
Barrier Functions: Bridging the Gap between Planning from
Specifications and Safety-Critical Control

Petter Nilsson and Aaron D. Ames

Abstract—Real-life control systems are hierarchies of inter-
acting layers; often consisting of a planning layer, a trajectory
generation layer, and a trajectory-following layer. Independently
designing the layers without taking the interactions between
layers into account makes it difficult to obtain safety guarantees
when executing a high-level plan. In this paper we combine
ideas from safety-critical control and high-level policy synthesis
to develop a principled connection between a high-level planner
in a low-dimensional space, and a low-level safety-critical
controller acting in the full state space. We introduce a new
type of simulation relation and show that barrier functions can
be used to abstract a high-dimensional system via the relation.
As a result, we obtain provably correct execution of high-level
policies by low-level optimization-based controllers. The results
are demonstrated with a quadrotor surveillance example.

I. INTRODUCTION

Safety is becoming an increasingly important factor in
modern engineered systems. With evolving automation and
the rise of autonomy, systems are expected to perform more
complex tasks, and often operate in the vicinity of humans.
This imposes a need for control design methodologies ca-
pable of guaranteeing correct and safe behaviors. A typical
control architecture consists of multiple interacting layers. It
is for example common to have a low-level layer with high-
frequency feedback control, and other layers that generate
plans and motions for the low-level controllers to track. A
layered controller introduces additional complexity: how can
the behaviors of the different layers and their interactions be
restricted so as to guarantee safety? In this paper we propose
a framework for addressing this question.

A popular method for guaranteeing safety in low-level
control is barrier functions—Lyapunov-like certificates for
set invariance [1]. However, by itself a barrier function only
guarantees forward invariance and/or asymptotic stability of
a set, which is insufficient to achieve complex behaviors.
On the other hand, control synthesis utilizing temporal logic
specifications has emerged as a popular way of designing
plans for complex tasks [2], [3], [4]. Unfortunately, the syn-
thesis problem is computationally difficult to solve, especially
for high-dimensional highly dynamical models where typical
grid-based abstractions methods are intractable due to the
curse of dimensionality. Therefore, the synthesis problem
is often solved on a low-fidelity model, and there are no
guarantees that the plan can actually be implemented in a
correct fashion.

The authors are with the Department of Mechanical and Civil Engi-
neering, California Institute of Technology, Pasadena CA 91125, U.S.A.
Email addresses: {pettni, ames}@caltech.edu. This research
was funded through the NASA JPL President’s and Director’s Fund Program.

Fig. 1. Barrier function-based safety constraints prevent a quadrotor from
hitting obstacles in a simulation with adverse wind conditions.

In this paper we combine barrier functions with ideas
from temporal logic synthesis with the goal of leveraging
strengths of both: provably correct high-fidelity implemen-
tation of temporal logic policies. We propose using barrier
functions to control the higher-order dynamics and cancel
out disturbances, thus leaving the high-level planner with
an easier task. In addition, the barrier functions can be
used as supervisors only, which leaves room for online
trajectory generation that can improve performance while
remaining in the safety envelope. Our method can be seen as
an automated way of orchestrating enforcement of different
barrier conditions over time, in a way that forces the system
to satisfy a desired behavior. Simultaneous enforcement of
multiple barrier conditions has been previously studied [5],
[6], but scheduling barrier function enforcement over time so
as to achieve a temporal task is to the best of our knowledge
novel.

Comparing with existing methods, an alternative method-
ology for high-fidelity implementation of plans generated
on a low-fidelity model was recently proposed by Herbert
et al. [7], who treated the relation between the low-level
controller and the planner as a two-player game. Also related
is the work by Majumdar et al. on how funnels can be
stitched together in a provably correct fashion [8]. We extend
these works by considering planning with respect to temporal
logic specifications, and leverage recent work on barrier
functions that is suitable for decoupling stability/performance
and safety [1], [9]. A different type of barrier certificate has
previously been suggested as a tool in a proof system for
verification [10].

In the following section we define (continuous) control
systems and (finite) transition systems, and what it means for
a system to satisfy an LTL specification. In Section III we
propose a simulation relation that guarantees that an abstract

policy can be implemented on the concrete control system,
and a way of constructing the abstraction by using barrier
functions as certificates. We show an example in Section IV,
and conclude the paper in Section V.

II. PRELIMINARIES
Below we define concepts related to temporal logics, con-

trol systems, and transition systems. These are all standard
concepts from the literature, with one exception: specification
satisfaction for transition systems is defined slightly differ-
ently to allow for non-deterministic labels and stuttering. This
allows us to have fewer restrictions1 on the barrier functions
at the cost of slightly more complexity in the abstract system.
We comment in Section II-E below on how to solve the
abstract synthesis problem under this modification.

A. Notation

A relation R from X1 to X2 is a subset of X1 × X2. For
sets X1 ⊂ X1 and X2 ⊂ X2, we write R(X1) = {x2 ∈
X2 | ∃x1 ∈ X1, x1Rx2} and R−1(X2) = {x1 ∈ X1 | ∃x2 ∈
X2, x1Rx2}.

For a control- and disturbance-affine ODE d
dtx = f(x) +

gu(x)u + gd(x)d and a function h(t, x) we write the total
time derivative of h under the ODE flow as

Lh(t, x, u, d) =
∂h

∂t
(t, x) + Lfh(t, x)

+ Lguh(t, x)u+ Lgdh(t, x)d,

where Lfh(t, x) = ∇xh(t, x) · f(x), and analogously for gu
and gd. Note that depending on the relative degree of h, Lh
might not depend directly on all states in x and/or the inputs
u and d.

B. Temporal Logics

Linear Temporal Logic (LTL) is a formalism for specifying
temporal properties [11]. LTL has two types of operators:
logical connectives and temporal modal operators. The logic
connectives are those used in propositional logic: negation
(¬), disjunction (∨), conjunction (∧) and material implication
(=⇒). The temporal modal operators are always (�),
eventually (♦), next (©), and until (U). In this paper
we work with LTL over continuous time where the “next”
(©) operator lacks a meaningful interpretation. We therefore
restrict attention to the “LTL without next” fragment of
LTL, denoted LTL\©. An LTL\© formula over a finite set
of atomic propositions AP can be defined inductively as
follows:

(i) True is an LTL\© formula,
(ii) any atomic proposition p ∈ AP is an LTL\© formula,

(iii) given LTL\© formulas ϕ and ψ, ¬ϕ, ϕ∨ψ, and ϕ U ψ
are also LTL\© formulas.

The remaining derived operators are defined as follows: (i)
ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), (ii) ϕ =⇒ ψ := ¬ϕ ∨ ψ, (iii)
♦ϕ := True U ϕ, and (iv) �ϕ := ¬♦¬ϕ.

LTL formulas are interpreted over ω-words, which
are infinite sequences in 2AP . Given an ω-word w =

1In much literature, abstractions are required to be proposition preserving
(e.g. [4]) which is inconvenient for the type of abstraction we consider here.

w(0)w(1)w(2) . . . in 2AP and an LTL formula ϕ, we write
(w, k) |= ϕ if and only if w satisfies ϕ at a position k ≥ 0,
which is defined inductively as follows:

(i) For an atomic proposition p ∈ AP , (w, k) |= p iff
p ∈ w(k);

(ii) (w, k) |= ¬ϕ iff (w, k) 6|= ϕ;
(iii) (w, k) |= ϕ ∨ ψ iff (w, k) |= ϕ or (w, k) |= ψ;
(iv) (w, k) |= ϕ U ψ iff there exists j ≥ k such that

(w, j) |= ψ and (w, i) |= ϕ for all i ∈ [k, j).
An ω-word w satisfies ϕ, written as w |= ϕ, if and only if
(w, 0) |= ϕ.

We next define what it means for control systems and
transition systems to satisfy an LTL property.

C. Control Systems and LTL Satisfaction

A control system Σ is a tuple Σ = (X ,X0,U ,D, f, hX)
consisting of a state space X , an initial set X0 ⊂ X , an
input set U , a disturbance set D, a parametrized vector field
f : X × U × D → TX , and an output map hX : X → 2AP

[12]. In the following we assume that the sets X ,X0,U and
D are compact. A feedback controller for Σ is a rule πΣ that
determines the input u(t) based on the current state x(t) and
based on potential internal memory states2. A trajectory of
Σ is an absolutely continuous function x : R+ → X such
that

x(0) ∈ X0,
d

dt
x(t) = f(x(t),u(t),d(t)) a.e., (1)

for some input and disturbance trajectories u : R+ → U
and d : R+ → D. In the following we assume that
standard conditions are satisfied that guarantee uniqueness
and maximality of an appropriate notion of solutions. If u(t)
is obtained from a controller πΣ, we say that the trajectory
is generated by πΣ.

Given a trajectory x(t) and an output map h : X → 2AP ,
the observation of x is the trajectory hX ◦ x : R+ → 2AP .
An ω-word w = w(0)w(1)w(2) . . . in 2AP is said to be
consistent with the output hX ◦ x if and only if there exists
a strictly increasing sequence {tk}∞k=0 in [0,∞) with t0 = 0
and tk −→ ∞ as k −→ ∞, such that hX ◦ x(t) = w(k) for
all t ∈ [tk, tk+1). Note that for any such sequence {tk}∞k=0,
all ω-words consistent with the observation of x are stutter-
equivalent [11]. We say that x satisfies ϕ, written x |= ϕ, if
there exists an ω-word w consistent with the observation of
x such that w |= ϕ. If all trajectories of Σ generated by a
controller πΣ satisfy ϕ, we say that πΣ enforces ϕ on Σ and
write (Σ, πΣ) |= ϕ.

D. Transition Systems and LTL Satisfaction

A transition system is a tuple T = (X,X0,U,−→, hX)
where X is a set of states, X0 ⊂ X a set of initial states, U
a set of inputs, −→⊂ X × U × X a transition relation, and
hX : X → 22AP an output function [13]. A policy for T is
a tuple πT = (πU, πM,M,m0) where πU : M× X→ U is a
function generating inputs, πM : M × X → M is a memory

2The controllers we consider in this paper can be seen as hybrid feedback
controllers, where the switch from one state-feedback controller u1(t, x) to
the next controller u2(t, x) is triggered by guard conditions.

update function, M is a (finite) set of internal memory states,
and m0 ∈M is the initial memory state.

As a shorthand notation, we write ξ
µ−→ ξ′ to indicate

that (ξ, µ, ξ′) ∈−→. A trajectory of the transition system
is a sequence ζ(0)ζ(1)ζ(2), . . . in X such that ζ(k) ∈ X0

and such that ζ(k)
σ(k)−→ ζ(k + 1) for some input trajectory

σ : N → U. A trajectory is generated by a policy πT if
σ(k) = πU(m(k), ζ(k)) and the memory trajectory m(k) is
such that m(0) = m0 and m(k + 1) = πM(m(k), ζ(k)).

For a trajectory ζ(0)ζ(1)ζ(2) . . . we can define the output
hX ◦ ζ : N → 22AP that for each time instance k assigns a
set hX ◦ ζ(k) = {li}i ∈ 22AP of subsets li ∈ 2AP of atomic
propositions. For a trajectory ζ we consider all finite words
w of the form

w = w0
0w

1
0 . . . w

c0
0 w

0
1w

1
1 . . . w

c1
1 w

0
2w

1
2 . . . w

c2
2 . . . , (2)

where wjkk ∈ hX ◦ζ(k) for jk = 0, . . . , ck and ck < +∞. We
say that ζ satisfies an LTL\© specification ϕ, written ζ |= ϕ,
if and only if w |= ϕ for all words w on the form (2). If all
πT -controlled trajectories of a transition system T satisfy ϕ,
we say that πT enforces ϕ on T and write (T , πT) |= ϕ.

This definition of specification satisfaction differs in two
ways from what is typically encountered in the literature:
the output map hX is non-deterministic in that it maps to
22AP instead of to 2AP , and there is a possibility of having
multiple outputs for each time step (i.e. stuttering). Note
that if |hX(ξ)| = 1 for all ξ ∈ X, i.e., if there is no non-
determinism, then all outputs of the form (2) are stutter-
equivalent to the standard notion of output.

E. Solving a Synthesis Problem on a Transition System

The definition of specification satisfaction above is slightly
more involved and requires modifications of discrete synthe-
sis algorithms. One possibility is to decompose any state with
multiple outputs (i.e. |hX(ξ)| > 1) into one state for each
possible output, as illustrated in Figure 2. Transitions between
the new states can then be added to capture stuttering, along
with progress conditions that ensure that any stuttering lasts
only a finite time. Augmented finite transitions systems [14]
support such progress conditions, and the synthesis problem
for augmented finite transition systems can be solved with
tools such as ARCS [15]. An alternative to state splitting is
to always assume the worst-case output [16].

While the complexity of the discrete synthesis problem
is higher, in practice we expect most states to have a low
number of possible outputs.

III. BARRIER FUNCTION-BASED PLANNING
RELATIONS

Simulation relations have emerged as a tool to formalize
the relationship between continuous systems and their ab-
stractions [12], [13], [17], [18]. In most work on abstractions,
the time scales of the continuous system and its abstraction
are the same, in the sense that control input updates are done
at the same sampling frequency. This is a shortcoming since
low-level control loops typically need to run at a much higher
frequency than high-level planners in order to accurately

ξ1 ξ2

ξ11

ξ21

ξ2

{Y1, Y2} {Y3} Y1

Y2

Y3

Fig. 2. Illustration of how a system with nondeterministic labels and
stuttering (left) can be decomposed into a system with deterministic labels
and no stuttering (right). In the illustration, h(ξ1) = {Y1, Y2}, i.e. the
output can be either Y1 or Y2 and the system can stutter between the two.
The system to the right with h(ξ11) = Y1 and h(ξ21) = Y2 does not have
nondeterministic labeling and produces the exact same outputs if the system
is constrained to exit {ξ11 , ξ21} and then ξ12 in finite time.

control nonlinear dynamics. Previous work is also largely
concentrated on state space discretization. Although efficient
abstractions techniques have been discovered for systems
with special properties (e.g. monotonicity [19] or permutation
invariance [20]), discretization of the entire state space is in
general infeasible for high-dimensional systems.

To address these shortcomings, and to pave the way
for correct-by-construction planning for nonlinear high-
dimensional systems, we introduce a simulation relation we
call alternating planning relation that captures the relation-
ship between a control system and an abstraction. This
relation does not constrain the systems to operate at the
same time scale, and relies on local feedback controllers
to execute transitions between abstract states. This can be
seen as a combination of elements of the time-agnostic over-
approximations explored in [14], feedback-based roadmap
techniques [21], and simulation relations with nondeterminis-
tic labeling [16]. We then propose barrier functions that serve
as certificates for the conditions imposed by an alternating
planning relation.

A. Alternating Planning Relations

We define a type of simulation relation from a control
system Σ = (X ,X0,U ,D, f, hX) to a transition system
T = (X,X0,U,−→, hX), where hX : X → 2AP and
hX : X→ 22AP . The relation relies on the existence of feed-
back controllers that manage the internal dynamics to comply
with the relation. As a consequence, by delegating control
of internal dynamics to the local feedback controllers, the
abstract state space X can be embedded in a low-dimensional
subspace of X which allows constructing abstractions of
moderate size even when X is high-dimensional.

Simulation relations often assume that systems execute
concurrently, or, for the case of continuous-time systems, that
sample times are fixed. Here we relax this condition which
allows us to obtain sparser abstractions. As a result, there
is no time equivalence between the two systems. Later in
the paper we discuss how this shortcoming can be addressed
by encoding side information in the abstract system T .
Notions of simulation relations that do not preserve time have
previously been suggested for discrete systems. These include
weak [22] (also known as observable [23]) simulations, that
allow for silent actions to occur between regular events, and

R−1(ξ) R−1(ξ′)

Fig. 3. Illustration of the requirements (3). For a discrete transition ξ → ξ′,
there must exist a feedback controller such that all points in R−1(ξ) are
steered to R−1(ξ′) in finite time, and the trajectories must remain in the
union of these two sets.

stuttering [11] simulations. It has been shown using ideas
similar to ours that hybrid systems that exhibit certain limit
properties are weakly bisimilar to a finite system [24]. The
notion of simulation relation we use is however closer to
stuttering simulations in that there are no silent transitions in
the abstraction.

Definition 1. Consider a control system Σ =
(X ,X0,U ,D, f, hX) and a transition system
T = (X,X0,U,−→, hX). A relation R ⊂ X × X is
an alternating planning relation from Σ to T if:

1) For all x0 ∈ X0 there exists ξ0 ∈ X0 such that x0Rξ0,
2) For all xRξ, hX (x) ∈ hX(ξ),
3) For all ξ ∈ X and for all µ ∈ U such that {ξ′ : ξ

µ−→
ξ′} is nonempty, there exists a feedback controller
u(t, x) such that the following holds: for all initial
conditions x0 ∈ R−1(ξ) and disturbance signals d, the
resulting u-controlled trajectory x(t) with x(0) = x0

for some 0 ≤ T < +∞ satisfies

x(T) ∈
⋃

ξ′:ξ
µ−→ξ′
R−1(ξ′), (3a)

x([0, T)) ⊂ R−1(ξ) ∪
⋃

ξ′:ξ
µ−→ξ′
R−1(ξ′). (3b)

If there exists an alternating planning relation from Σ to T
we write Σ �plan T and say that T simulates Σ.

Remark 1. The requirement in item 3 is illustrated in Fig.
3. The sets R−1(ξ) are domains of the local feedback con-
trollers, and (3) stipulates that the local feedback controllers
should be able to steer Σ from an initial domain R−1(ξ) to
a final domain R−1(ξ′) whenever there exists a transition
ξ

µ−→ ξ′ in T . If the state-input pair (ξ, µ) has multiple
successors, the requirement is that the domain R−1(ξ′) of at
least one successor ξ′ must be reached in finite time.

By construction, an alternating planning relation makes it
possible to implement an abstract policy designed for T as
a hybrid feedback controller for Σ in a way that preserves
specification enforcement. The construction of the feedback
controller is detailed in the proof of the following theorem.

Theorem 1. Suppose that Σ �plan T and that πT =
(πU, πM,M,m0) is a policy for T such that (T , πT) |= ϕ.
Then there exists a controller πΣ for Σ such that (Σ, πΣ) |=
ϕ.

Proof. Take an initial state x0 ∈ X0. By item 1 in Def-
inition 1 there exists ξ0 ∈ X0 such x0 ∈ R−1(ξ0). Let
πT = (πU, πM,M,m0) be a policy that enforces ϕ on
T ; we iteratively construct a trajectory ζ of T that is the
discrete-time analogue of an evolving trajectory x of Σ with
x(0) = x0. We let ζ(0) = ξ0 and σ(0) = πU(ξ0,m0).

Assume by induction that at continuous time instant tk
the discrete state is ζ(k), that the controller memory state is
m(k), and that x(tk) ∈ R−1(ζ(k)). We select the discrete
input σ(k) = πU(m(k), ζ(k)) and update the memory state
according to m(k + 1) = πM(m(k), ζ(k)). By item 3 in
Definition 1 we can find a feedback controller such that the
set
⋃
ξ′:ζ(k)

σ(k)−→ξ′
R−1(ξ′) is reached in finite time, and such

that x(t) remains in R−1(ζ(k)) until that set is reached.
Assume that the set is reached at a time tk+1 and select
ζ(k+1) such that x(tk+1) ∈ R−1(ζ(k+1)). This shows that
we can inductively construct a trajectory ζ with the property
that

x(t)Rζ(k), ∀t ∈ [tk, tk+1). (4)

Consider now the output hX ◦x on the interval [tk, tk+1).
The interval [tk, tk+1) can be partitioned into intervals
[tjk, t

j+1
k) such that

hX (x(t)) = wjk ∀t ∈ [tjk, t
j+1
k). (5)

In other words, the word wjk is consistent with the output
hX ◦ x. Furthermore, the word is on the form (2), and, by
item 2 in Definition 1, wjk ∈ hX(ζ(k)). Therefore the word
wjk is also a word of T generated by πT . Since the policy
πT enforces ϕ on T , it follows that the feedback controllers
as scheduled above enforce ϕ on Σ.

Given a control system Σ, constructing an abstraction
T such that Σ �plan T requires designing local feedback
controllers. Barrier functions [1] are a convenient tool to
reason about the dynamics of set membership constraints
using Lyapunov-like certificates. In the following we give
a set of barrier function conditions that imply the conditions
in Definition 1.

B. Barriers Functions for Invariance and Reachability

Consider a system Σ = (X × V,X0,U ,D, f, hX) where
hX : X → 2AP and f is an affine control system of the form

Σ :
d

dt

[
x
v

]
= f(x,v) + gu(x,v)u + gd(x,v)d. (6)

The state space of Σ is X × V , where X is the planning
space and V is the internal dynamics space that governs
the motion in planning space. For instance, motion planning
for mobile robots is usually done on the robot pose space
while assuming that the generated plan can be implemented
by low-level controllers that control the velocity states. In
addition, specifications are often expressed in terms of pose
only, and, if specifications regarding velocity are present,
they are typically of invariance type (e.g., a maximal allowed
velocity), which is best dealt with at the low level anyway.
This motivates the decomposition into a planning space and
an internal dynamics space, and is the reason why we have

defined the output function hX to map from X instead of
from X × V .

We now show how an alternating planning relation can be
constructed by using barrier functions as certificates for (3).
For scalability purposes we want to restrict planning to the
state space X ; to implement a plan in a provably safe manner
the auxiliary states v must be controlled by local feedback
controllers. As it turns out, barrier functions for systems with
relative degree are ideally suited for this task since they
mimic the cascaded structure of many robotic systems.

To start with, we assume that for a collection of compact
sets {Xi}i∈I in X , there are local invariance-enforcing
barrier functions hinv

i such that

hinv
i (x, v) ≥ 0 =⇒ x ∈ Xi, (7a)

κinv
i (hinv

i (x, v)) + max
u∈U

min
d∈D
Lhinv

i (x, v, u, d) ≥ 0, (7b)

where κinv
i is a class-K function. We build on the definition

of a (zeroing) control barrier function [1] wherein a set C =
{x ∈ X : h(x) ≥ 0) is safe (forward invariant) if κ(h(x)) +
d
dth(x) ≥ 0 for a class-K function κ. In this case, our safe
set is a set in x− v space that by (7a) projects inside of Xi.
This allows us to enforce invariance of Xi via the internal
dynamics provided that control inputs satisfying (7b) can be
synthesized.

Lemma 1. A barrier function on the form (7) renders a
subset of Xi controlled invariant.

Proof. We show that the set C = {(x, v) : hinv
i (x, v) ≥ 0}

is controlled invariant, which is a subset of Xi via (7a). For
a smooth hinv

i controlled invariance follows from Nagumo’s
theorem [25]: from (7b) it is always possible to select u(x, v)
such that for all d ∈ D,

d

dt
hinv
i (x, v, u(x, v), d) ≥ −κinv

i (hinv
i (x, v)). (8)

From this inequality it follows that if hinv
i (x, v) = 0, then

d
dth

inv
i (x, v, u, d) ≥ 0, which implies forward invariance of

C.

Next, we seek to connect the sets {Xi}i∈I with barrier
functions that steer the system from one set to the next. A
function hrch

ij (t, x, v) is a certificate that the system can be
steered from Xi to Xj in time Tij if for all x, v and all
t ∈ [0, Tij]:

hinv
i (x, v) ≥ 0 =⇒ hrch

ij (0, x, v) ≥ 0, (9a)

hrch
ij (Tij , x, v) ≥ 0 =⇒ hinv

j (x, v) ≥ 0, (9b)

κrch
i,j (hrch

ij (t, x, v))+max
u∈U

min
d∈D
Lhrch

ij (t, x, v, u, d) ≥ 0. (9c)

Lemma 2. Barriers on the form (9) render the set Ct =
{(x, v) : ∃t ∈ [0, Tij], h

rch
ij (t, x, v) ≥ 0} controlled invariant,

and render the set {(x, v) : hrch
ij (Tij , x, v) ≥ 0} reachable

(without leaving Ct) from initial conditions in Ct.

Proof. By the same argument as in Lemma 1 it follows that
the set C = {(t, x, v) : hrch

ij (t, x, v) ≥ 0} is controlled
invariant. This fact implies both claims in the lemma: Ct

ξ11 ξ12 ξ13

ξ21 ξ22 ξ23

ξ31 ξ32 ξ33

µ1 µ2 µ3

µ1

µ2
µ3

µ1 µ2 µ3

Fig. 4. Illustration of abstraction T when I = {1, 2, 3}. Only transitions
going out from the middle states ξ21, ξ22 and ξ23 are shown. If the abstract
state is ξ21 (i.e., the underlying system is in the process of steering from X2

to X1), selecting abstract input 1 implies staying in X1, selecting abstract
input 2 implies steering back to X2, and selecting abstract input 3 implies
steering to X3.

is the projection of C and {(x, v) : hrch
ij (Tij , x, v) ≥ 0} is a

slice of C at time t = Tij .

Remark 2. In theory, the same barrier certificate could be
used for enforcing both invariance and reachability, i.e.
hrch
ij (T, x, v) = hinv

j (x, v). However, additional degrees of
freedom can make (9) easier to satisfy and improve per-
formance. In addition, these ideas generalize to more than
two barrier functions: different reachability barrier functions
could be used to connect sets along different paths.

C. Abstraction Construction

From barrier functions like these we construct an abstrac-
tion T = (X,X0,U,−→, hX). The sets {Xi}i∈I should
be thought of as margins around sample points used in
a planning algorithm like RRT [26] that constructs sparse
graph structures. While it would be natural to think of the
sets {Xi} as abstract states, this would disregard time spent
transitioning from one set Xi to another set Xj . Since events
during transitions are equally important to capture, we define
abstract states ξij that correspond to being in the process
of transitioning from Xi to Xj . With this construction, an
abstract state ξii corresponds to (a subset of) Xi being kept
invariant.

Abstract states and inputs: Abstract states are of the
form ξij for i, j ∈ I , thus the abstract state space is
X = {ξij}(i,j)∈I×I . The input set is U = {µi}i∈I .

Transition relation: We encode two types of transitions as
illustrated in Fig. 4. Firstly, for i 6= j we encode a transition
ξki

µj−→ ξij if and only if there exists a barrier certificate hrch
ij

that satisfies the properties in (9). Furthermore, we encode a
transition ξki

µi−→ ξii for each transition of the first type.

Remark 3. The discrete state space as defined above is of
size |I|2 and the input space is of size |I|. However, a
smaller representation can often be obtained since all sets are
typically not connected. Non-connected parts of the transition
graph can be purged, and an optimally sized representation
has a number of inputs equal to the maximal number of
outward connections from any set Xi.

Planning relation and output map: We define a relation
R ⊂ X × X such that

(x, v)Rξii ⇐⇒ hinv
i (x, v) ≥ 0,

(x, v)Rξij ⇐⇒ ∃t ∈ [0, Tij] s.t. hrch
ij (t, x, v) ≥ 0.

(10)

Based on the relation R we finally define the abstract input
set as X0 = R(X0) and the output map hX as

hX(ξij) = {hX (x) : ∃v, (x, v)Rξij}. (11)

Theorem 2. Assume that X0 ⊂
⋃
ξ∈XR−1(ξ). Then R is an

alternating planning relation from Σ to T and thus Σ �plan

T .

Proof. Condition 1 of Definition 1 holds by the assumption in
the theorem and condition 2 holds by definition due to (11).
What remains is to show condition 3. To this end, take ξij ∈
X and µk ∈ U such that ξij

µk−→ ξjk (i.e. µk is defined at ξij).
We need to show that any trajectory originating in R−1(ξij)
can be controlled in finite time to R−1(ξjk) without leaving
R−1(ξij).

Suppose that j 6= k. We know that there exist barrier func-
tions hrch

ij , hinv
j and hrch

jk that satisfy the properties (7) and (9).
Thus, by Lemma 2 the set C = {(x, v) : hrch

ij (Tij , x, v) ≥ 0}
can be reached in finite time from R−1(ξij). Furthermore,
by (9b) and (9a),

(x, v) ∈ C =⇒ hinv
j (x, v) ≥ 0

=⇒ hrch
jk (0, x, v) ≥ 0 =⇒ (x, v) ∈ R−1(ξjk).

Thus (3) is satisfied. The case j = k follows from the first
implication since R−1(ξjj) = {(x, v) : hinv

j (x, v) ≥ 0}.

D. Discussion

The results presented above give conditions in the form of
existence of barrier functions. In order to leverage the results
for a given problem, functions satisfying the conditions must
somehow be obtained. Finding a barrier function that en-
forces invariance is in general a challenging task—especially
for systems with constrained input sets. There are however
practical methods for finding barrier functions for systems
with relative degree [9], and they can be computed using
sums-of-squares programming [27]. To avoid having to con-
struct unique barrier functions for each pair of sets Xi, Xj , a
reasonable approach—that we use in the example in Section
IV—is to design a single barrier function h(x, v;x0, ε) that
enforces invariance of a set {x : ‖x − x0‖ ≤ ε}. The
time-dependent barrier functions for reachability can then be
defined as hrch

ij (t, x, v) = h(x, v;x0(t), ε(t)), where x0(t)
describes a curve connecting xi to xj . If x0(t) varies slowly
enough, and if h satisfies the barrier condition robustly, then
also hrch

ij (t, x, v) satisfies the barrier condition. This approach
works if the dynamics are translational-invariant in x; other
types of symmetries can potentially be exploited in the same
manner.

This approach to provably correct high-level planning fits
well together with incremental sample-based algorithms such
as RRT; for such methods the abstraction can be incremen-
tally refined until a policy is found. When a policy has

been constructed it must be implemented as a controller in
continuous time. The proof of Theorem 1 details how the
abstract policy should be refined, which results in a controller
that schedules enforcement of barrier function constraints.
Barrier function constraints by themselves do not however
guarantee stability. It is therefore practical to connect the
barrier to a nominal controller that induces stability. This can
be done by letting the barrier supervise a nominal controller,
or by designing a control Lyapunov function and enforcing
the resulting constraint together with the barrier condition
[1]. Both methods can be implemented via online quadratic
programming.

As mentioned above, there is no time equivalence between
the concrete system and its abstraction in this method. This
is not an issue for temporal logic planning in LTL\© since
this fragment does not contain time constraints. However, in
practice it is desirable to synthesize controllers that make
progress as quickly as possible towards specification sub-
goals, and our method can potentially be used also with logics
such as Signal Temporal Logic that do allow for expressing
specifications over time. The timing issue can be mitigated
by amending the abstract transitions with “weights” that
represent the time needed for traversal, and utilize discrete
synthesis techniques that compute the “time-to-reach” via
value function iteration [28].

The type of abstraction considered in this paper is sound,
in the sense that if Σ �plan T , then a policy for T can
be implemented on Σ with preserved correctness guarantees.
As opposed to work on bisimulations [2] and approximate
bisimulations [12], there is however no guarantee of finding
a policy whenever one exists. Our method should be seen
as a practical alternative that searches for solutions in a
sparse space, and as a way to achieve a principled separation
between high-level planning and low-level feedback control.

IV. EXAMPLE: BARRIER-CERTIFIED
QUADROTOR PLANNING

We demonstrate the method on a planning problem for
a quadrotor. The standard model for quadrotors is 12-
dimensional and nonlinear—beyond the capabilities of typi-
cal abstraction methods. To circumvent the scalability issue,
we design barrier functions that allow us to conduct mission
planning in three-dimensional position space.

Dynamical equations for a quadrotor are obtained from
force-balance equations in a rotating reference frame (e.g.
[29], [30]). Let the 12-dimensional state be x = (r,v, ξ, ω),
where r and v are position and velocity in R3, ξ =
(φ, θ, ψ) ∈ SO(3) are roll, pitch and yaw angles, and ω ∈ R3

are angular velocities in the quadrotor body frame. Then

m
d2

dt2
r = −mge3 + fzR(ξ)e3 + d,

d

dt
ξ = T (ξ)ω, J

d

dt
ω = τ − (ω × (Jω)).

(12)

Here e3 = [0, 0, 1]T and R(ξ) = Rz(ψ)Ry(θ)Rx(φ) is the
x-y-z rotation matrix from a body-fixed frame to the world
frame, and T (ξ) the corresponding mapping between angular
velocities.

TABLE I
PARAMETER VALUES FOR THE QUADROTOR EXAMPLE.

m = 5 kg ε = 2, β = 0.05

g = 9.81 m/s2 a1 = 0.25, a2 = 2, a3 = −2
J = 0.01× I3 kgm2 γ1 = 1.5, γ2 = 4.5

Fig. 5. Illustration of quadrotor environment with surveillance targets
(green) and obstacles (red). The blue trajectory satisfies the specification
ϕ by repeatedly visiting all targets without hitting obstacles.

We consider sets in the state space defined as Xi =
{r : ‖r − ri‖ ≤ ε} for a finite set of waypoints ri, where
‖ · ‖ is a weighted Euclidean norm. Inspired by the barrier
function for obstacle avoidance proposed in [31], we utilize
time-dependent barrier functions on the following form for
0 < β < 1 and a1 < 1:

h0(t, r, ξ) = ε2(1− β)− ‖r − r0(t)‖2

− ε2β

π/2
a1 arctan

(
a2(r − r0(t))TR(ξ)e3 + a3

)
,

(13)

where r0(0) = ri and r0(Tij) = rj for some ri, rj , Tij .
It can be shown easily that if h0(t, r, ξ) ≥ 0, then

‖r − r0(t)‖ ≤ ε, so hinvi (r, ξ) = h0(0, r, ξ) satisfies (7a)
and hrchij (t, r, ξ) = h0(t, r, ξ) satisfies (9a)-(9b). That is,
we use functions on the form (13) both for invariance and
reachability. In addition, h0 has relative degree two with
respect to (12), so we can define a new relative degree one
function h1 as

h1(t, r, v, ξ, ω) = γ1h0(t, r, v) + Lh0(t, r, v, ξ, ω). (14)

If the input set is unbounded, h1 satisfies conditions (7b) and
(9c) everywhere except in certain degenerate configurations3.
In the following we set ε = 2 and tune the barrier function so
that it rejects wind disturbances gracefully. Parameter values
for both the dynamics and the barrier function are listed in
Table I.

We consider a surveillance scenario where the specification
is to repeatedly visit target areas Ti, i = 1, 2, 3 while avoiding
obstacles areas:

ϕ = �(r 6∈ Obs) ∧
3∧
i=1

�♦(r ∈ Ti). (15)

3From calculations similar to [31] it follows that the barrier function
condition is only violated in certain measure-zero geometrical configurations.
We don’t expect such degenerate sets to be stable, or even reachable from
“normal” initial conditions when the barrier condition is imposed, but this
remains to be proven.

0

2

4

h
0

0
2
4
6

h
1

50 60 70 80 90 100
0
1
2

t

‖r
−

r 0
‖

Fig. 6. Plot of barrier function values h0 and h1 over time, and the distance
‖r − r0‖ from the nominal position. As can be seen, the barrier functions
remain positive which ensures that ‖r − r0‖ ≤ 2, even during the wind
gust that affects the quadrotor from t = 60 to t = 80.

The environment contains four obstacles and three target
regions, as shown in Fig. 5. We opt for a sample-based
planning algorithm that adds waypoints ri ∈ R3 and connects
them via time-dependent barrier functions on the form (13)-
(14) for r0 being interpolated between the waypoints, i.e.
r0(t) = ri(1− tp(t))+ tp(t)rj where tp(t) ∈ [0, 1] is a phase
variable that parametrizes time. These barriers allow us to
construct an abstraction T with the property that Σ �plan T ,
by over-approximating the sets (10) with polyhedral sets and
checking for intersection with regions of interest (targets and
obstacles). Thus, by adding additional waypoints until we can
find a policy πT such that (T , πT) |= ϕ, we can refine the
abstract policy to a controller πΣ such that (Σ, πΣ) |= ϕ. To
solve the abstract synthesis problem we use the tool ARCS
[15] which supports augmented finite transition systems as
discussed in Section II-E. We opt for an implementation
that separates performance and safety: we use a geometrical
controller for tracking [32] that is supervised by barrier
functions. The control inputs are computed via:

min
fz,τ

λf (fz − f∗z)2 + ‖τ − τ∗‖2,

s.t. γ2h1(t, r, v, ξ, w) + min
d∈D
Lh1(t, r, v, ξ, w, fz, τ, d) ≥ 0,

where f∗z and τ∗ are the nominal control inputs for track-
ing. For a bounded disturbance set, this ensures forward
invariance of the set where h0 and h1 are positive. In our
experiment we used D = {(d1, d2, d3) : |di| ≤ 30} for an
assumed maximal disturbance of 30 N in any direction.

We tested the controller in a Simulink Simscape Multibody
simulation. The blue trace in Fig. 5 highlights a 300s long
execution of the controller through the environment, under a
time-varying wind disturbance from the east with a maximal
amplitude of 30 N. Barrier function values for a portion
of the flight are shown in Fig. 6; as can be seen the
barrier functions remain positive despite wind disturbance.
The nominal controller was adequate during periods without
wind disturbance, but for significant wind gusts the tracking
deviates significantly from the nominal trajectory which
implies a risk of hitting obstacles. Fig. 7 illustrates how
nominal inputs are used during normal operation, but in
adverse wind conditions the barrier constraint overrides the

45

50

55
f z

50 60 70 80 90 100

−0.2

0

0.2

t

τ 1
,τ

2

45

50

55

f z

50 60 70 80 90 100

−0.2

0

0.2

t

τ 1
,τ

2

Fig. 7. Plot of nominal control inputs (dashed lines) and actual control
inputs after supervision (solid lines). When the wind is strong the barrier
constraint overrides nominal control action to ensure safety. However, when
the wind disappears control is handed back to the nominal controller.

desired input. Fig. 1 shows the simulated quadrotor when the
barrier constraint is active.

V. CONCLUSION

In this work we sought to connect high-level planning
and low-level safety-critical control by leveraging barrier
functions as the bridge. We gave an alternating simulation
relation that separates responsibility between a high-level
planner and low-level feedback controllers, and conditions
based on barrier functions for satisfying the alternating
simulation relation. We showcased the method on a quadrotor
planning problem where our method allowed us to conduct
planning in three-dimensional space but obtain guarantees
with respect to the 12-dimensional nonlinear model.

In the future we will investigate how barrier functions
can be constructed in a minimally intrusive way while still
satisfying the conditions outlined in this paper, with the goal
of achieving seamless switching from one barrier function
constraint to the next. An interesting challenge for future
work is to incorporate reactive elements, by for instance
considering environments that change with time. Whether
such changes should be treated in the planning layer or
at a lower level depends on the time characteristics and
predictability of the changes. We are also working towards
testing these ideas on real hardware.

Acknowledgment: The authors would like to thank Paulo
Tabuada for helpful discussions during the preparation of this
work.

REFERENCES

[1] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control Barrier
Function Based Quadratic Programs for Safety Critical Systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[2] P. Tabuada and G. J. Pappas, “Linear Time Logic Control of Discrete-
Time Linear Systems,” IEEE Trans. Autom. Control, vol. 51, no. 12,
pp. 1862–1877, 2006.

[3] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, 2008.

[4] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans.
Autom. Control, vol. 58, no. 7, pp. 1771–1785, 2013.

[5] X. Xu, “Constrained control of input–output linearizable systems using
control sharing barrier functions,” Automatica, vol. 87, pp. 195–201,
2018.

[6] L. Wang, A. D. Ames, and M. Egerstedt, “Multi-objective composi-
tions for collision-free connectivity maintenance in teams of mobile
robots,” in Proc. IEEE CDC, 2016, pp. 2659–2664.

[7] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“FaSTrack: A modular framework for fast and guaranteed safe motion
planning,” in Proc. IEEE CDC. IEEE, 2017, pp. 1517–1522.

[8] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” The International Journal of Robotics
Research, vol. 36, no. 8, pp. 947–982, 2017.

[9] Q. Nguyen and K. Sreenath, “Exponential Control Barrier Functions
for enforcing high relative-degree safety-critical constraints,” Proc.
ACC, no. 3, pp. 322–328, 2016.

[10] R. Dimitrova and R. Majumdar, “Deductive control synthesis for
alternating-time logics,” in Proc. EMSOFT, 2014.

[11] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[12] G. Pola and P. Tabuada, “Symbolic Models for Nonlinear Control
Systems: Alternating Approximate Bisimulations,” SIAM Journal on
Control and Optimization, vol. 48, no. 2, pp. 719–733, 2009.

[13] P. Tabuada, Verification and Control of Hybrid Systems. Springer,
2009.

[14] P. Nilsson, N. Ozay, and J. Liu, “Augmented finite transition systems
as abstractions for control synthesis,” Discrete Event Dynamic Systems,
vol. 27, no. 2, pp. 301–340, 2017.

[15] O. B. Lindvall, P. Nilsson, and N. Ozay, “Nonuniform abstractions,
refinement and controller synthesis with novel bdd encodings,” in Proc.
IFAC ADHS, 2018, pp. 19–24.

[16] S. Haesaert, P. Nilsson, C.-I. Vasile, R. Thakker, A. akbar Agha-
Mohammadi, A. D. Ames, and R. M. Murray, “Temporal logic control
of pomdps via label-based stochastic simulation relations,” in Proc.
IFAC ADHS, 2018, pp. 271–276.

[17] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar sym-
bolic models for incrementally stable switched systems,” IEEE Trans.
Autom. Control, vol. 55, no. 1, pp. 116–126, 2010.

[18] M. Zamani, A. Abate, and A. Girard, “Symbolic models for stochastic
switched systems: A discretization and a discretization-free approach,”
Automatica, vol. 55, pp. 183–196, 2015.

[19] E. S. Kim, M. Arcak, and S. A. Seshia, “Symbolic control design for
monotone systems with directed specifications,” Automatica, vol. 83,
pp. 10–19, 2017.

[20] P. Nilsson and N. Ozay, “Control synthesis for high-dimensional
systems with counting constraints,” arXiv:1706.07863v1 [cs.SY], 2017.

[21] A.-a. Agha-mohammadi, S. Chakravorty, and N. M. Amato, “FIRM:
Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements,” The International Journal of Robotics
Research, vol. 33, no. 2, pp. 268–304, 2014.

[22] R. Milner, Communicating and Mobile Systems: The π-calculus.
Cambridge University Press, 1999.

[23] C. Stirling, Modal and temporal logics for processes. Springer, 1996,
pp. 149–237.

[24] H. G. Tanner, J. Fu, C. Rawal, J. L. Piovesan, and C. T. Abdallah, “Fi-
nite abstractions for hybrid systems with stable continuous dynamics,”
Discrete Event Dynamic Systems, vol. 22, no. 1, pp. 83–99, 2012.

[25] W. Walter, Ordinary Differential Equations. Springer, 1998.
[26] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,”

The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[27] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness
Guarantees for the Composition of Lane Keeping and Adaptive Cruise
Control,” IEEE Trans. Autom Sci. Eng., pp. 1–14, 2017.

[28] E. M. Wolff, U. Topcu, and R. M. Murray, “Efficient Reactive
Controller Synthesis for a Fragment of Linear Temporal Logic,” in
Proc. IEEE ICRA, 2013, pp. 5033–5040.

[29] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE ICRA, 2011, pp. 2520–2525.

[30] D. Zhou and M. Schwager, “Vector field following for quadrotors using
differential flatness,” Proc. IEEE ICRA, pp. 6567–6572, 2014.

[31] G. Wu and K. Sreenath, “Safety-Critical Control of a 3D Quadro-
tor With Range-Limited Sensing,” in Proc. ASME CDSC, 2016, p.
V001T05A006.

[32] T. Lee, M. Leok, and N. H. McClamroch, “Control of Complex
Maneuvers for a Quadrotor UAV using Geometric Methods on SE(3),”
arXiv:1003.2005 [math.OC], 2011.

	INTRODUCTION
	PRELIMINARIES
	Notation
	Temporal Logics
	Control Systems and LTL Satisfaction
	Transition Systems and LTL Satisfaction
	Solving a Synthesis Problem on a Transition System

	BARRIER FUNCTION-BASED PLANNING RELATIONS
	Alternating Planning Relations
	Barriers Functions for Invariance and Reachability
	Abstraction Construction
	Discussion

	EXAMPLE: BARRIER-CERTIFIED QUADROTOR PLANNING
	CONCLUSION
	References

