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Abstract— This paper utilizes a novel optimal control strategy
that combines control Lyapunov function (CLF) based model
independent quadratic programs with impedance control to
achieve flat-ground and up-slope walking on a fully-actuated
above-knee prosthesis. CLF based quadratic programs have
the ability to optimally track desired trajectories; when com-
bined with impedance control—implemented as a feed-forward
term—the end result is a prosthesis controller that utilizes
only local information while being robust to disturbances. This
control methodology is applied to a bipedal robot with anthro-
pomorphic parameters “wearing” a fully-actuated transfemoral
prosthesis. Traditional human-inspired control methods are
applied to the human component of the model—simulating
nominal human walking—while the novel control method is
applied to the transfemoral prosthesis. Through simulation,
walking on flat-ground and up-slope is demonstrated, with
the resulting gait achieved using the novel prosthesis control
yielding walking that is nearly identical to the “healthy” human
model. Robustness tests indicate that the prosthesis controller
can endure large uncertainties and unknown disturbances.

I. INTRODUCTION

Impedance control has been a popular approach for the
control of both prosthesis [22], [23] and orthosis [15],
[13] in recent decades. An ankle orthosis in [12] has been
designed using PD control in the swing phase and variable
impedance control in the stance phase. Impedance control
for a fully-actuated knee-ankle prosthesis can be found in
[22]. Combined with using EMG signals for motion intent
recognition, impedance control has been successfully applied
to an ankle-foot prosthesis in [11]. However, impedance
control has problems with maintaining good tracking and
robustness, which will be addressed in this work.

While implementing controllers for an amputee, there are
basic biomechanical requirements that must be satisfied for a
transtibial or transfemoral prosthesis [20], [24]: (1) the pros-
thetic device must support the body weight of the amputee
during the stance phase, i.e., the prosthesis control should
provide “stability” during the weight bearing phase; (2) the
physical interface between the able body and the prosthesis
must prevent undesirable pressure during the locomotion;
(3) the prosthesis has to duplicate as nearly as possible the
kinematics of a normal gait, i.e., the amputee should walk
with normal appearance.
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The goal of this paper is to address requirements (1) and
(3) indicated above on a fully-actuated above-knee prosthesis
for different types of locomotion. This goal will be achieved
via a three steps process. Firstly, traditional human-inspired
control methods [5] are reviewed and applied to the human
component of the model to obtain human-like locomotion
for both flat-ground walking and up-slope walking, based
on which, the impedance parameters can be estimated.
Then, impedance control is implemented on the prosthetic
joints, showing that the estimated parameters are accurate
and robust enough to work on the prosthesis. Finally, a
novel prosthesis control method: control Lyapunov function
based quadratic programs (QPs) coupled with impedance
control will be introduced and applied to the prosthesis.
The end results indicate improved tracking performance and
robustness to unknown disturbances.

Based loosely on the definition of impedance control first
proposed by Hogan [14], the torque at each joint during a
single step cycle can be represented by a series of passive
impedance functions [22]. By reproducing this torque at the
prosthetic device joint using the passive impedance functions,
one can obtain similar prosthetic gaits compared to those
found in normal gait tests. Normally, hand tuning from
an expert is required to obtain the impedance parameters
[10], [18]; therefore, this leads to another disadvantage—
it is not optimal. By only using impedance control, we
are able to achieve stable robot walking on the prosthetic
device (was numerically verified with using Poincarè map).
However, considering the drawbacks of impedance control,
the obtained tracking performance is lacking, resulting in
walking that is not as robust as desired.

Utilizing the impedance controller as a feed-forward term,
we present a novel control method that will be utilized
as a feedback term to increase robustness and stability. In
particular, we begin by considering rapidly exponentially
stabilizing control Lyapunov functions (RES-CLFs) as in-
troduced in [8]. This class of CLFs can naturally be stated
as inequality constraints in torque such that, when satisfied,
rapidly exponential convergence of the error is formally
guaranteed. Furthermore, these inequality constraints can be
solved in an optimal fashion through the use of quadratic
programs. Finally, due to the special structure of the RES-
CLFs that will be considered in this paper, the CLF based
QP can be stated in a model independent fashion. The
end result is a novel feedback control methodology: Model
Independent Quadratic Programs (MIQP) based upon RES-
CLFs. These are combined with impedance control to obtain
the final prosthetic controller. With the proposed controller,



Fig. 1: The angle conventions with prosthetic leg as stance
leg (left) and the outputs description with prosthetic leg as
swing leg (right).

we will show that the tracking performance can be improved
in simulation for both types of locomotion: flat-ground and
up-slope walking. In addition, utilizing this novel control
method, the robot displays improved stability and robustness
to unknown disturbances.

This paper begins with an introduction of the mathematical
model of a hybrid system in Sec. II; a brief review of human-
inspired optimization is presented for obtaining human-
like walking gaits. Impedance control and the estimation
algorithm are discussed in Sec. III. Then the CLF based
model independent control will be discussed in detail in Sec.
IV. Simulation results using this controller are discussed and
compared with using only an impedance controller. Finally,
the conclusion will be discussed in Sec. V.

II. HUMAN-INSPIRED OPTIMIZATION

In this section, the mathematical model of a bipedal
robot is discussed, and the human-inspired control method is
introduced so it can be applied to the “human” component of
the model. Finally, human-inspired optimization is discussed
to obtain human-like flat-ground and up-slope locomotion.

A. Robot Model

A planar bipedal robot that has five serial chain links
(one torso, two thighs and two calves) with anthropomorphic
parameters, will be considered as the “human” model in this
work. As bipedal robotic walking displays both continuous
and discrete behavior (when foot impacts the ground), we
formally represent the bipedal robot as a hybrid system [5].
Continuous Dynamics. The configuration space of the robot
QR is described in body coordinates: θ = (θs f ,θsk,θsh,θnsh,
θnsk)

T as shown in Fig. 1. The mass and length properties
corresponding to the average human model are utilized to
derive the equations of motion of the robot, which are given
using the Euler-Lagrange formula:

D(θ)θ̈ +H(θ , θ̇) = Bu, (1)

where D(θ) ∈ R5×5 is the inertial matrix and H(θ , θ̇) ∈
R5×1 contains the terms resulting from the Coriolis effect
C(θ , θ̇)θ̇ and the gravity vector G(θ). The torque map B= I5

(considering the robot is fully-actuated) and the control, u,
is the vector of torque inputs. Manipulation of (1) yields the
affine control system ( f ,g) for the continuous dynamics [5].
Discrete Dynamics. When the swing foot hits the ground,
a discrete impact will occur, which leads to the velocity
changes of the robot, combining with a leg switch simul-
taneously. With the perfectly plastic impact assumption, the
method of [16] is used to obtain the reset map ∆R as:

∆R(θ , θ̇) =

[
∆θ θ

∆
θ̇
(θ) θ̇

]
, (2)

where ∆θ is the relabeling matrix which switches the stance
and non-stance leg at impact, and ∆

θ̇
determines the change

in velocities due to the impact.

B. Human-Inspired Optimization

Human-Inspired Outputs. With the goal to achieve human-
like bipedal robotic walking, a human-inspired controller
aims to drive the actual robot outputs ya(θ) to the desired
human outputs yd(t,α) which can be represented by the
canonical walking function with parameter α [5]. In partic-
ular, the outputs considered here are linearized hip position
δ phip, linearized non-stance slope δmnsl , two knee angles
θsk, θnsk and the torso angle θtor (see Fig. 1). Therefore, we
introduce the human-inspired outputs:

y(θ , θ̇) =
[

y1(θ , θ̇)
y2(θ)

]
=

[
ya

1(θ , θ̇)− vhip
ya

2(θ)− yd
2(ρ(θ),α)

]
, (3)

where y1(θ , θ̇) is the relative degree one output, which is the
difference between the actual hip velocity ya

1(θ , θ̇) and the
desired hip velocity vhip. y2(θ) are the relative degree two
human-inspired outputs which are the differences between
the actual outputs ya

2(θ) and desired outputs yd
2(ρ(θ),α).

Note that, ρ(θ) is the parameterized time aiming to remove
the dependency of time.

With this construction in hand, we represent the dynamics
(1) in outputs space as:[

ẏ1
ÿ2

]
=

[
L f y1(θ , θ̇)
L2

f y2(θ , θ̇)

]
︸ ︷︷ ︸

L f

+

[
Lgy1(θ , θ̇)

LgL f y2(θ , θ̇)

]
︸ ︷︷ ︸

A

u, (4)

where L f is the Lie derivative and A is the dynamic decou-
pling matrix. By picking:

u = A−1(L f +µ), (5)

with µ properly designed as:

µ =

[
L f y1(θ , θ̇)

2ξ L f y2(θ , θ̇)

]
+

[
2ξ y1(θ , θ̇)

ξ 2y2(θ)

]
, (6)

one can drive both y1→ 0 and y2→ 0 in a provably expo-
nentially stable fashion, which we term the human-inspired
controller. Here ξ is the controller gain that determines the
convergence rate, details of which can be found in [5].
Partial Hybrid Zero Dynamics. In particular, we are fo-
cusing on relative degree two outputs, y2, while relaxing
relative degree one output to compensate for the model



Fig. 2: Gait tiles using human-inspired controller for flat-
ground walking and up-slope walking.
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(a) Flat-ground walking
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(b) Up-slope walking

Fig. 3: Phase portraits using human-inspired control.

differences between the robot and human. The surface for
which these outputs agree all the time is given by the partial
zero dynamics surface:

PZα = {(q, q̇) ∈ T QR : y2(q) = 0, L f y2(q, q̇) = 0}. (7)

While the proposed controller (5) renders exponential con-
vergence to this surface, the robot will be “thrown-off” the
surface when impacts occur. The goal of partial hybrid
zero dynamics (PHZD) is to find parameters α that ensure
that this surface remains invariant through impacts: ∆(S∩
PZα) ⊂ PZα . This constraint motivates the introduction of
an optimization problem that guarantees this condition.
Human-Inspired Optimization. Aiming to find the parame-
ters α yields provably stable human-like robotic walking, an
optimization problem subject to PHZD constraints is given:

α
∗ = argmin

α∈R21
CostHD(α) (HIO)

s.t ∆(S∩PZα)⊂ PZα (C1)

where the cost function (HIO) is the least-square-fit errors
between human experimental data and the CWF representa-
tions [5]. Solving the optimization problem discussed above,
we can obtain the parameters for both flat-ground walking αl
and up-slope walking αr, which we term motion primitives
(see [26] for more discussions). Importantly, these gaits are
provably exponentially stable [6]. The gait tiles for both
motion primitives using the human-inspired controller are
shown in Fig. 2 and the limit cycles can be seen in Fig.
3. In particular, these results are going to be used as the
nominal references of “unimpaired” human walking.

III. IMPEDANCE CONTROL CONSTRUCTION

Impedance control will be reviewed at the beginning of
this section. Utilizing these concepts, impedance parame-
ter estimation algorithm will be discussed to obtain the
impedance parameters automatically for different motion

Full Knee FlexionHeel Strike Mid Stance

P2 P3 P4P1
t

Heel Lift Heel Strike

Fig. 4: AMBER gait phase separation. The red line represents
the prosthetic device and the red circles are the actuated
prosthesis joints. The black lines denote the able body and
black cirlces indicate the actuated healthy joints. The green
line is the knee angle of one full gait cycle.

primitives. Finally, simulation results of using impedance
control will be presented.

A. Impedance Control for Prosthesis

Impedance Control. Based on the notion of impedance
control first proposed by Hogan [14], the torque at each
joint during a single step can be piecewisely represented by
a series of passive impedance functions with the form:

τ = k(θ −qe)+bθ̇ , (8)

where impedance parameters k, qe and b represent the
stiffness, equilibrium point and damping respectively, and are
constant during specific sub-phases of a particular motion
primitive. This formula only requires local information—
in this case, the prosthesis knee angle and foot angle—
therefore, the end result is a simple prosthesis controller [17].
Phase Separation. Based on previous work for flat ground
walking [4], analysis of data obtained from the human model
shows that one gait cycle can be divided into four phases
based on the profile of prosthesis joint angles, which are
denoted as p = 1,2,3,4, and shown in Fig. 4. Specifically,
each phase begins at time t p

0 and ends at t p
f . The phase

separation principle is similar to that in [4] but with different
values specific to different motion primitives, which can be
referred to in Table I. The impedance torque at the prosthesis
joints during a sub-phase p ∈ {1,2,3,4}, can be represented
by the following equation:

τ
imp
p = kp(θps(t)−qe

p)+bpθ̇ps(t), (9)

where θps(t) and θ̇ps(t) denote angles and angular velocities
of the prosthesis joints at time t. In particular, we have θps =
{θs f ,θsk} when the prosthesis leg is the stance leg; and θps =
θnsk when the prosthesis leg is in the swing phase. Therefore,
in each sub-phase p, the dynamics of the biped system are
governed by the following Euler-Lagrange equations:{

D(θ)θ̈ +H(θ , θ̇) = Bu ∀t ∈ [t p
0 , t

p
f ],

(θ(t p
0 ), θ̇(t

p
0 )) = R(θ(t p−1

f ), θ̇(t p−1
f )),

(10)



TABLE I: Estimated Parameters of the Prosthesis Knee Joint.

Motion Type Joints Phase Separation kp[Nm] bp[Nms] qe
b[rad]

Flat-ground
Knee

P1 heel strike -574.97 -133.54 0.9867
P2 θs f <−0.01 -642.23 8.6826 0.3297
P3 heel lift -5.7679 0.3378 1.0042
P4 θ̇nsk < 0 -16.186 0.5472 1.1402

Ankle P1 heel strike -574.97 -133.54 0.9867
P2 θs f <−0.01 -642.23 8.6826 0.3297

Up-slope Knee

P1 heel strike -338.44 -4.4349 0.2878
P2 θs f <−0.25 -216.38 17.859 0.2024
P3 heel lift -6 -0.9626 1.1342
P4 θ̇nsk < 0 -25.944 -0.0634 1.2473

Ankle P1 heel strike -338.44 -4.4349 0.2878
P2 θs f <−0.25 -216.38 17.859 0.2024

where p is set to 4 if p = 1 and the switching function R
has been defined as the following:

R(θ(t), θ̇(t)) =

{
∆(θ(t), θ̇(t)) at impacts,

(θ(t), θ̇(t)) otherwise.
(11)

In order to simulate the use of the prosthetic device, for the
prosthetic joint, we will replace the corresponding ui term
with the prosthetic control input ups which is τ

imp
p since only

the impedance controller is considered, therefore yields the
following set up:

Di(θ)θ̈ +Hi(θ , θ̇) = τ
imp
p ∀t ∈ [t p

0 , t
p
f ], (12)

where i indicates the ith row of the corresponding term in
(10), which will be updated according to the sub-phase p.
Note that, we have i = 1,2 when p = 1,2, i.e., the prosthetic
device is the stance leg, and i = 5 while p = 3,4, i.e., the
prosthetic device is the non-stance leg.
Impedance Parameter Estimation. In previous work [4],
the authors showed that the impedance parameters of the
knee joint for a lower-limb prosthesis can be learned by
the observation of unimpaired human walking data, which
is realized by the human-inspired controller in simulation.
The results have been validated both in simulation and
in experiment with a transfemoral prosthetic device (video
with more details can be seen in [2]). To extend these
results, we utilize a similar method to estimate the impedance
parameters of multiple joints by observing the simulated
“unimpaired” motion primitive data.

We first obtain the “unimpaired” walking data (which
are the joint angles and velocities x = (θps, θ̇ps) and joint
torques τps) by using the human-inspired controller. By
defining the impedance parameter set as βp = {kp,bp,qe

p}
for specific sub-phase p, we can form the least square errors
minimization problem as follows:

β
∗
p = argmin

βp

∫ t p
f

t p
0

(τ imp
p − τps,p)

2dt, (13)

where τ
imp
p is defined as (9) and τps,p is the “healthy” input

torque on the prosthesis joints at sub-phase p. By solving this
minimization problem, the estimated impedance parameters
for each sub-phase can be obtained in Table I.

Fig. 5: Gait tiles using impedance control for level walking
and slope walking. Red line indicates the prosthesis.
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(a) Flat-ground walking phase portrait
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(b) Up-slope walking phase portrait
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(c) Flat-ground prosthesis knee outputs
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(d) Up-slope prosthesis knee outputs

Fig. 6: Phase portraits and outputs of the prosthesis knee
joint using only impedance control.

B. Simulation Results

With the obtained impedance parameters, the walking
of an amputee “wearing” a tranfemoral prosthesis with an
actuated ankle and knee is simulated using only impedance
control. The gait tiles in Fig. 5 indicate that good walking
has been achieved for both modes of locomotion. The phase
portraits for 32 steps of both motion primitives are also
shown in Fig. 6a, 6b. The Poincarè map has been utilized
to numerically prove that both motion primitives (with pros-
thesis joints controlled using the impedance controller) are
stable with the max eigenvalues less than one (the maximum
eigenvalue is 0.34) [19].

IV. MIQP+IMPEDANCE CONTROL

In this section, we will start with the introduction of
rapidly exponentially stabilizing control Lyapunov functions
(RES-CLFs) first introduced in [8]. The quadratic programs
method is utilized to realize the CLF. When combined
with the impedance control (implemented as a feed-forward
term), the end result is a novel model independent feedback



control methodology: Model Independent Quadratic Pro-
grams (MIQP)+Impedance control. The simulation results
showing better tracking performance, improved stability and
robustness, are discussed at the end.

A. CLF MIQP

As discussed in Sec. II, by designing µ properly-(6) for
example-exponential convergence tracking can be achieved
with using the human-inspired controller. This control strat-
egy works well for nonlinear systems if we have good
knowledge about the model [21] ; however, this is usually
not the case—especially in the case of a prosthesis. PID
control still dominates in real world control problems since
it does not require accurate model information, i.e., it is
model independent. However, considering all the well-known
problems of PID control (hand tuning, none optimal [9]), we
are motivated to find a new optimal control strategy to over-
come these issues while maintaining the model insensitive
property.

We begin with substituting the control input (5) to equation
(4), which yields the output dynamics in a linear form:[

ẏ1
ÿ2

]
= µ. (14)

By defining the vector η = (y, ẏ) ∈ Rn1+2×n2 with n1, n2
denoting the numbers of relative degree one outputs and
relative degree two outputs, respectively, equation (14) can
be written as a linear affine control system:

η̇=

0n1×n1 0n1×n2 0n1×n2
0n2×n1 0n2×n2 In2×n2
0n2×n1 0n2×n2 0n2×n2


︸ ︷︷ ︸

F

η+

In1×n1 0n1×n2
0n2×n1 0n2×n2
0n2×n1 In2×n2


︸ ︷︷ ︸

G

µ. (15)

In the context of this control system, we consider the
Continuous Algebraic Riccati Equations with P = PT > 0:

FT P+PF−PGGT P+ I = 0, (16)

that yields the optimal solution µ =−GT Pη . With the aim of
achieving stronger bounds of convergence for the considered
hybrid system with impacts, we take this method further by
defining ηε = (y/ε, ẏ) in order to obtain an exponentially
stable orbit. Then, we can choose P and ε > 0 carefully
to construct a rapidly exponentially stabilizing control Lya-
punov function (RES-CLF) that can be used to stabilize the
output dynamics in a rapidly exponentially fashion [8]. In
particular, we define the positive definite CLF as:

Vε(η) = η
T
[ 1

ε
I 0

0 I

]
P
[ 1

ε
I 0

0 I

]
η := η

T Pε η . (17)

Differentiating this function yields:

V̇ε(η) = LFVε(η)+LGVε(η)µ, (18)

where LFVε(η) = ηT (FT Pε +Pε F)η , LGVε(η) = 2ηT Pε G.
In order to exponentially stabilize the system, we want to

find µ such that, for specifically chosen γ > 0 [8], we have:

LFVε(η)+LGVε(η)µ ≤− γ

ε
Vε(η). (19)

Therefore, an optimal µ could be found by solving the
following quadratic programs (QP) as:

m(η) = argmin
µ∈Rn1+n2

µ
T

µ (20)

s.t ϕ0(η)+ϕ1(η)µ ≤ 0, (CLF)

where ϕ0(η) = LFVε(η)+ γ

ε
Vε(η) and ϕ1(η) = LGVε(η).

Note that, instead of substituting the optimal solution µ

into equation (5) to obtain the feedback control law as in
[7], we use µ directly as a control input into the original
system without considering the model decoupling matrix A
and L f . Therefore, we term this strategy Model Independent
Quadratic Programs (MIQP) control.

Taking a further look into the MIQP algorithm, we basi-
cally constructed a new linear control system (15) that only
focuses on the errors between the actual outputs and de-
sired outputs, while not requiring any information about the
original model. Another immediate advantage is that torque
bounds can be directly applied in this formulation; thus, the
optimal control value can be obtained while respecting the
torque bounds. As discussed in [7], this can be achieved by
relaxing the CLF constraints with a large penalty value p> 0.
In particular, we consider the MIQP as:

argmin
(δ ,µ)∈Rn1+n2+1

pδ
2 +µ

T
µ (21)

s.t ϕ0(η)+ϕ1(η)µ ≤ δ , (CLF)
µ ≤ µMAX , (Max Torque)
−µ ≤ µMAX . (Min Torque)

By solving this QP problem, an optimal controller can be
obtained to regulate the output dynamics with a rapidly
exponentially stable fashion for the bipedal robot model.

B. MIQP+Impedance Control

While MIQP control benefits from its model independent
property in an optimal fashion, it also suffers from the
overshoot problem as with PID controller because of the
lack of model information. Particularly, overshoot issue will
be a fatal problem for a prosthesis controller with the safety
consideration of an amputee; this motivates the introduction
of MIQP+Impedance control.

By considering the impedance control τ imp as the feed-
forward term, the input torque ups of the prosthetic joints
can be stated as the following:

ups = τ
qp + τ

imp, (22)

where τqp is the torque computed from the MIQP problem.
Taking the idea further, we add the impedance term τ imp

TABLE II: RMS Errors with Using Different Controllers.

Motion Flat-ground Up-slope
Joints Impedance MIQP+Impedance Impedance MIQP+Impedance

θs f 0.0181 0.0053 0.0174 0.0033
θsk 0.0162 0.0017 0.0136 0.0007
θnsk 0.0883 0.0009 0.074 0.0045



Fig. 7: Gait tiles using MIQP+Impedance control for level
walking and slope walking. Red line indicates the prosthesis.

into the MIQP construction, which yields the following
MIQP+Impedance problem:

argmin
(δ ,τqp)∈Rn1+n2+1

pδ
2 + τ

qpT
τ

qp (23)

s.t ϕ0(η)+ϕ1(η)τqp≤δ −ϕ1(η)τ imp, (CLF)
τ

qp ≤ τ
qp
MAX , (Max QP Torque)

− τ
qp ≤ τ

qp
MAX , (Min QP Torque)

τ
qp ≤ τMAX − τ

imp, (Max Input Torque)

− τ
qp ≤ τMAX + τ

imp. (Min Input Torque)

By adding the impedance control as a feed-forward term
into the input torque, the model independent dynamic system
(15) gathers some information about the system that it
is controlling. It can, therefore, adjust τqp accordingly to
accommodate the feed-forward term in order to achieve
exceptional tracking. By setting the QP torque bounds τ

qp
MAX ,

we can limit the overshoot problem. Note that, we also set
the total input torque bounds for the QP problem such that
the final optimal input torque (22) will satisfy the total torque
bounds, which is critical for practical implementation.

C. Simulation Results

Considering the different degrees of actuation applied in
the stance and non-stance phases, the MIQP+Impedance
controller has to be constructed accordingly. In particular,
during the phase in which the prosthetic device is the stance
leg, both knee and ankle are actuated; therefore, the outputs
we choose are the linearized hip position δ phip and the stance
knee angle θsk, i.e., we have n1 = 1 and n2 = 1. For the
phase in which the prosthetic device is the swing leg, only
the prosthesis knee joint is actuated; thus, the output θnsk is
chosen, i.e., n1 = 0 and n2 = 1.
Tracking Performance. The gait tiles of both flat-ground
walking and up-slope walking are shown in Fig. 7. The
tracking results of the prosthesis knee joint for both motion
primitives are shown in Fig. 8a and 8b, respectively. The
tracking RMS errors are all less than 0.005rad, which is at
least 3 times better than just using impedance control as
shown in Fig. 6a and 6b. Tracking errors of all the prosthesis
joints are shown in Table II explicitly. The phase portraits
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(a) Flat-ground walking phase portrait
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(b) Up-slope walking phase portrait
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(c) Flat-ground prosthesis knee outputs
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(d) Up-slope prosthesis knee outputs

Fig. 8: Phase portraits and outputs of the prosthesis knee
joint with MIQP+Impedance control.
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(a) Impedance Control.
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(b) MIQP+Impednce Control.

Fig. 9: Phase portrait of 8N impulse disturbance rejection.
The dash lines represent the disturbances.

for 32 steps of both the motion primitives can be seen in Fig.
8. Note that, compared to the phase portraits with using the
human-inspired controller in Fig. 3, even though we have
asymmetric controllers on the two knee joints, the phase
portraits converge to nearly one limit cycle quickly. That is to
say, with the proposed controller, the prosthesis can duplicate
the kinematics of the normal gait, i.e., the amputee can
achieve walking gaits that are nearly identical to unimpaired
human walking.

Robustness Tests. Stability is another critical requirement
for a lower-limb prosthesis controller. The prosthetic device
must be robust and stable enough to endure unknown envi-
ronment disturbances. In simulation, we show that the pro-
posed MIQP+Impedance controller renders more robustness
to the prosthetic device than only using impedance control,
and therefore, is safer for the amputees’ daily use.

1) Reaction to impulse push: Impulse forces (lasting for
0.01s) have been applied to the prosthetic leg during both
stance and non-stance phases. The maximum impulse force
that the robot can tolerate and maintain good tracking with
the proposed MIQP+Impedance controller is 30N. However,



when using only impedance control, the maximum force the
robot can endure is 10N; moreover, the tracking becomes
worse after the disturbance and, as a result, leads to a failure
to walk eventually.

In order to compare the disturbance rejection properties
of the two controllers more explicitly, we apply the same
impulse force (8N) on the prosthetic knee joint that are
controlled with different controllers. The phase portraits
for 8 steps of using these two controllers are shown in
Fig. 9, from which, we can see that the phase portrait
of MIQP+Impedance control converges back to the limit
cycle quickly and stably. However, the phase portrait for the
controller using only impedance control shows large velocity
spikes and can not converge to the original periodic orbit. A
video [3] is attached to show the details.

2) To overcome an obstacle: In the simulation, we let
the robot walk over a 20mm obstacle on flat ground. The
gait tiles can be seen in Fig. 10, which shows that the
robot can overcome the obstacle smoothly and keep walking
normally using the MIQP+Impedance control. A similar test
is also conducted with only using the impedance control. The
robot can also walk over the obstacle, however, the tracking
performance using only the impedance controller is worse,
the details of which can be seen in the video [3].

V. CONCLUSIONS

Utilizing the human model with anthropomorphic param-
eters “wearing” a fully-actuated above-knee prosthesis, we
successfully implemented a novel optimal control strategy
on this testbed to achieve flat-ground and up-slope loco-
motion. The proposed MIQP+Impedance controller benefits
from both the feed-forward impedance control that gives
us model information and the MIQP method that renders
model independence in an optimal fashion via the CLF
based QP control methods. This approach has already been
applied to a physical robot AMBER with only the knee joint
being actuated. The experimental results showed improved
tracking performance, stability, and robustness to unknown
disturbances [25] (more details can be seen in video [1]).
The limitation of this work is that only a point foot model
is considered, which limits the ability to capture the whole
picture of human locomotion. A more sophisticated model
with heel lift and toe strike will be considered to test the
proposed MIQP+Impedance controller in future work.

Fig. 10: Gait tiles of walking over a 20mm obstacle with
MIQP+Impednce Control.
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