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Abstract— In this paper we analyze the continuity properties
of feedback controllers that are formulated as state-dependent
quadratic programs (QP), with specific application to motion
control for humanoid robots. With a desire to achieve multiple
simultaneous goals in locomotion and manipulation, we develop
a generalized QP-based control law through the use of multiple
control Lyapunov functions (CLFs). Motivated by simulation
studies showing cases where QP-based control loses Lipschitz
continuity, the main result of this paper is a set of sufficient
conditions under which such continuity properties will hold.
This result provides conditions under which any number of
tasks encoded as CLFs can be simultaneously exponentially
stabilized. Finally, these results are demonstrated in a simu-
lation of a simple humanoid robot climbing a vertical ladder.

I. INTRODUCTION

The control of robotic systems often involves the need to
operate at or near a robot’s limits of performance. Most often
this means executing a single task in some limiting case,
such as walking or running as fast as possible, achieving
the largest stability margin for a given gait, operating at
maximum efficiency, etc. Alternatively, limits of performance
might also be reached by executing many relatively simple
tasks simultaneously, such as walking while simultaneously
reaching with both hands under constraints on torque satura-
tion, energy consumption, and center-of-mass accelerations.
When objectives like this arise Model Predictive Control
(MPC) or online Quadratic Programs (QP) can be used to
explicitly incorporate a wide variety of objectives and con-
straints including saturation, quantization, power limits, etc.,
enabling feedback controllers to operate very near the limits
of performance. This is one reason feedback controllers
based on online optimization are gaining popularity in the
robotics community [1], [22], [21]. Controllers based on
control Lyapunov functions (CLFs), enforced via online QPs,
are used for locomotion in [3], [4], [11] and the simultaneous
control of locomotion and manipulation in [5].

In the process of further generalizing the class of QP-
based controllers we have observed a number of cases where
the resulting feedback controller exhibited rapid chatter
(suggesting that the feedback was non-Lipschitz) even in
apparently simple cases such as standing. Motivated by these
case studies, this paper provides a set of sufficient conditions
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under which QP-based control for humanoid robots will be
Lipschitz continuous. In deriving these conditions we find
that the relaxation factors used in [5] are not necessary to
achieve locally exponentially stabilizing controllers.

In developing sufficient conditions for the Lipschitz con-
tinuity of QP-based control we make use of a number of
foundational results in the literature. Robinson’s conditions
of constraint regularity [16], [17] and the earlier conditions
of Mangasarian and Fromovitz [13] predict when a QP
will remain solvable under small perturbations in its data.
Davidson’s subsequent analysis of Lipschitz continuity of the
extreme points of the feasible set [8] and reformulation of the
MF regularity conditions provide a numerically convenient
method of determining Lipschitz continuity of the feasible
set. A thorough summary of results in the continuity and Lip-
schitz continuity of QPs and LPs is reviewed in [7] and the
references therein. Additional studies involving continuity
properties of linear and quadratic programming are available
in [2], [15]. In general, conditions of continuity for con-
strained QP-based control will differ from those of infinite-
or finite- horizon constrained optimal controllers. Conditions
of Lipschitz continuity for more traditional optimal control
problems are reviewed in [10].

The remainder of the paper is organized as follows: In
Section II a feedback law is formulated as a state-dependent
QP. In Section III two main results are presented. The first is
a theorem stating sufficient conditions under which the min-
imizer of a state-dependent QP is both unique and Lipschitz
continuous with respect to the state. A metric is provided to
measure how ‘close’ the QP is to losing these properties.
The second main result is a corollary giving conditions
under which simultaneous tasks (encoded as equilibrium
points or periodic orbits) can be simultaneously stabilized.
A set of simulation studies is presented in Section IV, with
conclusions drawn in Section V.

II. MOTIVATION–CLF BASED QPS

Given the goal of simultaneously achieving a set of tasks,
each represented as zeroing a vector of output functions, this
section develops a control Lyapunov function (CLF) based
Quadratic Program (QP). If the resulting QP has a unique,
Lipschitz continuous solution, then when implemented as a
feedback control law [3], [4], [11], the QP will simultane-
ously stabilize the set of tasks.

A. System Model

Let Q ⊂ Rn be the configuration space of a robot
consisting of generalized coordinates q ∈ Q. The equations



of motion for a robot are given in the general form by the
Euler-Lagrange formula:

D(q)q̈ + CG(q, q̇) = Bτ (1)

where D is the inertia matrix, CG is a vector containing
the Coriolis and gravity terms, and B is the actuation
matrix which determines the way in which the torque in-
puts, τ ∈ Rm, actuate the system. We will assume that the
equations of motion correspond to the “unpinned” model of
the robot, so that we can explicitly use holonomic constraints
to describe the interaction of the robot with the environment.

Consider a vector of holonomic constraints: h(q) = 0,

with h(q) ∈ Rp. Defining the Jacobian Jh(q) = ∂h(q)
∂q , the

holonomic constraints are enforced through constraint (or
contact) forces F ∈ Rp which appear in the constrained
dynamics:

D(q)q̈ + CG(q, q̇) = Bτ + Jh(q)
TF (2)

For the above dynamics to be valid, the torques τ , constraint
forces F , and resulting accelerations q̈ must satisfy the
following:

J̇h(q, q̇)q̇ + Jh(q)q̈ = 0p×1 (3)
RF > 0p×1, (4)

where R is a constant (p× p) matrix capturing friction and
directional constraints on the generalized reaction forces.

With a view toward formulating the above constraints in a
QP framework, the equations of motion (2) can be written:

D(q)q̈ + CG(q, q̇) =
[
B JTh (q)

]︸ ︷︷ ︸
Bh(q)

[
τ
F

]
︸ ︷︷ ︸

u

, (5)

with u ∈ Rm+p. This allows for the formulation of an affine
control system of the form:[

q̇
q̈

]
= f(q, q̇) + g(q)u, (6)

where

f(q, q̇)=

[
q̇

−D−1(q)CG(q, q̇)

]
, g(q)=

[
0n×(m+p)

D−1(q)Bh(q)

]
.

(7)

The reaction force constraints (3) and (4) will be combined
with additional equalities and inequalities in Section II-C.

B. Tasks and Control Lyapunov functions

Suppose that we wish to accomplish K tasks, with each
task can be expressed as yk(q) ∈ Rnk , nk > 0, k ∈
{1, . . . ,K}. For example, if the goal is to move a robot’s
hand to a desired location in Cartesian space, (p∗x, p

∗
y)
T , the

corresponding output would be yk(q) = (px(q), py(q))
T −

(p∗x, p
∗
y)
T where (px(q), py(q))

T is the Cartesian position
of the hand as calculated from the generalized coordinates.
Output representations of tasks in the context of locomotion
are prevalent and detailed constructions can be found in [23].

Remark 1: Note that tasks are often specified in terms
of Jacobians [12], [19]. In the notation of this paper, the
Jacobian for an individual task is Jk = ∂yk(q)

∂q . In the
context of controlling multiple tasks, the typical approach is
to prioritize the tasks, wherein the priority task is guaranteed
to converge. Subsequent lower priority tasks are projected to
the null-space of the higher priority tasks and, as a result, are
not guaranteed to converge. It will be shown later that the
formulation of tasks as outputs, coupled with the CLF based
QP, allows for the simultaneous convergence of multiple
tasks even in the case when they compete. y

For any given task yk, k ∈ {1, . . . ,K} we will construct a
corresponding control Lyapunov function that (under condi-
tions to be presented) will guarantee exponential convergence
of the task: yk → 0. This is accomplished by first considering
the output dynamics. Since the outputs being considered are
only functions of the configuration of the robot, differentiat-
ing twice yields:

ÿk = L2
fyk(q, q̇)︸ ︷︷ ︸
(L2

f )k

+LgLfyk(q, q̇)︸ ︷︷ ︸
Ak

u (8)

with L representing the Lie derivative. Within the framework
of input/output (IO) feedback linearization, one would check
that the system has the same number of inputs as outputs
and verify that each yk satisfies a vector relative degree
condition (typically vector relative degree 2) implying that
the decoupling matrix Ak is well-defined and nonsingular.
In the case of vector relative degree 2 this allows for IO
feedback linearization through the choice of control law:

u = A−1k (−(L2
f )k + µk) (9)

resulting in ÿk = µk. Typically, one would then choose µk
so that the resulting output dynamics are stable. One such
feedback is the min-norm control law, constructed as follows:
Let ηk = (yk, ẏk), so that our system can be equivalently
expressed as the linear control system:

η̇k =

[
0 I
0 0

]
︸ ︷︷ ︸

Fk

ηk +

[
0
I

]
︸ ︷︷ ︸
Gk

µk. (10)

In the context of this control system, we can consider the
continuous time algebraic Riccati equations (CARE):

FTk Pk + PkFk − PkGkGTk Pk +Qk = 0 (11)

with solution Pk = PTk > 0. The motivation for considering
the CARE is that the control law µk = −GTk Pkηk drives
yk → 0 while minimizing the cost function:

CostLQR =

∫ ∞
0

(
ηTk Qkηk + µTk µk

)
dt.

One can use Pk to construct a rapidly exponentially stabiliz-
ing control Lyapunov function (RES-CLF) (as in [3], [4]) that
can be used to exponentially stabilize the output dynamics



at a user defined rate of ε. In particular, define

V εk (ηk) := ηTk M
ε
kPkM

ε
k︸ ︷︷ ︸

P ε
k

ηk,M
ε
k =

[
εInk×nk

0
0 Ink×nk

]

wherein it follows that:

V̇ εk (ηk) = LFk
V εk (ηk) + LGk

V εk (ηk)µk

with

LFk
V εk (ηk) = ηTk (F

T
k P

ε
k + P εkFk)ηk

LGk
V εk (ηk) = 2ηTk P

ε
kGk.

The RES-CLF formulation of a specific task, yk, al-
lows for the construction of a controller—termed the min-
norm controller—expressed in terms of a quadratic program
through the objective of minimizing µk while satisfying a
constraint on the rate of convergence:

µ∗k(q, q̇) = argmin
µk∈Rnk

µTk µk (Min-Norm)

s.t. ÂCLF
k (q, q̇)µk ≤ b̂CLF

k (q, q̇) (CLFk)

where

ÂCLF
k (q, q̇) = LGk

V εk (ηk), (12)

b̂CLF
k (q, q̇) = −εγV εk (ηk)− LFk

V εk (ηk)

and we used the fact that ηk = (yk(q), ẏk(q, q̇)). In the
absence of additional constraints the control law µ∗k is
Lipschitz continuous [9], [20] and applying this control law
via (9) to (6) guarantees exponential convergence of the
output yk.

Although the above constructions stabilize the selected
vector of outputs yk, this control law naturally makes no
guarantees that all of the tasks, y = {yk}k∈{1,...,K} can be
simultaneously satisfied, since there will potentially be many
more entries of the total outputs y = {yk}k∈{1,...,K} than
there are actuators. The above constructions must also be
modified if we have more actuators than outputs. Ideally, we
would like an analytical approach that can be used to draw
conclusions about the stabilizability of tasks, with no restric-
tions on the number of tasks that can be considered. In the
case of multiple tasks or when constraints such as saturation
or ground reaction forces are included a more sophisticated
QP is needed to ensure convergence and Lipschitz continuity.
With this in mind and with a view toward control Lyapunov
functions, we will take an alternate route.

C. CLF based QPs

Consider again the goal of simultaneously achieving K
tasks encoded as a set of output vectors: {yk}k∈{1,...,K}.
The control objective of simultaneously satisfying all of these
tasks can naturally be incorporated into the constraints of a
QP. In particular:

Cost: Motivated by the cost for (Min-Norm), µTk µk, and
noting that in the case of a set of outputs (9) can be written: (A)1

...
(A)K


︸ ︷︷ ︸

A

u = −

 (L2
f )1
...

(L2
f )K


︸ ︷︷ ︸

L2
f

+

 µ1

...
µK


︸ ︷︷ ︸

µ

(13)

we have that: µTµ = uTATAu + 2(L2
f )
TAu + (L2

f )
TL2

f

Since the value of µTµ is minimized when the control
objective of driving all of the outputs yk to zero is satisfied,
it may be desirable to balance this objective with torque
minimization: uTu. This motivates the final form of the cost
function:

C(q, q̇, u) = uTH(q, q̇)u+ 2cT (q, q̇)u (14)
H(q, q̇) = (1− α)ATA+ αI (15)
cT (q, q̇) = (1− α)(L2

f )
TA (16)

where 0 ≤ α ≤ 1 is a real-valued parameter that allows for
the weighting between the two cost objectives; α = 0 only
priorities the control objective, while α = 1 only prioritizes
the minimization of torque (and reaction forces).

Inequality Constraints: For each of the tasks we can obtain
a RES-CLF V εk , which in turn yields inequality constraints
of the form (12). These inequalities were stated in terms of
µk, yet noting (9) they can be converted to a form dependent
on u and combined:

ACLF(q, q̇) =

 ACLF
1 (q, q̇)A1

...
ACLF
K (q, q̇)AK

 , (17)

bCLF(q, q̇) =

 bCLF
1 (q, q̇)−ACLF

1 (q, q̇)(L2
f )1

...
bCLF
K (q, q̇)−ACLF

K (q, q̇)(L2
f )K

 .
In addition, the ground reaction force constraints on the
system (4) yield:

AF (q, q̇) =
[
0p×m −R

]
, bF (q, q̇) = 0p×1. (18)

Finally, we may wish to constrain the actuator torques, τ ,
not to exceed prespecified limits. This yields the torque
saturation inequality constraints:

Aτ (q, q̇) =

[
Im×m 0m×p
−Im×m 0m×p

]
, bτ (q, q̇) =

[
τmax1m×1
−τmin1m×1

]
with τmax and τmin the maximum and minimum values of
the motor torques.

Equality Constraints: With the goal of constraining the
dynamics according to (3) we obtain the equality constraints:

AFeq(q, q̇) = Jh(q)D(q)−1Bh(q) (19)

bFeq(q, q̇) = Jh(q)D(q)−1CG(q, q̇)− J̇h(q, q̇)q̇.

Combining the constructed cost and constraints yields the
CLF based QP:



u∗ = argmin
u∈Rm+p

(1− α)
(
uTATAu+ 2(L2

f )
TAu

)
+ αuTu

(CLF-QP)

s.t. ACLF(q, q̇)u ≤ bCLF(q, q̇) (CLF)

AF (q, q̇)u ≤ bF (q, q̇) (Contact Forces)
Aτ (q, q̇)u ≤ bτ (q, q̇) (Torque)

AFeq(q, q̇)u = bFeq(q, q̇) (Dynamics)

The formulation of the CLF based QP allows for an under-
standing of the importance of the continuity of QP based
feedback control laws. In particular, if this QP yields a con-
tinuous solution it implies that all of the tasks {yk}k∈{1,...,K}
can be simultaneously stabilized (as will be demonstrated
in Corollary 1). Yet there are no guarantees thus far that
the above QP will have a solution, or if it does that the
solution will be Lipschitz continuous in the state. There are
numerous practical situations in which continuity fails (as
will be demonstrated in Sect. IV), thus motivating the main
results of this paper.

III. SUFFICIENT CONDITIONS FOR LIPSCHITZ
CONTINUITY OF QP-BASED FEEDBACK

In general, when using online QPs for control, we would
like the resulting feedback to be unique (as opposed to
set-valued) and Lipschitz continuous (avoiding chatter and
preserving existence and uniqueness of solutions). In this
section we will develop a set of sufficient conditions under
which a unique Lipschitz continuous solution to (CLF-QP)
must exist.

Let X be a state manifold on which the state-dependent
QP is defined. In the case of the dynamic model of (1), the
state manifold is X = Q×Rn. Define a multivalued mapping
u∗ : X ⇒ Rm+p as the state-dependent set of minimizers
for the QP as shown below, where H , c, A, Aeq , b, and beq
are continuous functions of the state x:

u∗(x) = argmin
u∈Rm+p

uTH(x)u+ 2c(x)Tu (20)

s.t. A(x)u ≤ b(x)
Aeq(x)u = beq(x).

Based on the Mangasarian Fromovitz regularity conditions
[13], we define the width of a feasible set as the unique
solution to the following Linear Program (LP):

ω(x) = max
(u,w)∈Rm+p+1

w (21)

s.t.
[
A(x) 1nb×1

] [ u
w

]
≤ b(x)

[
Aeq(x) 0nbeq×1

] [ u
w

]
= beq(x),

where A, b, Aeq , and beq are derived from (CLF-QP), nb is
the number of inequality constraints and nbeq is the number
of equality constraints. Note that for any value of the state
x, the above LP will always have a unique, feasible solution.
We can now state the main theorem:

Theorem 1: [Sufficient conditions for Lipschitz continuity
of QP control] Consider the QP (20), and suppose that the
following conditions hold at at a point x0 ∈ X :

1) ω(x0) > 0
2) Aeq(x0) has full row rank
3) A(x), Aeq(x), b(x), and beq(x) are Lipschitz continu-

ous at x0
4) H(x0) = HT (x0) > 0
5) H(x) and c(x) are Lipschitz continuous at x0

Then, the feedback u∗(x) defined in (20) is unique and
Lipschitz continuous w.r.t. the state at x0.

The main result above establishes conditions for the simul-
taneous exponential stabilization of multiple tasks. To apply
the theorem, consider again the goal introduced in Section
II of stabilizing multiple tasks: {yk}k∈{1,...,K}. For each of
these tasks, there exists a coordinate transformation [18] that
allows the dynamics (6) to be written in the form:

η̇k = fk(ηk, zk) + gk(ηk, zk)u (22)
żk = qk(ηk, zk),

where ηk = (yk, ẏk) are the output coordinates and zk are
normal coordinates to the output coordinates. In addition,
we assume that fk(0, zk) = 0, i.e., we assume there exists a
well-defined zero dynamics. In this case the zero dynamics
surface Zk defined by ηk = 0 is invariant and has dynamics
żk = qk(0, zk).

Let Ok be either an equilibrium point or periodic orbit of
the zero dynamics żk = qk(0, zk). In addition, assume that
Ok ⊂ Zk is locally exponentially stable. Then the following
result states that if the conditions in Theorem 1 hold, it is
possible to simultaneously stabilize all of the sets Ok in the
full-order dynamics.

Corollary 1: Assume the conditions of Theorem 1 hold for
the QP (CLF-QP) for all points in a neighborhood of Ok for
all k ∈ {1, . . . ,K}. Then for the control law u∗(x) obtained
by solving (CLF-QP), the sets Ok are locally exponentially
stable in the full order dynamics (6) for all k ∈ {1, . . . ,K}.

Remark 2: Following from the discussion in Remark 1,
it is at this point that one can see a distinct departure from
Jacobian methods for handling multiple tasks. In particular,
in a priority-based formulation of multiple tasks, subsequent
tasks must live in the null-space of the Jacobian of the
priority tasks. This implies that convergence guarantees are
weakened or lost for low-priority tasks. In contrast, through
the output-based CLF framework for tasks, we can simulta-
neously achieve any number of tasks exactly if the conditions
of Theorem 1 are satisfied. y



A. Notions of Lipschitz Continuity for Multivalued Maps

The standard notion of Lipschitz continuity of a function
must be extended for the case of multivalued maps. Bor-
rowing definitions from [8], let X and Y be subsets of Rn1

and Rn2 respectively, with n1, n2 > 0. Given a well-defined
norm || · ||, define the distance between a point x ∈ X and a
set S ⊂ X as dist(x, S) = infx′∈S ||x− x′||. A multivalued
mapping F : X ⇒ Y is upper Lipschitz continuous (u.L.c)
at a point x0 if there exists δ > 0 and L > 0 (perhaps
dependent on x0) such that for all x1 ∈ Bδ(x0) ∩ X

∀y1 ∈ F (x1),dist(y1, F (x0)) ≤ L||x1 − x0||. (23)

A multivalued mapping F : X ⇒ Y is lower Lipschitz
continuous (l.L.c.) at a point x0 if there exists δ > 0
and L > 0 (perhaps dependent on x0) such that for all
x1 ∈ Bδ(x0) ∩ X

∀y0 ∈ F (x0),dist(y0, F (x1)) ≤ L||x1 − x0||. (24)

Note that if F is a singleton at a point x0, then the definitions
of upper and lower Lipschitz continuity are equivalent. If a
mapping is both upper and lower Lipschitz continuous it is
Lipschitz continuous.

B. Operations on Multivalued Maps

Having established properties of Lipschitz continuity, we
can now define operations on multivalued maps and discuss
how they can affect the property of Lipschitz continuity.
The intersection of two multivalued mappings F0 : X ⇒ Y
and F1 : X ⇒ Y , is itself a multivalued mapping, denoted
(F0 ∩ F1) and defined as (F0 ∩ F1)(x) := F0(x) ∩ F1(x).
The composition of two multivalued mappings F : X ⇒ Y
and G : Y ⇒ Z , is a multivalued mapping, defined as
(G◦F )(x) :=

⋃
y∈F (x)G(y). The extension of a multivalued

mapping F : X ⇒ Y is a multivalued mapping, defined
as EF (x) := x × F (x). For multivalued mappings onto
the reals, F : X ⇒ R, the infimum will be defined as
IF (x) := inf(F (x)). Note that the extension of an infimum
of a multivalued map is given by EIF (x) = x × IF (x) =
x× inf(F (x)).

Proposition 1: Given Lipschitz continuous maps
F0 : X ⇒ Y , F1 : X ⇒ Y , and G : Y ⇒ Z then each of
the following mappings is Lipschitz continuous: (F0 ∩ F1),
(G ◦ F0), EF0, and IF0.

C. Analyzing Quadratic Programming through Operations
on Multivalued Maps

To more formally analyze the continuity properties of (20)
we will re-define the QP in terms of multivalued maps.
Consider the multivalued mappings C : X × Rm+p ⇒ R,
S : X × R⇒ Rm+p, and φ : X ⇒ Rm+p where

C(x, u) = uTH(x)u+ 2c(x)Tu (25)
S(x, v) = {u ∈ Rm+p|C(x, u) = v} (26)

φ(x) =

{
u ∈ Rm+p

∣∣∣∣ A(x)u ≤ b(x)
Aeq(x)u = beq(x)

}
.(27)

Fig. 1. Left (a): Visualization of the robot with the single-domain objective
of moving its leg up one rung. Right (b): Visualization of the robot
performing four distinct reaches (8 total domains) to move up one rung.

We can now define u∗ as the set of minimizers given by

u∗(x) = S(x, inf(C(x, φ(x)))) ∩ φ(x). (28)

Or, in an alternative notation let S∗ : X × Rm+p ⇒ Rm+p

be given by

S∗(x, u) = {u′ ∈ Rm+p|C(x, u′) = inf(C(x, u))}(29)
= (S ◦ EIC)(x, u) (30)

so that u∗(x) = ((S∗ ◦ Eφ) ∩ φ)(x).

Proposition 2: If the conditions of Theorem 1 hold at
a point x0, then the mapping S∗ will be lower Lipschitz
continuous at (x0, u0) for any u0 ∈ Rm+p.

Theorem 2: [Davidson [8], Thm 6.2] Given data
A ∈ Rnb×(m+p), Aeq ∈ Rnbeq×(m+p), b ∈ Rnb and
beq ∈ Rnbeq , let X(A,Aeq, b, beq) be the set of extreme
points of the convex set φ, where

φ(A,Aeq, b, beq) =

{
u ∈ Rm+p

∣∣∣∣ Au ≤ b
Aequ = beq

}
.

If the Mangasarian and Fromovitz (MF) conditions [13]
hold, which are

1) The matrix Aeq has full row rank
2) There exists a vector u s.t. Au < b and Aequ = beq

then the extreme points of the feasible set are lower Lipschitz
continuous w.r.t. perturbations in (A,Aeq, b, beq). That is,
for some δ > 0 there exists L > 0 such that for all
(A′, A′eq, b

′, b′eq) ∈ Rδ(A,Aeq, b, beq),

||X(A′, A′eq, b
′, b′eq)−X(A,Aeq, b, beq)||

≤ L||(A′, A′eq, b′, b′eq)− (A,Aeq, b, beq)||. (31)

Proof of the above theorem, along with additional properties
of the extreme points of φ(x) is available in [8].

IV. SIMULATION RESULTS: LADDER CLIMBING

In this section we provide a set of simulation examples
where multiple control Lyapunov functions as derived in Sec-
tion II-B are incorporated into a QP-based feedback control



law (CLF-QP). Simulation was done in MATLAB, with the
QP-based feedback evaluated at each timestep.1 Although
this may be impractical for some systems, software tools
such as CVXGEN [14] have greatly reduced the numerical
burden of solving a QP. In some cases exact solutions to QPs
can be used to avoid the need for an online solver [6].

We have chosen an intentionally simple control task to
illustrate the application of Theorem 1. Consider the planar
robot shown in Fig. 1 consisting of a single torso link
connected to a pair of legs and arms, with two links each,
for a total of 9 links. The body coordinates and the stance
foot are all assumed to be actuated.2 In the first three cases
we consider the task pictured in Fig. 1(a), when the robot
has three contact points with the ladder (two hands and one
foot), with the goal of moving the swing foot to the next
ladder rung.

Define a vector of generalized coordinates q ∈ Q ⊂ R11

and a vector of torques τ ∈ R11. Let h : Q → R6 provide the
horizontal and vertical positions of the two hands and stance
foot, respectively, as measured from the base of the ladder:
h(q) = (Px1, Py1, Px2, Py2, Px3, Py3)

T . Define a vector of
external forces F = (F1x, F1y, F2x, F2y, F3x, F3y)

T that act
at the three contact points to enforce the holonomic con-
straints h(q) = (0, c, 0, c, 0, 0)T for some c > 0. The robot’s
dynamics can now be written in the standard form of (2) with
the additional reaction force constraints that F1x, F2x > 0
and F3x < 0. (The arms can only pull horizontally and the
stance foot can only push horizontally.)

The control objective for this task is to zero a pair of output
functions y1 : Q → R9 and y2 : Q → R2 corresponding
to 1) achieving a desired final posture of the robot and 2)
tracking a state-based trajectory of the swing foot. Following
the constructions of Section II, a pair of corresponding RES-
CLFs can be constructed V ε1 : X → R and V ε2 : X → R for
X = Q×R11 that are zeroed by the QP given in (CLF-QP).
By varying the value of α used in (CLF-QP) we can affect
the continuity properties of the resulting controller.

The first simulation corresponds to the case of α = 0.
As shown in Fig. 2(a), large “torque chattering” is observed
throughout the simulation. Checking the conditions of The-
orem 1 we find that ω(x) > 0 for all states encountered,
but that H(x) is semidefinite, not strictly positive definite
as Theorem 1 requires. In the second case, the choice of
α = 1 recovers positive definiteness of H(x), but at time
t = 0.088s the simulation still fails. See Fig. 2(b). Checking
the conditions of Theorem 1 we can confirm that ω(x)
decreases to zero at this time, indicating the control law
becomes infeasible. In general, the physical interpretation
of ω(x) is the amount by which the inequality constraints

1The first three case studies use MATLAB’s ode23s for integration, with
AbsTol = 1e-6, RelTol = 1e-3, and MaxStep = 1e-4. The last case study uses
MATLAB’s ode23s for integration, with default tolerances and MaxStep =
1e-2. The quadprog command was used to solve the QP with the active-set
algorithm, TolX = TolFun = 1e-10, and max iter = 10,000.

2When reaching with one of the legs, the leg remaining in contact with
the ladder is considered the stance leg. When reaching with one of the
hands, the choice of which leg is the stance leg is arbitrary due to left-right
symmetry of the robot.
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Fig. 3. Exponential convergence of two control Lyapunov functions across
the 8 domains that make up climbing a single rung. Control parameters are
set at (α = 0.5, ε = 5, τmax = 500Nm).

can be made more stringent, but for which the QP will
remain solvable. The third case study is illustrated in Fig.
2(c), where the regularization parameter α = 0.5 leads to
successful completion of the domain. Despite the actuator
u2 remaining saturated for most of the domain the width of
the feasible set remains fairly large.

In the final case study we consider the task pictured in Fig.
1(b), with the robot executing multiple domains to climb
a single rung of the ladder. The entire sequence consists
of four reach phases (both legs followed by both arms).
A posture readjustment phase occurs between each pair of
subsequent reach phases, where the robot achieves a desired
configuration with all four limbs in contact with the ladder.
For simplicity a zero velocity reset map is used to transition
between phases, where all joint velocities are set to zero
when tracking error decreases below a threshold. Figure 3
shows the CLFs rapidly converging within each domain and
illustrates how widely the width of the feasible set can vary
across the multiple domains of climbing.

V. CONCLUSIONS

A QP formulation of multiobjective control was derived
for humanoid robots, beginning with Lagrangian dynamics
and proceeding through the development of multiple control
Lyapunov functions. The main theorem of this paper presents
sufficient conditions under which the QP has a unique mini-
mizer that is Lipschitz continuous in the state. This leads to a
testable set of conditions for determining whether any set of
tasks encoded as CLFs can be simultaneously exponentially
stabilized. The theory has been illustrated on the simulation
example of a simplified humanoid robot executing a ladder
climbing task. In this example we provided cases where the
conditions of Theorem 1 are satisfied, and our two control
objectives can be simultaneously met. Corollary 1 can then
be applied to show that the resulting periodic behavior (i.e.
climbing gait) is exponentially stable for a sufficiently rapidly
converging RES-CLF.
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Fig. 2. Left Column (a): Simulation of the foot placement task pictured in Fig 1(a), using control parameters (α = 0, ε = 10, τmax = 125Nm). This
value of α leads to a cost function H(x) is only semidefinite, not strictly positive definite as required by Theorem 1. Rapid chatter in the torques suggest
that the underlying control law is not Lipschitz continuous. Center Column (b): Using simulation parameters (α = 1, ε = 10, τmax = 125Nm) we see
that the control law is Lipschitz continuous until t=0.88s when the simulation fails. At this time the width ω(x) of the feasible set decreases to zero, and
the sufficient conditions of Theorem 1 no longer hold. Note that the Lipschitz constant can grow very quickly as ω decreases to 0. Right Column (c):
Successful simulation of the foot placement task using control parameters (α = 0.5, ε = 10, τmax = 125Nm).
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