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Abstract—Computing upper bounds on exit probabilities—
the probability that a system reaches certain “bad” sets—may
assist decision-making in control of stochastic systems. Existing
analytical bounds for systems described by stochastic differential
equations are quite loose, especially for low-probability events,
which limits their applicability in practical situations. In this
paper we analyze why existing bounds are loose, and conclude
that it is a fundamental issue with the underlying techniques
based on martingale inequalities. As an alternative, we give
comparison results for stochastic differential equations that
via a Lyapunov-like function allow exit probabilities of an n-
dimensional system to be upper-bounded by an exit probability
of a one-dimensional Ornstein-Uhlenbeck process. Even though
no closed-form expression is known for the latter, it depends
on three or four parameters and can be a priori tabulated for
applications. We extend these ideas to the controlled setting and
state a stochastic analogue of control barrier functions. The
bounds are illustrated on numerical examples and are shown
to be much tighter than those based on martingale inequalities.

I. INTRODUCTION

Lyapunov techniques have arguably been among the most
influential tools in the history of control theory. Classic
Lyapunov results allow us to infer stability of a point from a
Lyapunov function that satisfies certain properties, and many
modifications have been proposed to infer other properties
such as invariance or stability of a set. In this paper we refer
to such methods as certificate-driven, since knowledge of a
Lyapunov-like function is a certificate for the satisfaction of
some property. While traditional Lyapunov techniques gen-
eralize to systems that are subject to disturbance, they are
rooted in the robust tradition of only giving a binary yes/no
answer to questions of stability or invariance. However, many
components of modern systems are by nature stochastic, and
it is oftentimes desirable to make decisions that involve trade-
offs between multiple goals. In these cases a binary answer
to the question of whether a property holds under certain
conditions is less informative than knowing its probability.

While stochastic models can be approximated with robust
counterparts that capture a large proportion of the possible
behaviors, a property may be impossible to prove for a robust
model due to simultaneous inclusion of behaviors that are very
unlikely. If a robust model that includes 95% of all behaviors
satisfies a property, then the property is satisfied with at least
95% probability, but it is difficult to build such a model
without simultaneously including rare worst-case behaviors
that may render the property false.
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To exemplify, consider a system ẋ = f(x, u, d), and the
question of how to make assumptions on the disturbance signal
d. The disturbance may represent model shortcomings such
as unmodeled fast control loops for actuators, sensing noise
injected into the aggregate system, or external disturbances
that fluctuate around zero. A common property among these
signals is that their expected long-term average is zero, but
the signals may deviate from zero for short periods of time.
It can be assumed that adverse signals with long (in time)
and large (in magnitude) deviations are comparatively less
likely than benign signals with short and/or small deviations.
However, it becomes difficult to distinguish between these
two types of signals in a robust model. The most common
type of robust assumption is on the form d ∈ D where D
is a compact set containing zero, which takes into account
spatial but not temporal characteristics of the signal. In order
to include the benign signals in such a model, D must include
typical extreme values, but there is no way of doing so
without simultaneously including the adverse signals, and any
distinction between the two classes disappears. Thus, from
the robust model viewpoint there is no difference between
a controller that can handle the benign signals but not the
adverse ones, and a controller that can handle neither.

The shortcoming described above is partially mitigated
by considering more sophisticated robust models such as
integral constraints that account for both temporal and spatial
characteristics, but the yes/no dichotomy remains an issue
since there is no differentiation between the likelihood of
different signals within the model: relative probabilities of
the behaviors are masked. It is likely impossible to build
meaningful autonomous systems with a 0% failure rate, which
poses a problem for verification in the robust framework:
under this assumption successful robust verification is by
definition only possible with respect to models that do not
capture all possible behaviors.

In stochastic models these issues are mitigated since the
noise models quantify the likelihood of different behaviors.
For a stable stochastic differential equation adverse signals
(as described above) are significantly less likely than benign
signals, although both are accounted for. Verification in a
stochastic framework could additionally serve as a tool to
explore the design space, in particular how different assump-
tions regarding uncertain components affect the probability of
various properties being satisfied. While verification of finite
stochastic systems via model checking has received consider-
able attention [1], [2], there has been less work on continuous
certificate-driven verification. Kushner [3] developed a theory
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Fig. 1. Comparison of Euler–Maruyama Monte Carlo estimates (N = 1, 000)
of the probability P [V ∗t ≥ 1] for the process dVt =

(
−2µVt + σ2

2

)
dt +

kσ
√

2VtdWt for k = 1, 2, 3, 4 and σ = 0.5, µ = 1, with analytical bounds
from the literature. Since the analytical bounds hold for all values of k the
bounds become loose for the case of interest k = 1.

of stochastic stability, later applied to verification by Prajna,
Jadbabaie, and Pappas [4] and by Steinhardt and Tedrake [5].
These works all rely on similar (super)martingale arguments
to infer bounds on the probability that properties are violated,
but the martingale property is only concerned with expectation
and not with variance. A similar problem as described above
therefore arises: just like robust models fail to distinguish be-
tween benign and adverse signals, a martingale viewpoint does
not distinguish between martingales with different variance
magnitudes. Thus, such bounds produce the same values for all
martingales, irrespective of noise magnitude. As the following
example shows, this often leads to loose bounds for processes
with low variance.

Example 1. Consider the one-dimensional stochastic system

dXt = −µXtdt+ σdWt (1)

with stable deterministic dynamics, and where Wt is a Wiener
process. The time evolution of a Lyapunov candidate Vt =
V (Xt) = X2

t /2 is

dVt =

(
−2µVt +

σ2

2

)
dt+ σ

√
2VtdWt. (2)

Suppose we are interested in bounding the probability that Vt
passes above a level λ on the interval [0, T ], i.e. upper-bound

P
[

sup
0≤s≤t

Vs ≥ λ
]
. (3)

Existing results in the literature (summarized in Section II-C
below) upper-bound this probability via martingale arguments
based on inequalities for the deterministic part (−2µVt +
σ2/2)dt, but disregard the stochastic part σ

√
2VtdWt. As a

result, these bounds hold for any process that has the same
deterministic dynamics. But, as Fig. 1 shows, the probability
(3) is heavily dependent on the stochastic part of the dynamics
and disregarding it results in loose bounds when it is small.

Based on these observations it seems necessary to move
beyond the martingale approach to obtain useful probability
estimates, especially for low-probability phenomena. However,

it is difficult to calculate the density of the running maximum
for all but the most basic stochastic processes—the problem
can be phrased as solving a parabolic partial differential
equation for which analytical solutions are unknown.

In this paper we instead propose to express the bounds as
canonical quantities that represent exit probabilities for one-
dimensional processes. Our first result considers the Ornstein-
Uhlenbeck process dXt = −αXtdt + σdWt, which is the
canonical “stable” stochastic process, in the sense that it
converges to a stationary probability distribution. The results
we present are parameterized by three resp. four quantities,
so although no explicit formula is available, it is feasible to
simply tabulate solutions for relevant parameter ranges. To
this end, we show that the property exhibited in Fig. 1—that
larger variance leads to higher probabilities—holds in quite
general settings. It may seem intuitive that more noise leads
to a higher probability of reaching a given level, but as we
show with a counterexample the reality is slightly more suble.
One may view these results as a stochastic analogue of the
comparison theorems that are typically employed in traditional
Lyapunov proofs: in the deterministic setting comparison
theorems are used to show that if dV ≤ −αV dt, then the
system dx = −αxdt serves as an upper bound, which is the
limit in σ → 0 of an Ornstein-Uhlenbeck process. As we
illustrate with examples, this approach sharpens bounds in the
stochastic case, and generalizes robust methods in the sense
that when the noise magnitude goes to zero we retrieve known
results from the robust paradigm.

In the following section we review existing results from the
robust and stochastic settings. We then present our main results
in Section III, show two numerical examples in Section IV,
and conclude the paper in Section V.

II. BACKGROUND

Consider a stochastic differential equation (SDE)

dXt = f(Xt)dt+ σ(Xt)dWt, (4)

where f : Rn → Rn, σ : Rn → Rn×p, and Wt is p-
dimensional vector of independent Wiener processes. We let

Px [·] = P [· | X0 = x] (5)

denote the probability measure conditioned on an initial state.
In this paper we are concerned with exit probabilities, which
are probabilities of the form Px [∃t ∈ [0, T ] : Xt 6∈ S] for
some set S. We remark that exit probabilities are well defined
even if the stochastic process is only defined in a neighborhood
of S, since the process can be stopped on exiting S without
affecting the exit probability.

The well-known Itô Lemma from stochastic calculus states
that the time evolution of a function V (t,Xt) is governed by

dV (t,Xt) = LV (t,Xt)dt+ (∇xV )(t,Xt)σ(Xt)dWt, (6)

where the infinitesimal generator L of the process is

LV (t, x) =
∂V (t, x)

∂t
+ (∇xV )(t, x)f(x)

+
1

2

〈
σ(x), (∇2

xV )(t, x)σ(x)
〉
F
,

(7)
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where 〈·, ·〉F denotes the Frobenius matrix inner product [6].
There is a multitude of results in the literature regarding

implications from satisfaction of an inequality of the form

LV (t,Xt) ≤ −αV (t,Xt) + ct. (8)

In Lyapunov theory for deterministic systems, satisfaction of
this type of inequality with ct = 0 is of course a necessary
and sufficient condition for exponential stability, but that is not
the only result of its kind. Below we survey existing results
on input-to-state stability, deterministic barrier functions, as
well as stochastic stability, which all derive certain system
properties starting from the inequality (8).

A. Input-to-State Stability

Equation (8) is a special case of the storage function
condition for input-to-state stability, which is equivalent to
an upper bound on the magnitude of V (x) [7, Theorem 3.4].
Input-to-state stability is a powerful theoretical concept, and
there are strong converse results, but it can be cumbersome
to utilize in practical situtations as the upper bounds are only
implicitly given. Input-to-state stability has also been extended
to hybrid stochastic systems [8], but only for inequalities in
expectation, which are less informative than bounds on exit
probabilities.

B. Deterministic Barrier Functions

In contrast to input-to-state stability, barrier functions are
very practical in that the desired bounds are stated explicitly.
The usual barrier function condition (e.g. [9]) is stated for a
smooth function h(t, x) as

Lh(t, x) + αh(t, x) ≥ 0 (9)

for invariance of the (here assumed to be compact) set {t, x :
h(t, x) ≥ 0}. By defining the non-negative function h̃(t, x) =
h̄(t) − h(t, x) for h̄(t) = supx h(t, x), it follows that {t, x :
h(t, x) ≥ 0} = {t, x : h̃(t, x) ≤ h̄(t)} and the barrier function
condition (9) becomes

Lh̃(t, x) ≤ −αh̃(t, x) + αh̄(t) +
dh̄(t)

dt
, (10)

which is of the form (8).

C. Martingale Results for Stochastic Stability

We next summarize existing results in the stochastic setting,
which are the bounds shown in Fig. 1. The sharpest bound
in the stochastic setting that we are aware of is due to
Kushner [3, Theorem III.1], which states that if (8) holds for
a constant ct = c (Kusher considers the more general case of
a deterministic time-dependent ct, but for space reasons we
present this less general result) and a continuous non-negative
function V (t, x), then

Px
[

sup
0≤t≤T

V (t,Xt) ≥ λ
]

≤ V (0, x) +
(
eT min(α,c/λ) − 1

)
max(λ, c/α)

λeT min(α,c/λ)
.

(11)

This can be proven by introducing an auxiliary function
W (t, x) = eγctV (t, x) + (eγcT − eγct)/γ for an appropriate
γ < α/c, showing that it is a supermartingale, and applying
Doob’s martingale inequality [6, Theorem 3.2.4]. A weaker
upper bound (V (0, x) + cT )/λ can be obtained via the
same method by considering the supermartingale W (t, x) =
V (t, x) + c(T − t), which yields the bound in [4] and [5].

While the stochastic dynamics of the state Xt are implicitly
accounted for in (8) (the second-order term in the Itô formula
affects whether (8) is satisfied, so more noise makes it more
difficult to satisfy (8)), the stochastic part of (6) is disregarded.
Therefore classical deterministic results are not retrieved when
applying e.g. inequality (11) to a deterministic system.

III. MAIN RESULT

In this work we seek a unifying theory for the stochastic
and deterministic settings. As opposed to the stochastic works
surveyed above that are based solely on inequality (8), we
also consider the stochastic dynamics of a certificate function
V . This allows us to obtain exit probability bounds that are
tighter, especially for low-probability events. Furthermore, as
the stochastic effect goes to zero we retrieve the deterministic
results discussed in Section II-B as a special case.

A. Comparison Theorem for Ornstein-Uhlenbeck-Like Pro-
cesses

Our main results are based on the following theorem that
gives conditions for when more noise in a 1-dimensional
process is associated with a higher probability of the pro-
cess reaching a certain level. Theorem 1 can be seen as a
monotonicity result in the sense that more noise increases the
probability of the supremum attaining a given level.

Theorem 1. Let X1
t and X2

t be two one-dimensional Itô
processes with X1

0 = X2
0 = x and dynamics

dX1
t = −θX1

t dt+ YtdW
1
t , (12a)

dX2
t = −θX2

t dt+ σdW 2
t . (12b)

where W 1
t ,W

2
t are Wiener processes, and Yt is X1

t -
measurable. If |Yt| ≤ σ for all t ∈ [0, T ], then for λ > 0

Px
[

sup
0≤t≤T

X1
t ≥ λ

]
≤ Px

[
sup

0≤t≤T
X2
t ≥ λ

]
. (13)

Proof. We show the result with an argument rooted in the
theory of optimal control. Consider the problem of maximizing
the probability that the set {x : x ≥ λ} is reached before time
T for the system

dXt = −θXtdt+ YtdWt, (14)

where Yt is considered a control input that is constrained to
[−σ, σ]. The optimal control problem we are interested in is
the stochastic reachability problem

sup
Yt

Px
[

sup
0≤t≤T

Xt ≥ λ
]
,

s.t. Xt follows (14), |Yt| ≤ σ.
(15)
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If we can show that the optimal control input is equal to σ
the statement of the theorem follows.

Let ΦY (t, x) denote the value function of the problem for
a fixed control input Yt, i.e. the probability that the level set
Xt = λ is reached when starting at x at time t using input Yt.
From the Itô formula and by reversing time it can be shown
that ΦY satisfies the Hamilton-Jacobi PDE

∂ΦY

∂t
=
Y 2
t

2

∂2ΦY

∂x2
− θx∂ΦY

∂x
(16)

on (t, x) ∈ [0, T ] × [−∞, λ] (e.g., [10]). The maximum
principle gives that the optimal input Y ∗ satisfies

Y ∗(t, x) ∈ arg sup
Y

Y 2

2

∂2Φ∗(t, x)

∂x2
, (17)

where Φ∗ is the optimal value function. Thus, if we can show
that (17) is satisfied for Y (t) ≡ σ and the corresponding value
function the result follows. To this end we study the PDE

∂vΦ
∂t = σ2

2
∂2Φ
∂x2 − θx∂Φ

∂x (t, x) ∈ [0, T ]× [−∞, λ],

Φ(0, x) = 0 x ∈ [−∞, λ],

Φ(t, λ) = 1 t ∈ [0, T ],

(18)

where we have added appropriate initial and boundary condi-
tions for the reachability problem.

If we can show that ∂2Φ
∂x2 > 0 for all times then (17) holds

and the result follows. To establish this we invoke a result on
preservation of convexity by Janson and Tysk [11, Theorem
10.2] stating conditions under which the parabolic PDE

∂φ
∂t = a∂

2φ
∂x2 + b∂φ∂x + c, (t, x) ∈ [0, T ]× [0, 1],

φ(0, x) = φ0(x), x ∈ [0, 1],

φ(t, 0) = φ(t, 1) = 0, t ∈ [0, T ],

(19)

preserves convexity in the sense that convexity of φ0(x)
implies convexity in x of φ(t, x). This holds given smooth-
ness assumptions on a, b, c and the following conditions: i)
b(0, t) ≥ 0, b(1, t) ≤ 0, ii) 2c+ ∂b

∂x is a function of only t, and
iii) c is concave in x.

It is fairly straightforward to pose a smoothened version
of (18) on this form: let Φ̃ = Φ − 1 to homogenize the
boundary condition. This affects the initial condition, but
we can approximate the resulting initial condition 1x≥λ − 1
(convex on [−∞, λ]) arbitrarily well with a smooth convex
function1. Furthermore, let x ← (x − x)/(λ − x) for an
arbitrarily small lower bound x to rescale the spatial domain
to [0, 1]. Conditions ii) and iii) are trivially satisfied, and
condition i) is satisfied if and only if λ ≥ 0. Thus [11, Theorem
10.2] applies, so Φ(t, x) is convex in x for all t, hence Yt ≡ σ
is optimal for (15), and the result follows.

Remark 1. As can be seen in the proof, the condition λ > 0
is necessary for the proof strategy to work. Interestingly,
numerically solving (18) for values λ < 0 reveals that the
result indeed does not hold in this case. Fig. 2 illustrates that
for the case λ < 0 the reachability probability is not monotonic

11x≥λ denotes the indicator function equal to 1 on the set {x ≥ λ}.
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Fig. 2. Numerical solutions to (18) obtained with the FiPy [12] library for
σ = 1 (blue/green) and σ = 0.5 (red/yellow). The left plot shows the solution
for λ = 1 on the spatial domain [−2, 1], and the right plot shows the solution
for λ = −1 on the spatial domain [−4,−1]. For the case λ = 1 larger
noise implies uniformly higher values of V (t, x), corresponding to higher
probability of reaching the set {x ≥ 1}, but this is not true for the case
λ = −1 where in some regions a larger noise level corresponds to lower
reachability probability.

in the noise level: a smaller noise level is sometimes associated
with a higher reachability probability. This phenomenon is
best understood with a simple example: consider a system
dXt = −Xtdt + σdWt starting at X0 = −2. For σ = 0 the
probability of reaching the level −1 within time log 2 + ε is
equal to 1. However, for |σ| > 0 the probability is strictly
smaller than 1. The distinction between the case λ > 0 and
λ < 0 is that for λ < 0 the noise might counteract the drift
dynamics, whereas this does not happen for λ > 0 where the
drift dynamics flow “away” from λ. Exactly how the “optimal”
noise is characterized in the case λ < 0 is an interesting
question for future research.

The right-hand side exit probability in (13) depends on five
parameters: x, θ, σ, T and λ. However, with the transforma-
tions Ut =

√
θ
σ X

2
t and s = θt we can consolidate parameters

and arrive at the following corollary which provides an upper
bound in terms of a quantity that is a function of just three
parameters.

Corollary 1. Let X1
t follow (12a) and let Ut be a standard

Ornstein-Uhlenbeck process ((12b) with θ = σ = 1). Then

Px
[

sup
0≤t≤T

X1
t ≥ λ

]
≤ P

x
√
θ
σ

[
sup

0≤s≤θT
Us ≥ λ

√
θ

σ

]
. (20)

Furthermore, the same proof technique can be used to obtain
a result with affine drift and more general diffusion terms.

Corollary 2. Let X1
t and X2

t be two one-dimensional non-
negative Itô processes with X1

0 = X2
0 = x and dynamics

dX1
t = θ(µ−X1

t )dt+ Yt(X
1
t )kdW 1

t , (21a)

dX2
t = θ(µ−X2

t )dt+ σ(X2
t )kdW 2

t , (21b)

where µ > 0, k > 0 is a positive exponent, and W 1
t ,W

2
t are

Wiener processes, and Yt is X1
t -measurable. If |Yt| ≤ σ for

all t ∈ [0, T ], then for λ > 0

Px
[

sup
0≤t≤T

X1
t ≥ µ+ λ

]
≤ Px

[
sup

0≤t≤T
X2
t ≥ µ+ λ

]
. (22)

Proof. The proof of Theorem 1 applies when the analysis is
confined to the spatial domain [0, λ].

5178

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 21:58:55 UTC from IEEE Xplore.  Restrictions apply. 



B. Stochastic Stability

We next leverage the result in the previous subsection to
obtain results on stochastic stability for multi-dimensional
systems. Consider a system

dXt = f(Xt)dt+ e(Xt)dWt (23)

for a multi-dimensional Wiener process Wt, and assume that
there is a Lyapunov-like function V (x) such that

LV (x) ≤ −αV (x) + c, (24a)
‖∇V (x)e(x)‖2 ≤ σ. (24b)

That is, V satisfies the same stability condition discussed in
Section II, but also a condition that bounds the influence of
noise on its time evolution.

Theorem 2. Consider the system (23) and a function V
satisfying (24). Then it holds that

Px
[

sup
0≤t≤T

V (xt) ≥
c

α
+ λ

]
≤ Ω

(√
α

σ

(
V (x)− c

α

)
, αT,

√
α

σ
λ

)
,

(25)

where

Ω(u, T, λ) = Pu
[

sup
0≤t≤T

Ut ≥ λ
]

(26)

is the λ-exit probability on [0, T ] for a standard one-
dimensional Ornstein-Uhlenbeck process starting at U0 = u.

Proof. By the Itô formula the time evolution of V satisfies

dV (xt) = LV (xt)dt+∇V (xt)e(xt)dWt

≤ (−αV (xt) + c) dt+∇V (xt)e(xt)dWt.

By a drift comparison theorem for stochastic processes [13]
we know that V (xt) ≤ Ṽt for the stochastic process Ṽt with
Ṽ0 = V (x0) and

dṼt = −α
(
Ṽt −

c

α

)
dt+∇V (xt)e(xt)dWt.

The transformation V̂ = Ṽ − c
α and equation (24b) then give

the result via Corollary 1.

Computing or bounding Ω(u, T, λ) is a difficult problem
that is subject to ongoing research [10]. There are results in the
literature that give closed-form bounds on E

[
sup0≤t≤T |Ut|

]
[14], that can be combined with Markov’s inequality for a
bound on Ω, but the result is not very tight. But absent an
analytic expression, Ω is a quantity that only depends on three
parameters. We therefore argue that for practical purposes it is
feasible to maintain a database of values of Ω and interpolate
between them in order to evaluate desired probability bounds.
These values can be obtained via Monte Carlo simulations,
by solving the PDE as above for different values of λ, or
through more sophisticated numerical techniques [10]. Lookup
tables are not without precedent in control: tabulation is often
done in model-predictive control to avoid solving optimization

problems on-line, and is necessary in for example HJB level
set methods that rely on numerical solutions of PDEs.

Our second main result is obtained by using Corollary 2
instead of Theorem 1, and is practical for the case of quadratic
Lyapunov functions.

Theorem 3. Consider the system (23) and a non-negative
function V satisfying (24a) and

‖∇V (x)e(x)‖2 ≤ σ
√
V (x), (27)

Then it holds that

Px
[

sup
0≤t≤T

V (xt)≥
c

α
+ λ

]
≤Pz

[
sup

0≤t≤αT
Zt≥1 +

λα

c

]
, (28)

where Zt is the process

dZt = (1− Zt) dt+
σ
√
Zt√
c

dWt, Z0 = z =
α

c
V (x0).

As can be seen, the right-hand side exit probability in (28)
depends on four lumped parameters: time horizon αT , level set
limit λα/c, initial condition αV (x0)/c, and noise magnitude
σ/
√
c.

Proof. We follow the same initial steps as in the proof of
Theorem 2. Due to monotonicity and (27) we can consider
the behavior of the system

dṼt =
(
c− αṼt

)
dt+ σ

√
ṼtdWt, Ṽ0 = V (x0)

as an upper bound. It holds that Ṽt = cZt/α for the system

dZt = α(1− Zt)dt+
σ
√
α√
c

√
ZtdWt.

Rescaling time t← tα results in the statement.

C. Controlled Stochastic Stability

We next generalize the results above to the controlled
setting. Consider a controlled diffusion

dXt = (f(Xt) + g(Xt)ut) dt+ e(Xt)dWt, (29)

where g : Rn → Rn×m models the effect of a controlled
input ut ∈ U ⊂ Rm on the drift dynamics. For this system
we define the operator

LgV (t, x) = ∇xV (t, x)g(x) (30)

and let LV be the expression in (7) that depends on f but not
on g. Then the following result holds which can be seen as
a stochastic analogue of invariance results for control barrier
functions [9]2:

Theorem 4. Consider the system (29) and a function V :
Rn → R satisfying (24b), and assume that the set

UCBF (x) = {u : LV (x) + LgV (x)u ≤ −αV (x) + c} (31)

2Results in [9] allow for α to be a K∞ function rather than a scalar, which
enables converse results to be obtained.
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Fig. 3. Empirical exit probabilities for the example in Section IV-A. The
dashed red curve is the theoretical upper bound, the blue solid curve is the
certificate exit probability, and the solid blue line is the exit probability of x1
becoming negative. Results in this paper imply that P

[
inf[0,T ] x1(t) ≤ 0

]
≤

P
[
sup[0,T ] V (x(t)) ≥ 0

]
≤ Ω (·, αt, ·), and in this particular case the

second inequality is in fact an equality.

is non-empty for all x such that V (x) < c/α + λ. Then, for
any controller such that ut ∈ UCBF (Xt) it holds that

Px
[

sup
0≤t≤T

V (Xt) ≥
c

α
+ λ

]
≤ Ω

(√
α

σ

(
V (x)− c

α

)
, αT,

√
α

σ
λ

)
.

(32)

In addition, an analogous result in the controlled setting
under assumption (27) holds, resulting in the inequality (28),
but for space reasons we do not state it here.

As σ → 0 the Ornstein-Uhlenbeck process in (12b) becomes
the deterministic system ẋ = −θx. Thus, in the noise-free
limit we retrieve invariance results associated with control
barrier functions.

IV. EXAMPLES

We show two numerical examples where the results are
applied. In the first example Theorem 4 is applied to a linear
system with a linear certificate. The second example utilizes
Theorem 3 via a quadratic certificate. The numerical results
have been obtained by simulating SDEs using the Matlab
Financial Toolbox.

A. Linear System with Linear Certificate

The first example illustrates how a controller can be de-
signed to enforce an upper bound on exit probabilities. Take
the system

dx1 = x2dt,

dx2 = udt+ σdWt,
(33)

and the function

V (x1, x2) = −x1 − βx2 (34)

that is less than zero for x1 + βx2 ≥ 0, i.e. for states where
the risk of crossing the line x1 = 0 is low. In particular, if
V (x) ≤ 0 along a trajectory, then x1 ≥ 0 everywhere on the
trajectory.

We implement a controller u such that

LV (x1, x2) + LgV (x1, x2)u = −αV (x1, x2) + αM, (35)

0 2 4 6 8 10 12 14

0

0.5

1

σ = 0.3

σ = 0.4

σ = 0.5

Bound from [4], [5]

Bound from [3]

t

P [V ∗t ≥ 2]

Fig. 4. Illustration of the empirical exit probabilities for different values of σ
(solid blue lines), and the corresponding empirical bounds (dashed red). Also
shown are the analytical bounds described in Section II that do not depend
on σ (dotted green).

which is always possible since LgV (x1, x2) = −β 6= 0.
This construction is analogous to an established method for
constructing control barrier functions for systems with relative
degree greater than one [15]. We consider the probability of
crossing the level set V (x1, x2) = 0 starting at an initial point
(x0

1, x
0
2) and utilizing the controller described above. We have

‖∇V · E‖2 = βσ, (36)

so Theorem 4 applies, giving that the probability of crossing
into V (x1, x2) ≥ 0 within time T is upper bounded by

Ω

(√
α

σ

(
V (x0

1, x
0
2)−M

)
, αT,−

√
α

σ
M

)
. (37)

As an example we consider the following parameters: α =
0.1, β = 1, σ = 0.2,M = −1, and (x0

1, x
0
2) = (4,−3). Fig. 3

shows the probability (37), the probability of crossing the line
V (x1, x2) = 0, and the probability of crossing the line x1 = 0,
all estimated from 10,000 Monte-Carlo simulations. In this
particular case the upper bound is in fact achieved; equation
(37) corresponds to the exact probability that V becomes
positive. There is however a gap between this probability and
the probability of reaching x1 < 0, since it is possible to
“recover” from V > 0 without crossing into the region x1 < 0.

Note that the controller (35) is implemented as an equality
to exactly achieve a certain deterministic convergence rate.
A more traditional barrier function application would be to
design what we might call an exit probability filter, or a risk
filter, that enforces the inequality LV ≤ −αV + αM by
potentially overriding a nominal controller [9].

This example is somewhat atypical in that (35) holds on a
non-bounded set. On a compact set it would not be possible to
have it hold for a negative M . From a practical viewpoint the
example can be thought of as the local dynamics of a finite-
time avoidance maneuver where the risk of a collision is to
be estimated.

B. Linear System with Quadratic Certificate

We next apply the results to linear systems coupled with
quadratic Luapunov functions. Consider the system

dXt = (AXt +But) dt+ EdWt (38)
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Fig. 5. Sample trajectories for the case σ = 0.4. Left: sample trajectories of V (Xt) over the horizon [0, 15] and the bound λ = 2. Right: trajectories of Zt
over the horizon [0, 15α] and the bound αλ/c = 6.25.

where A,B,E are matrices of appropriate dimensions. For a
Lyapunov candidate V (x) = xTPx with P � 0 we have that
if P solves the algebraic Ricatti equation

ATP + PA− PBBTP = −Q, (39)

then the control input ut = − 1
2B

TPXt yields

LV (x) = −xTQx+ 〈E,PE〉F ≤ −αV + 〈E,PE〉F , (40)

where α is the maximal α such that Q � αP (which can be
found by solving an LMI), and

∇V (x)e(x) = 2xTPE. (41)

Thus Theorem 3 applies with

c = 〈E,PE〉F , σ = 2‖LTE‖, (42)

where P = LLT is the Cholesky decomposition of P .
We illustrate this numerically with the system

dXt =

([
0 −1
1 0

]
Xt + ut

)
dt+

[
0.5
0.5

]
dWt. (43)

Although this is a very simple system, it serves to illustrate
the difference in bound tightness. Setting Q = 0.2I2 yields
P = 0.447I2 and the parameters α = 0.4472, c = 0.1431,
and σ = 0.7566. Sample trajectories of V (Xt) and of Zt
from Theorem 3 simulated over 3,000 discrete steps, are shown
in Fig. 5. Estimated exit probabilities calculated from 1,000
sample trajectories are shown in Fig. 4 together with analytic
bounds from the literature.

V. CONCLUSIONS

In this paper we presented a comparison theorem for
one-dimensional SDEs, and applied it to upper-bound exit
probabilities for multi-dimensional SDEs in terms of an exit
probability of a one-dimensional process. As opposed to
known closed-form bounds in the literature, these bounds take
the noise magnitude into account and are therefore much
tighter for small-probability events. Furthermore, this is a
generalization of known results, in the sense that as the noise
magnitude goes to zero, we retrieve invariance results from
the barrier function literature.

The bounds are not on closed form, but depend on three
resp. four parameters and can therefore feasibly be tabulated

for an application. Closed-form bounds would however be
more desirable; it is conceivable that such bounds can be
obtained via approximate solutions to the PDE (18), but
we leave this question for the future. Another direction for
future work is to use sums-of-squares programming [16] to
automatically search for certificate functions V that satisfy
the conditions in Theorem 2.

REFERENCES

[1] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. A Storm is Coming: A Modern Probabilistic Model Checker. In
Proc. CAV, pages 592–600, 2017.

[2] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of Probabilistic Real-Time Systems. In Proc. CAV, volume
6806, pages 585–591, 2011.

[3] Harold J. Kushner. Stochastic Stability and Control. Academic Press
Inc., 1967.

[4] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for
worst-case and stochastic safety verification using barrier certificates.
IEEE Transactions on Automatic Control, 52(8):1415–1428, 2007.

[5] Jacob Steinhardt and Russ Tedrake. Finite-time regional verification
of stochastic non-linear systems. International Journal of Robotics
Research, 31(7):901–923, 2012.

[6] Bernt Øksendal. Stochastic Differential Equations. Springer Berlin
Heidelberg, 6 edition, 2003.

[7] Eduardo D. Sontag. Input to state stability: Basic concepts and results,
pages 163–220. Springer, 2006.

[8] Majid Zamani, Matthias Rungger, and Peyman Mohajerin Esfahani. Ap-
proximations of Stochastic Hybrid Systems: A Compositional Approach.
IEEE Transactions on Automatic Control, 62(6):2838–2853, 2017.

[9] Aaron D. Ames, Xiangru Xu, Jessy W. Grizzle, and Paulo Tabuada.
Control Barrier Function Based Quadratic Programs for Safety Critical
Systems. IEEE Trans. Autom. Control, 62(8):3861–3876, 2017.

[10] Alexander Lipton and Vadim Kaushansky. On the First Hit-
ting Time Density of an Ornstein-Uhlenbeck Process. 2018.
https://arxiv.org/abs/1810.02390.

[11] Svante Janson and Johan Tysk. Preservation of convexity of solutions to
parabolic equations. Journal of Differential Equations, 206(1):182–226,
2004.

[12] Jonathan E. Guyer, Daniel Wheeler, and James A. Warren. FiPy:
Partial differential equations with Python. Computing in Science &
Engineering, 11(3):6–15, 2009.

[13] Shige Peng and Xuehong Zhu. Necessary and sufficient condition for
comparison theorem of 1-dimensional stochastic differential equations.
Stochastic Processes and their Applications, 116(3):370–380, 2006.

[14] S E Graversen and G Peskir. Maximal inequalities for the Ornstein-
Uhlenbeck process. Proc. Amer. Math. Soc., 128(10):3035–3042, 2000.

[15] Quan Nguyen and Koushil Sreenath. Exponential Control Barrier
Functions for enforcing high relative-degree safety-critical constraints.
In Proc. ACC, pages 322–328, 2016.

[16] Jean Bernard Lasserre. Moments, Positive Polynomials and Their
Applications. Imperial College Press, 2010.

5181

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 23,2020 at 21:58:55 UTC from IEEE Xplore.  Restrictions apply. 


