hybrid dynamics, via
control, to the lower-dimensional zero dynamics manifold, thus
giving theoretical guarantees that yield experimental success for
complex robots [9]–[11]. Building on this dimensional reduction
concept, the authors previously introduced the framework of
coupled control systems (CCSs) [12]. The key idea is that we
can view a robotic system as a collection of lower-dimensional
nonlinear systems that are coupled via reaction forces enforcing
holonomic coupling constraints. By isolating each subsystem
from the full-order system, we can leverage this methodology to
efficiently optimize quadrupedal gaits. This has been utilized for
flat-ground walking and sloped terrain walking [13], [14]. The
goal of this letter is to take a first step towards controlling the
full-order dynamics of quadrupedal locomotion by stabilizing
the continuous dynamics via control Lyapunov functions.

Related Work: The study of coupled dynamical and control
systems has a long and rich history from which the method
presented in this paper has taken inspiration. First, from the
computational perspective, the highly efficient method for cal-
culating the dynamics of robotic systems—spatial vector al-
gebra [15]—uses a similar concept: Lagrange multipliers that
enforce holonomic constraints. Second, focusing on the coupled
dynamics, the interconnected systems [16] have studied the
synchronization of coupled oscillators [17], [18]. Further, the
passivity-based control [19] has been proposed to design cou-
pled controllers for multi-agent systems, and the input-to-state
stability analysis [20] studied the Lyapunov stability of decou-
pled control laws. Third, in the control community, the most
relevant examples are the multi-agent networks [21], the consen-
sus problem [22] and the cooperative control problem [23], [24].
These methods have been successfully demonstrated on a wide
range of robotic applications, especially on drones. However, the
problems considered in these frameworks are often coupled on
the control level—shared feedback information—but not the dy-
namics level, such as the general formulation considered in [25].
This allows for the designer to utilize the built-in stabilizing
controller of each subsystem to achieve some add-on optimality.
In other words, each subsystem’s stability does not critically
rely on the other subsystems’. In related work, the coordination

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 15,2021 at 21:32:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0115-5632
https://orcid.org/0000-0002-2361-1694
https://orcid.org/0000-0001-8689-2318
https://orcid.org/0000-0001-9597-1691
https://orcid.org/0000-0003-0848-3177
mailto:wma@caltech.edu
mailto:noelcs@caltech.edu
mailto:ames@caltech.edu
mailto:shishirk@iisc.ac.in
mailto:kavehakbarihamed@vt.edu
https://doi.org/10.1109/LRA.2021.3065174


3762 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Fig. 1. The quadrupedal robot, Vision 60 v3.9— studied in this work.

of multiple quadrupedal robots via reaction forces has recently
been studied [26].

Contribution: Our contributions are twofold. First, through
the formulation of coupled control Lyapunov functions, we can
formally define the stability criteria of each subsystem while they
are dynamically coupled with the rest of the system due to the
shared zero dynamics. We can then utilize these Lyapunov func-
tions to synthesize local optimal control laws for each individual
subsystem that guarantee stability of the overall coupled control
system, and hence the full-order dynamics. Second, when ap-
plying to rigid-body dynamics, we can incorporate quadratic
programming formulations with two types of Lyapunov func-
tions for controller design. First, feedback linearization based
CLFs are synthesized and demonstrated on a cart-pole example
showing stability. Second, PD-inspired Lyapunov functions are
used to synthesize model-free CLFs for experimental robustness.
These CLFs are applied to stabilizing the continuous dynamics
of quadrupedal locomotion. This stabilization is demonstrated
in simulation with regard to hopping and running. Finally, we
demonstrate this framework on hardware, specifically the Vision
60 robot (Fig. 1). We empirically show that it is able to walk
stably and robustly on outdoor environments.

Notation: In this paper, we denote the set of non-negative
real numbers as R+, the Lie derivative of a function f(x) along
the vector field g(•) is defined as Lg(•)f(x) � �f(x)

�x g(•). The
Euclidean norm of a vector of proper dimension is | • |, and we
take �d�� � supt�0(|d(t)|). The matrix norm induced by the
Euclidean vector norm is � • �2, and the distance from a point
(x, z) to a periodic orbit is �(x, z)�O � inf(x�,z�)�O |(x, z)�
(x�, z�)|.

II. BACKGROUND: COUPLED CONTROL SYSTEMS

It was shown in [13] how the dynamics of quadrupedal robots
can be decomposed into bipedal robots. As a means of generaliz-
ing this methodology, the framework of coupled control systems
was introduced in [12]. Here we review the constructions in
these papers to set the stage for the results presented in this
paper–synthesizing stabilizing controllers for coupled control
systems via control Lyapunov functions. Importantly, we pro-
vide a slightly different variation of coupled control systems
suited to studying stability.

Given a system composed of multiple intercon-
nected rigid-bodies, the equations of motion (EOMs)

Fig. 2. (a) The decomposition of a quadrupedal robot into two bipedal systems
with toe indices labeled and (b) the configuration of the quadruped – each leg
has a point contact toe and three rotational joints with motors.

of the full-body dynamics (also referred as full-order
dynamics) can be obtained through Euler-Lagrange equations:

D(q)¤q +H(q, �q) = B(q)u (1)

where q � Q � Rn contains the configuration coordinates,
D(q) � Rn×n is the mass-inertia matrix, H(q, �q) � Rn repre-
sents the Coriolis force and gravity, B(q) � Rn×m is the actu-
ation matrix which maps the inputs to the configuration space,
and u � U � Rm,m � n is the control input. More details can
be found in [15], [27].

In this paper, we are interested in the dynamical systems that
can be considered as a collection of two subsystems with index
i � {1, 2} � N . We first define subsystem configurations as
qi � Qi � Rni such that 	i�N �i(Qi) = Q with �i : Qi 
 Rn

as a canonical embedding. Since the goal is to control each
subsystem individually, the subsystem inputs are defined as
components of the full-system inputs u� = (u�

1 , u�
2 ) with ui �

Ui � Rmi and
�

i�N mi = m. We also define a set of edges
E � {(1, 2), (2, 1)} representing the subsystems’ connection.

For a dynamical system that are composed of two subsys-
tems (coupled via constraints), such as the coupled mechanical
systems considered in Fig. 2 and [13], [26], we have

�
�

�

D1¤q1 +H1 = B1u1 + J�
e �e

D2¤q2 +H2 = B2u2 + J�
ē �ē

s.t. ce,q(q1, q2) � 0, �e + �ē = 0
(2)

where �e, �ē � �i � Rli are the coupling forces and ce,q is the
coupling constraint. We can solve the connection force explicitly
to reach the form in (1) using

�e = ��ē =
�
JeD�1

1 Je � JēD�1
2 Jē

��1 �
JeD�1

1 (H1 �B1u1)

+ JēD�1
2 (H2 �B2u2)� �Je �q1 � �Jē �q2

	
(3)

where Je(q1, q2) = �ce,q/�qi and e � (i, j), fle � (j, i) � E .
Subsystem dynamics in output coordinates. After defining

the subsystem with an index set N , we can pick the outputs (the
features that we are interested in controlling) of each ith subsys-
tem as

yi(qi) = yai (qi)� ydi (qi) (4)

where ydi , yai � Rmi are the desired outputs and the actual
outputs, respectively. Since yi is a function of the “positional
states” qi, it has a relative degree two with respect to the control
inputs. We then have the ith subsystem dynamics in output
coordinates as

¤yi = Li(q, �q) +Ai(q)ui +Aji(q)uj (5)

for all i � N . Note that Aji(q) � Rmi×mj maps uj with j = i
to the configuration space of the ith subsystem.
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Depending on the given EOMs, there are different ways to
obtain the expressions efficiently in (5). One direct method from
(1) is given as



L1(q, �q)

L2(q, �q)

�

= �Jy �q2 � JyD�1H � L(q, �q)

�
A1(q) A21(q)
A12(q) A2(q)


= JyD�1B � A(q), (6)

where Jy = �y/�q with the full-system outputs are denoted as
y = (y�1 , y�2 )�.

Coupled Control Systems. For underactuated systems where
m < n, zero dynamics will show up in the transition to output
coordinates (see [28]). It has been shown that there exists a
change of coordinates via a diffeomorphism:

�

���

q1

�q1

q2

�q2

�

��� �


�

�
�1

�2

z

�

�

which yields a set of dynamic equations representing the coupled
control system:

CC �

�
�

�

¤y1 = L1(�, z) +A1(�, z)u1 +A21(�, z)u2

¤y2 = L2(�, z) +A2(�, z)u2 +A12(�, z)u1

�z = �(�, z)
(7)

where � = (��1 , ��2 )� � X are the “controlled states,” and �i =
(y�i , �y�i )�. Note that both L and A now depend on the new
coordinates �, z. The z-dynamics, �z = �(�, z), are regarded as
the internal dynamics with z � Z , and we call �z = �(0, z) the
zero dynamics, i.e., the dynamics on the zero dynamics manifold:

Z = {(�, z) � X × Z : �i = 0, �i � N}. (8)

We assume �(�, z) is locally Lipschitz in �. Note that we can
also convert the formulation given by [12, Eq.1] into the form
of (7) again by using (3). In this form, not only are the dynamics
of each subsystem coupled through the shared zero dynamics
coordinates, but the inputs are also coupled, i.e. uj (i = j)
appears in the ith subsystem dynamics.

III. COUPLED CONTROL LYAPUNOV FUNCTIONS

To design local controllers for the ith subsystem that are in-
dependent of the “disturbance” caused by the other subsystems’
inputs, we first introduce the nominal inputs that are built using
the zero dynamics. We then introduce the main result of this
paper, a theorem that leads to the synthesis of a networked
control architecture. It is this controller that later enables us
to control each sub-bipedal system individually with stability
guarantees.

A. Disturbed Subsystem.

Before designing the control lawu(x) � {ui(x)}i�N , we first
give the concept of a nominal control input in the following
definition.

Definition 1: The control input that renders the zero dynamics
surface Z � {(q, �q) : yi = �yi = 0, �i � N} forward-invariant
is the nominal input for a coupled control system (7), i.e.,

0 = Li(0, z) +Ai(0, z)uZ
i +Aji(0, z)uZ

j (9)

for all i � N . We further define uZ(z) � {uZ
i (z)}i�N .

For the rigid-body dynamics of interest, the decoupling matrix
A(0, z) is assumed to be invertible. Hence, the unique controller
that satisfies (9) would be as follows:

uZ(z) = �A�1(0, z)L(0, z) �



uZ

1

uZ
2

�

. (10)

Disturbed subsystem. By considering the nominal control in-
put uZ

j of the jth subsystem (j = i), we can reformulate the
subsystem dynamics (5) to remove the dependence on the other
interconnected (coupled) subsystem’s control input. Concretely,
we have

¤yi = Li(�, z) +Ai(�, z)ui +Aji(�, z)(uj + uZ
j (z)� uZ

j (z))

= Li(�, z) +Aji(�, z)uZ
j (z) +Ai(�, z)ui

+Aji(�, z)(uj � uZ
j (z))� �� �

�de

(11)

where we denote

de(�, z, uj) � Aji(�, z)(uj � uZ
j (z)), e � (j, i) (12)

as the disturbance induced by the jth subsystem’s inputs to
the ith subsystem. Having established the disturbed subsystem
dynamics as in (11), the coupled control system in (7) becomes
a disturbed coupled control system, as:

Cd
C �

�
�

�

¤y1 = L1(�, z) +A21(�, z)uZ
2 (z) +A1(�, z)u1 + de

¤y2 = L2(�, z) +A12(�, z)uZ
1 (z) +A2(�, z)u2 + dē

�z = �(�, z)
(13)

where each subsystem is only subject to local controller and
a disturbance term. This is where we can utilize input-to-state
stabilizing control Lyapunov functions to reject the disturbance
while stabilizing each subsystem.

Remark 1: Note that the overall disturbance vanishes on
the invariant zero dynamics manifold Z, i.e., d(0, z, uZ

i ) =
{de(0, z, uZ

i )}�e�E = 0. This can be seen by plugging
ui(0, z) = uZ

i from (9) into (11), whereby

0 = Li(0, z) +Aji(0, z)uZ
j +Ai(0, z)uZ

i + de = 0 + de,

which yields de = 0 and further d = 0.

B. CLF From the Viewpoint of ISS.
In order to guarantee stability, from which we eventually

synthesize the local control laws, we first present the following
definitions that are the foundation of this paper. With some
modifications of [29] to fit the context of this paper, we have
the following.

Definition 2: A smooth function V : Rni 
 R+ is an input-
to-state stabilizing control Lyapunov function (ISS-CLF) for
��i = f(�, z) + g(�, z)(ui + de) with �i � Rni , if there exists
constants c1, c2, c3 > 0, � � (0, 1), fl� > 0 such that ��, z, d,

c1 |�i|2 � Vi(�i) �
c2

�2 |�i|2

inf
ui�Ui

�
LfVi(�, z) +LgVi(�, z)ui +

c3

�
Vi(�i) +

1
fl�
|LgVi|2

�
� 0.

(14)
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The construction of Def. 2 is motivated by the rapidly ex-
ponentially stabilizing control Lyapunov function (RES-CLF)
from [8]. Based on Def. 2, we can form a class of control laws
directly:

Ki(�, z) �
�
ui � Ui : LfiVi + LgiViui +

c3,i

�i
Vi

+
1
fl�i

|LgiVi|2 � 0
�
, (15)

which yields the set of control values which satisfy the desired
convergence property for each subsystem i � N . The (constant)
parameters c1,i, c2,i, c3,i, �i, fl�i are associated with each subsys-
tem with i � N .

We now present the main theorem of this paper that guarantees
the stability of the disturbed coupled control system by taking
values from Ki(�, z), �i � N .

Theorem 1: For a dynamical system given by

Cz �

�
�

�

��1 = f1(�, z) + g1(�, z)(u1 + de)
��2 = f2(�, z) + g2(�, z)(u2 + dē)
�z = �(�, z)

, (16)

let Oz be an exponentially stable periodic orbit of the zero
dynamics �z = �(0, z). If there exists an ISS-CLF Vi(�i) for
each subsystem i � N , then for all locally Lipschitz continuous
feedbacks ui(x) � Ki(x) given by (15), the full-order periodic
orbitO � �(Oz) is ultimately bounded, with the bounds tending
to zero as |de|, |dē| 
 0.

Proof: First, we use the converse Lyapunov theorem
from [30] to construct the following Lyapunov function for the
zero dynamics. Given Oz is an exponentially stable periodic
orbit of Z , there exists a Lyapunov function Vz : Z 
 R+ such
that in a neighbourhood B�(Oz) of Oz ,

r1 �z�2
Oz

� Vz(z) � r2 �z�2
Oz

,

�Vz(z) � � r3 �z�2
Oz

,
����
�Vz

�z

���� � r4 �z�Oz
.

Next we have the following Lyapunov function candidate for the
full-order system:

V (�, z) =
�

i

Vi(�i) + �Vz(z)

It is clear that V (�, z) satisfies the first inequality in Def. 2.1.
We first take the derivative of the subsystems’ Lyapunov

functions to get:
�

i

�Vi =
�

i

LfiVi + LgiViui + LgiVidi

�
�

i

�
c3,i

�i
Vi �

1
fl�i

|LgiVi|2 + |LgiVi| |di|

�
�

i

�
c3,i

�i
Vi �

�
1

�
fl�i

|LgiVi| �
�
fl�i
�d��
2

�2

+ fl�i
�d�2

�
4

�
�

i

�
c3,i

�i
Vi(�i) + fl�i

�d�2
�

4

� �min
i

�
c3,i

�i
c1,i

�
|�|2 +

maxi(fl�i)
2

�d�2
� ,

1The definition of Lyapunov functions for an invariant set, such as periodic
orbits, can be found in [31]

Then the total derivative of the Lyapunov function becomes:

�V = �
�Vz

�z
w(0, z) + �

�Vz

�z
(w(�, z)� w(0, z)) +

�

i

�Vi

� ��r3 �z�2
Oz

+ �r4 �z�Oz
|w(�, z)� w(0, z)|+

�

i

�Vi

� ��r3 �z�2
Oz

+ �r4 �z�Oz
Lz |�|+

�

i

�Vi

� ��r3 �z�2
Oz

+ �r4Lz �z�Oz
|�| �min

i

�
c3,i

�i
c1,i

�

� �� �
r6

|�|2

+
maxi(fl�i)

2
�d�2

� ,

= �
�
�z�Oz

|�|
�
�

�
�z�Oz

|�|


+

maxi(fl�i)
2

�d�2
� ,

with Lz the Lipschitz constant for �(�, z) and

� =
�

�r3 � 1
2�r4Lz

� 1
2�r4Lz r6



we then can pick � such that � is positive definite, i.e., V is a
Lyapunov function for the periodic orbit O = �(Oz). �

The proof is inspired by the construction of [8, Appx.B]. We
note that an effective way to reduce the effect of the distur-
bance is to decrease fl�i. Further, since ISS-CLF is one robust
type of CLFs, we will continue to use the terminology CLFs
for clarity.2 Since these CLFs are defined around the coupled
control systems, we call {V1, V2} the coupled control Lyapunov
functions (CCLFs). Further, we can obtain exponential stability
for the full-order system under certain conditions, which are
summarized as follows.

Corollary 1: In addition to the prerequisites given by Thm.1,
if we additionally have

|d(t)| � c4 |�(t)| and

�����
�

i

LgiVi

�����
� c5 |�| ��, (17)

the solution to the full-order dynamics in (16) is exponentially
stable provided that 2mini(

c3,i
�i

) > c4c5 mini(c1,i).
Proof sketch: Due to space limitation, we omitted the detailed

proof. But the basic idea is that given these conditions, we can
establish |

�
i LgiVi||d| � c4c5|�|2 for the full-order system,

and the disturbance d vanishes as the controlled states {�i}i�N
converge to the zero dynamics surface. �

Note that for a general situation when the disturbance does not
completely vanish on the zero dynamics surface, i.e., |d(t)| �
c4|�|+ c6|z|+ c7, the system exponentially converges to a ul-
timate bound for robotic dynamics. Due to space limitation, this
will be addressed in future work.

Stability constraint. As the theorem suggested, we can thus
construct the local control Lyapunov functions for a coupled
control system. Following the construction of (15), we have a
class of controllers using a linear constraint of the input:

�i(�, z) + 	i(�, z)ui +
1
fl�i

|	i(�, z)|2 � 0 (18)

2Note that for the class of robotic systems of interest (such as the quadruped
in Fig. 2), it can be shown that any CLF qualifies as an ISS-CLF (see [32]). In
other words, the set given by (15) needs not have Lgi Vi.
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Fig. 3. A cart-pole system with two inverted pendula, each is directly actuated
by a motor. The mass of the cart and a pendulum are 2M and m, correspondingly.
The length of both pendulum is l.

where �i(�, z) = LfiVi(�, z) + �
�i
Vi(�i) and 	i(�, z) =

LgiVi. A practical control law that satisfies (18) is a
minimum-norm in Ki(�, z), given by

mi(�, z) = argmin{|ui|2 : ui � Ki(�, z)}, (19)

which can then be solved by some quadratic programming (QP)
algorithm.

C. Control Synthesis for Cart-Pole
We now show an example for applying the coupled control

Lyapunov functions to a 3-DOF mechanical system. For the
modified cart-pole system shown in Fig. 3, 
 is the horizontal dis-
placement of the cart, and �1, �2 are the angles of the two joints,
each of which is actuated by a motors. We denote the inputs as
u1, u2. The full system is also subject to a force function given by
F (
, �
) = 2(m+M)(�
 + �
(1� 
2 � �
2)). Separated by the
dashed line as Fig. 3, we can view each pendulum-cart system
as a subsystem with index i � N � {1, 2}. Let the subsystem
configuration be qi = (
, �i). With a target to control the outputs
(a.k.a. the virtual constraint [7]), we define the subsystem output
as yi(qi) = �i for the ith subsystem with i � N . In other words,
the goal is to drive both pendula upright as t 
 � using local
controllers. With the output Jacobian obtained by

y(q) =
�
y1(q1)
y2(q2)


� Jy �

�y
�q

=
�
0 1 0
0 0 1


,

we can use (6) to obtain the dynamics in the form of coupled
control systems, as in (7). Note that the zero dynamics �z =
�(0, z) — when �i = ��i = 0, �i � N — become a Van der Pol
oscillator due to the force function: ¤
 = F (
, �
)/(2m+ 2M).
This system is known to have a globally exponentially stable
periodic solution, denoted by Oz .

For rigid-body dynamics with invertible decoupling matrices
A�, we can apply an input-output feedback-linearization:

ui(�, z) = A�1
i (�, z)

�
�Li(�, z)�Aji(�, z)uZ

j (z) + µi
�

(20)

with µi the auxiliary input for each subsystem i � N . The
nominal control input uZ

j with j = i is then given by (10). The
subsystem output dynamics now become:

¤yi = µi + de. (21)

If we define �i = (y�i , �y�i )�, we can obtain the linearized sub-
system dynamics as

��i =
�
0 I
0 0



� �� �
F

�i +
�
0
I



����
G

(µi + de), (22)

which is in the form of (16). Therefore, we can define the coupled
control Lyapunov functions according to Thm.1. Concretely, for
each subsystem i, we have

Vi(�i) = ��i Pi�i,with Pi �



1
�i
I 0
0 I

�

P



1
�i
I 0
0 I

�

. (23)

with �i � (0, 1) a constant andP � R2×2 the solution to the con-
tinuous time algebraic Riccati equation (CARE). More details
can be found in [8, Section 3].

Remark 2: Based on the CCLFs chosen, an appropriate con-
trol can be constructed that yields control robustness. For ex-
ample, using the feedback linearization of the form (20) we can
choose the control law as:

ui = A�1
i

�
�Li �AjiuZ

j �
1
�2
i
Kpyi �

1
�i
Kd �yi �

1
fl�i
LGV �

i

�

(24)

whereKp,Kd � 0. This controller, inspired by [33], is a specific
example that belongs to the set Ki(�, z).

CLF-QP. We now present the QP formulation that calculates
control values using the chosen CLFs. Note that µi is only
an auxiliary input instead of the actual system-level input. We
will replace it with ui for better numerical conditioning for the
optimal control problem. Based on (20) we have µi as a function
of ui:

µi = Li +AjiuZ
j +Aiui

then the stability condition (18) can be re-written as:

�i + 	i
�
Aiui + Li +AjiuZ

j
�
+

1
fl�i

|	i|2 � 0, (25)

with �i = LFVi +
�
�i
Vi = ��i (F

�Pi + PiF )�i +
�
�i
Vi,

	i = LGVi = 2��i PiG.

Finally, we have the following QP formulation that encodes the
CLF for subsystem i � N :

u�
i = argmin

ui�Ui

��Li +AjiuZ
j +Aiui

��2

s.t. (C1) �i + 	i
�
Aiui + Li +AjiuZ

j
�
+

1
fl�i

|	i|2� 0

(C2) � umax � ui � umax (26)

where, (C1) is the stability constraint, and (C2) is added accord-
ing to the actual torque bounds from the physical actuators to
guarantee the realizability. We regarded (26) the CLF-QP for
coupled mechanical systems.

Remark 3: With both subsystem taking values fromKi(�, z),
we have the disturbance as

de(�, z) = Aji(�, z)(uj(�, z)� uZ
j (z)).

Assuming d(�, z) to be locally Lipschitz in � yields

|d(�, z)� d(0, z)| � c4 |� � 0| � |d| � c4 |�|

with c4 the Lipschitz constant. An effective way to reduce c4 is
to form an optimization problem inside a tube around the given
desired trajectory O, i.e. minmax(�,z)�tube near O|d(�, z)|/|�|.
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Fig. 4. The cart-pole simulation. Data labeled FL (red) used the feedback
linearization controller (24); Data labeled CCLF-QP (blue) used the controller
(26). Dark and light variants of the colors are used to distinguish between the
first and second pendula. Both simulations show stability.

Additionally, we have
���
�

LGVi

��� =
���2

�
��i PiG

��� � 2 |�|
�

�PiG�2 .

Hence, if we pick c5 = 2
�

�PiG�2, we can obtain exponen-
tial stability for the periodic solution to the full-order system
according to Corollary 1.

Simulation. We present two simulation results (see Fig. 4
and video [34]) to demonstrate this stability result. As shown in
Fig. 3, we pick the model as l = 0.5,M = 15,m = 5. Given an
initial condition x(0) = (0, 0.1,�0.1, 0.1, 0, 0)�, we first sim-
ulate the specific control law given by (24) with Kp = 5,Kd =
0.1, �i = 0.5, fl�i = 0.5. Then we simulate the decentralized op-
timal controller given by (26) with �i = 0.5, fl�i = 0.5 The data
is shown in Fig. 4. As Corollary 1 suggests, both simulations
show exponentially stability, and the disturbance vanishes on
the zero dynamics surface.

IV. QUADRUPEDAL WALKING WITH MODEL-FREE CLFS

We can also use local CLFs to stabilize the overall system for
more complicated robots, such as quadrupedal locomotion. In
this section, we will apply the local control laws to an 18-DOF
quadrupedal robot (see Fig. 1) by viewing it as two connected
bipedal robots. The advantage is that we simultaneously consider
each subsystem’s stability through the local CLFs, as well as the
feasibility conditions such as the motor torque saturation.

For the robot shown in Fig. 2, we use the floating-base
convention [7] to get the full-system configuration q� =
(
�, ��0 , ��1 , ��2 , ��3 ), with 
 � R3 × SO(3) the body-fixed co-
ordinates of the floating base (the torso), and �k � R3 the three
joint angles of the kth leg, k � {0, 1, 2, 3}. All of the joints are
directly driven by electric motors, denoted by u � U � R12. We
then have the (continuous-time) full-order, constrained dynam-
ics for quadrupedal walking as

�
D¤q + �H = �Bu+ J�

s Fs

Js¤q + �Js �q = 0
, (27)

where the second equation is obtained by taking the second
derivative of the ground contact constraint, which is modeled
as holonomic constraints of the stance leg’s toe. The Jacobian is
Js(q) = �hs(q)/�q with hs(q) � R3 the Cartesian position of
the toe. Then, (27) can be converted into the general rigid-body
dynamics form D¤q +H = Bu with

H(q, �q) = �H � J�
s (JsD

�1J�
s )

�1(JsD�1 �H � �Js �q)

B(q) = �B[I � J�
s (JsD

�1J�
s )

�1JsD�1].

Note that for the gaits of interest, walking, running, and hopping,
we have a diagonal double-support phase, and a flight phase.
In the flight phase, where none of the toes touch ground, the

holonomic constraints are not required. The detailed model of
multi-domain behaviors for quadrupedal robots can be found
in [11], and we will not introduce the domain index for the
ease of notations. Note that in the hybrid system setting, it
was previously shown that RES-CLFs provably stabilize the
continuous dynamics in such a way that the hybrid dynamics are
also stabilized under the assumption of HZD [8, Thm.2]. This
result has been extended to the ISS-CLFs in [29], [35]. Formally
encoding this in the CCS formulation for hybrid quadrupedal
locomotion will be addressed in future work.

Subsystem outputs and CCS. Similar to [13], we consider a
quadrupedal robot as two connected bipedal subsystems — the
front biped and rear biped — that are coupled by a connection
constraint. We define the set of subsystem indices asN = {f, r},
where f, r label the front and rear bipedal systems, correspond-
ingly, and E = {e = (f, r), fle = (r, f)} represents their connec-
tion relations. We then pick the coordinates for these two sub-
systems as qi = (
�, ��i,st, ��i,nst)� � Qi, where the subscript st
marks the joints of the leg that are in contact with the ground, and
nst for the swing legs. We then define outputs for each subsystem,
the bipeds, as

yi(t, qi) = yai (t)� ydi (qi) i � N (28)

where the desired outputs (trajectory) ydi (t) � R6 is given by a
set of Bézier polynomials generated by the CCS optimization
in [12]. The actual outputs are picked as

yai (qi) = Yiqi =

�

��������

�st,hr

�st, hp � �st,k

2
�st,k

�nst,hr

�nst, hp � �nst,k

2
�nst,k

�

��������

. (29)

where the subscript hr, hp, k are short for the hip-roll, hip-
pitch, and knee joints. This output structure represents the roll
angle, pitch angle and leg length of the virtual leg, which is
the virtual linkage connecting the hip and the toe. Note that
if the quadrupedal robot has nonidentical legs for the front
and rear subsystems, we will have a different output structure,
i.e., Yf = Yr. This will be an interesting future direction for
understanding how to cooperate asymmetric quadrupeds. Next,
given the full-system output Jacobian Jy = �y/�q, we can use
(6) to obtain the CCS dynamics as in (5).

On the zero dynamics surface where both subsystems’ output
coordinates remain zero, we have the configuration coordinates
and their velocity terms satisfying:

(qZ, �qZ) = {(q, �q)|yi(q) = �yi(q, �q) = 0, �i � N}.

The nominal inputs that satisfy the invariant condition (9) can
therefore be obtained by

uZ(qZ, �qZ, t) = �A(qZ)�1L(qZ, �qZ) �



uZ

1

uZ
2

�

. (30)

We then can have the disturbed subsystem dynamics as given
in (13), after which we can control each bipedal system using
the coupled control Lyapunov functions.

Model-free CLF-QP. As mentioned in Section III-B, for
the quadruped chosen in this study, any CLF qualifies as an
ISS-CLF [32]. Hence, we can choose a specific form of the CLF,
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Fig. 5. Top: Snapshots showing a two full steps of the walking gait in an outdoor lawn. Bottom: Running gait in the RaiSim simulation environment.

Fig. 6. Left 3: Experimental (dashed transparent) and simulated (solid transparent) phase portraits for walking plotted against the desired values (solid). Right 3:
Simulated (transparent) versus desired (solid) phase portraits for walking (red), hopping (green), and running (blue) behaviors.

which is motivated by the Proportional-Derivative control law-
inspired Lyapunov function [36, (24)], and use it for the under-
actuated bipedal systems. The advantage with this class of CLFs
is that the corresponding stability constraint can be expressed
in a model-free fashion. Therefore, an improved experimental
robustness against model uncertainty can be obtained. Formally,
we have the following model-free stability constraint:

(i(yi)y�i + �y�i )(Kpyi +Kd �yi)

+ (i(yi)y�i + �y�i )J
��
yiAui � 0 (31)

for subsystem i � N , where, i(yi) = k0
1+|yi|

with a constant

k0 > 0. Concretely, in comparison with (15), (i(yi)y�i +
�y�i )J�1

yi
is in the place of LgiVi terms, and the remaining terms

are in place of LfiVi terms. Kp,Kd � 0 are the diagonal ma-
trices that form the PD gains. The Jacobian matrix of the actual
output with respect to the actuated joints for the ith subsystem
is given by JyiA = �yi/�qA

i , where qA
i are the actuated joints of

the ith bipedal system. We then have the QP formulation utilizing
the model-free CLFs as:

argmin
ui�R 6,��R

��ui � uref
i

��2 + 1000�2

s.t.
�
i(yi)y�i + �y�i

� �
(Kpyi +Kd �yi) + J��

yiAui

	
� �

� umax � ui � umax (32)

for the ith subsystem, where � � 0 is a relaxation for better
numerical stability given a high penalty weight of 1000. To
formulate a model-free QP problem, we also modify the nom-
inal inputs uZ

i to a output-feedback PD control law, uref
i =

�J�
yiA(Kpyi +Kd �yi).

Simulation. Before enabling the proposed method on hard-
ware, we first validated the CCLF-QP in simulation using a
physics engine — RaiSim [37]. In particular, we wish to con-
trol this quadrupedal robot as two connected bipedal robots

performing quadrupedal behaviors such as walking, hopping
and running. All of these behaviors can be generated as a
single-domain or multi-domain periodic solutions to the coupled
control system using the optimization method introduced in [12].
The specific controller we put to the test to achieve stable
tracking of the giving periodic gaits is given in (32). The PD
gains Kp,Kd � 0 are diagonal matrices, and are picked as the
same value across all three simulation tests. As a result, the local
controller utilizing CCLFs renders stabilization of the given
periodic gaits for walking, hopping and running on Vision 60 in
RaiSim. An animation is provided in [34]. We show the gait tiles
in Fig. 5, and the phase portraits of the simulation data in Fig. 6.

V. EXPERIMENTAL REALIZATION

Hardware. The robot we studied in this paper is the Vision 60
v3.9 quadrupedal robot from Ghost Robotics. As show in Fig. 1,
this robot is 44 kg, 54 cm wide and 50�60 cm tall. It uses a
hierarchical computation structure to perform various tasks. In
our experiments, we implement the optimal controller with a
QP solver OSQP on the on-board Jetson AGX Xavier computer
from NVIDIA. Furthermore, a 1 kHz hard real-time operating
system enforces the communication between the mainboard and
motor drivers to realize the torque commands from the control
algorithm (32).

Experiments and Data Analysis. As a first step towards
controlling complex quadrupedal robots to achieve various dy-
namical behaviors using the local control laws, we conducted
some walking experiments on the Vision 60 robot. To avoid
robustness challenges caused by model uncertainties, especially
unpredictable uncertainties introduced by the terrain dynamics,
we applied the model-free QPs in (32). As the supplementary
video [34] shows, we are able to achieve robust walking with
the Vision 60 on outdoor rough terrains with moderate slope
variation and surface roots. We show the gait tiles of the walking
experiments in Fig. 5. We also provide a comparison between
experimental data, simulation data, and the desired trajectory
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in Fig. 6. We note that the tracking is ultimately bounded by a
tube around the desired trajectory in the continuous domains,
which provides empirical evidence for future works formally
establishing hybrid stability.

VI. CONCLUSION

In this letter, we presented a framework to design local
controllers for interconnected dynamical systems. We first in-
troduced the concept of coupled control systems, which were
obtained by viewing the general rigid-body dynamics as a col-
lection of lower-dimensional systems. Building on this idea and
using the notion of input-to-state stability, a collection of control
Lyapunov functions for each subsystem were shown to be able to
yield ultimate boundedness for the solution to the closed-loop
system. Based on these coupled control Lyapunov functions,
we then synthesized local controllers to stabilize the lower-
dimensional subsystems with the confidence of stabilization of
the full-order system. Putting this idea into practice, we con-
cluded the letter by designing local controllers for each bipedal
subsystem of a quadrupedal robot. The end result was the Vision
60 quadrupedal robot robustly traversing outdoor rough terrains.
Future work includes utilizing CCLFs to formally establish the
stability of full-order hybrid system models of highly-dynamic
quadrupedal locomotion, incorporating reduced-order models to
enable planning, e.g., via MPC using LIP models, and extend-
ing the framework of coupled control systems to multi-robot
collaboration.
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