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Human-inspired motion primitives and transitions for bipedal
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SUMMARY

In this paper, a control design approach is presented, which uses human data in the development of bipedal
robotic control techniques for multiple locomotion behaviors. Insight into the fundamental behaviors of
human locomotion is obtained through the examination of experimental human data for walking on flat
ground, upstairs, and downstairs. Specifically, it is shown that certain outputs of the human, independent
of locomotion terrain, can be characterized by a single function, termed the extended canonical human
function. Through feedback linearization, human-inspired locomotion controllers are leveraged to drive the
outputs of the simulated robot, via the extended canonical human function, to the outputs from human
locomotion. An optimization problem, subject to the constraints of partial hybrid zero dynamics, is presented
that yields parameters of these controllers that provide the best fit to human data while ensuring stability
of the controlled bipedal robot. The resulting behaviors are stable walking on flat ground, upstairs, and
downstairs—these three locomotion modes are termed ‘motion primitives’. A second optimization is pre-
sented, which yields controllers that evolve the robot from one motion primitive to another—these modes of
locomotion are termed ‘motion transitions’. A directed graph consisting these motion primitives and motion
transitions has been constructed for the stable motion planning of bipedal locomotion. A final simulation
is given, which shows the controlled evolution of a robotic biped as it transitions through each mode of
locomotion over a pyramidal staircase. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Obtaining truly human-like bipedal robotic walking has been one of the most prominent goals of
the humanoid robotics community. The need for functional robots, and the understanding thereof,
is apparent in many fields today. In light of recent events, such as the tragic crisis at the Fukushima
nuclear plant in Japan, robots are needed that can traverse dangerous terrain and work in virulent
environments [1, 2]. Robots capable of human-like walking, climbing, running, and all the basic
modes of human locomotion are necessary for truly successful cooperation with mankind. More-
over, achieving human-like bipedal robotic locomotion can inversely help humans understand the
human body in more depth. This understanding can be leveraged to build prosthetic devices [3-5]
for lower extremity amputees, which will help them walk with a gait as natural as a healthy human.
Therefore, the important and far-reaching ramifications of obtaining human-like bipedal walking
have attracted many researchers from a variety of fields of study.

During three decades of study, researchers have accomplished a remarkable number of achieve-
ments on bipedal walking and climbing. Honda’s ASIMO [6] has been the most popular humanoid
robot around the world, yet its fundamental control scheme is to keep the center of pressure within
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the support polygon all the time (which is known as the ZMP (Zero Moment Point) method).
Attracted by the energy efficiency and the human-like aesthetics of passive walking [7], which
was first realized by Tad McGeer, a number of robots, such as [8, 9], Flame of TU Delft, have been
constructed using this basic principle. Jessy Grizzle’s planar robot MABEL [10] holds the title of
the quickest bipedal robot in the world—and can also walk on uneven terrains. Most of the current
research in bipedal robotics is focused on 2D locomotion, that is, planar robots.

Taking a different approach, we leverage the knowledge of human body to develop locomotion
control schemes. The quintessential model of bipedal locomotion—the human body—is the most
prevalent source of information on bipedal walking. The physical human system, which utilizes 57
muscles in locomotion [11], is far too complex to replicate with current hardware and computational
capabilities. However, one can construct a low-level representation of the human locomotion system.
That is, from a control theorist perspective, one can view the human body as a ‘black box’, while
certain outputs of which can be represented by simple, time-based functions. Utilizing these outputs
functions via the feedback linearization control method, the robot will display the same qualitative
behavior as the human, despite the physical differences between the two systems. This approach
is similar to the work of others in the control and biomechanical fields. By merging human data
and hybrid zero dynamics, Westervelt [12] has achieved stable walking for a five-link robot model
in simulation with Bezier series fit to the human data. A work based on the same fitting method
can also be found in [13]. Predictive dynamics with B-spline fit to human data has been applied to
simulate normal human walking and human walking with external load [14]. Polynomial function is
also one of the popular choices used to characterize outputs of human [15, 16]. However, unlike all
these functions, the method proposed in this work offers a simpler formula that can represent all the
motion primitives and motion transitions with high correlations while rendering more robustness
outside the operation region.

In this paper, a human-inspired controller is considered that utilizes the simple low dimensional
function—extended canonical human function (ECHF)—to represent human walking. The study
begins with examination of the human locomotion system. Three experiments are performed, which
yield human xyz-position data for flat-ground walking, walking upstairs, and walking downstairs;
these data form the foundation of our control approach. Specifically, the ECHF is shown to represent
the sets of data, from three modes of locomotion (walking on flat ground, upstairs, and downstairs)
of interest and four transition modes, with high correlation in each case. More importantly, it is
found that the ECHF tends to have a more stable behavior even outside the operation region while
other methods are easy to blow up if considered outside the operation window. This is very impor-
tant especially for a physical robot that is vulnerable to the various environment uncertainty and
disturbance. We have successfully achieved the physical bipedal robotic walking on flat ground, up-
slope, and rough terrain of AMBER with the proposed ECHF [17] (Texas A&M University, College
Station, Texas, USA). We argue that it is the special form of the function on which the controller is
based that plays a key role to the easy implementation (corresponding to the fewer parameters) and
the robustness of the walking (corresponding to the better behavior outside the region of definition).

A formal construction scheme for hybrid systems—the meta-hybrid system—is presented,
in which a distinction is made between primary and auxiliary modes of locomotion, which are
termed motion primitives and motion transitions, respectively. Motion primitives are fundamental
modes of locomotion; the four motion primitives of this study are the following: standing still on flat
ground, walking on flat ground, upstairs, and downstairs. Because of the differences of modeling,
we separate the four motion primitives into two groups: The first group only contains a standing
still mode and is termed as ‘stationary motion primitive’; the second group includes the
remaining three locomotion behaviors and is termed the ‘mobile motion primitives’. To switch
between different motion primitives in a stable manner, auxiliary modes, termed ‘motion transi-
tions’, are introduced.

To summarize, this paper presents two main results; the first is an extension of [18], in which
the author presents a method of automatically obtaining robotic walking controllers, via an opti-
mization, from a set of human walking data. In this framework, it is shown that an augmentation
of the optimization can be successfully applied to multiple modes of locomotion. An extending
result of [19] is given in which it is shown that the solution to the optimization problem, which
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minimizes the cost of the least square fits of the control outputs to corresponding human data,
ensures partial hybrid zero dynamics (PHZD) and thus yields stable walking controllers for walking
on flat ground, upstairs and downstairs. Other works related to robotic walking on uneven terrain or
staircases can be found in [20-22]; however, none of these contributions consider human-like stair-
case locomotion. The second result is that by utilizing the same optimization problem, subject to
different constraints, we can achieve controllers that evolve the robot from one locomotion mode to
another. The combination of these two results is a collection of controllers, automatically obtained
from optimizations about human data, which form a continuous, multimodel system.

Compared with the preamble work [23] that has been submitted to the IEEE ICRA 2012, this
manuscript provides full development of all the concepts needed for the reader to completely
understand this work. Aside from this fact, the journal version stands out with the following
improvements: (i) Instead of only using one subject’s data, as is performed in the ICRA paper, this
manuscript utilizes the mean human data computed from six subjects, which makes our conclusions
more general and believable. (ii) In the ICRA paper, we did not consider human data for the tran-
sition motions. However, in this manuscript, we consider the human data for the stationary related
transition motions. Readers can notice that when considering human data, the transition behaviors
are more human-like and yield lower angular velocities and thus lower torques. (iii) Compared with
the ICRA paper, we have added standing still and transitions between standing and walking on flat
ground. This makes the collection of motion primitives of the robot more realistic.

2. HUMAN LOCOMOTION DATA

The most prevalent source of information on bipedal robotic walking found in nature is the human
body. This section provides an overview of the analysis and insight obtained through examination
of human walking. Data were collected from three separate experiments in which subjects were
instructed to perform different types of locomotion: walking on flat ground, ascending a stairway,
and descending a stairway. Single step data are isolated from the experiment data via a procedure
termed the domain breakdown for each type of motion of each subject. The extended canonical
function is proposed and shown to universally represent specific kinematic outputs of the human
body for all three motion primitives and four motions transitions considered in this paper.

2.1. Human locomotion experiments

Three experiments, which were performed at different times, were set up for different parts
of data. Flat-ground walking data were collected from the first two experiments. Data of
ascending and descending a stairway were obtained from the third experiment. A total of 15 human
subjects participated in this study; each was outfitted with 19 LED sensors placed at key locations
on the body (as illustrated in Figure 1). As a test subject performs the desired task, data were
collected from these sensors via the Phase Space Motion Capture System.f During the first
and second experiments, test subjects were informed to walk 3 m along a line drawn on
the floor. Each subject repeated the same process 12 times per experiment. In the third experi-
ment, the test subjects were instructed to perform two modes of locomotion: ascending a stairway
and descending a stairway. The stairway used in this experiment has a 0.152 m stair height and
a 0.254 m stair depth. Note that all experiments are carried out by our collaborator motion cap-
ture lab in the University of California at Berkeley with the Institutional Review Board protocol
#2011 — 04 — 3088.

For each subject, data that contain the least noise were used in the computation of kinematic out-
puts. Here, the ‘noisy’ data are mainly from time to time dysfunction of the sensors. An average is
computed of all the subjects’ data for a given output; this average is termed the ‘mean human data’
corresponding to the kinematic output. It is the analysis of this mean human data that forms the
basis of our locomotion controller design.

#Available from: http://www.phasespace.com/ (2011).
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Figure 2. Domain breakdown for walking upstairs.

2.2. Automated domain breakdown

The process by which the start and end of a single step are determined is termed the domain break-
down procedure. Generally, the domain breakdown is obtained through a position threshold that
specifies when the heel or toe is on the ground. However, a new method is proposed here, by uti-
lizing the acceleration data—rather than position—of the heel and toe to determine the single step
interval, which is motivated by noting that the time when heel hits or lifts the ground is the moment
that maximum acceleration occurs. Data of the position and acceleration of a test subject’s heel
during the stair ascending are shown in Figure 2. The peak accelerations are indicated with dashed
vertical lines. The corresponding positions of the heel show the moment of heel strike and lift.

This method is similar to the analysis of ground reaction forces using force plate, which is
common in the biomechanics community [24, 25]. The domain breakdown plays a critical role in
the human-inspired locomotion controller design process; that is, the complete-step time intervals
obtained through the domain breakdown specify the intervals of data over which our function fitting
method is valid, that is, the nominal operation region of our controller.

Copyright © 2013 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2013)
DOI: 10.1002/oca



HUMAN-INSPIRED MOTION PRIMITIVES AND TRANSITIONS

2.3. Extended canonical human function

In [26], it is shown that certain kinematic outputs of human walking can be represented by a
single, universal function termed the ‘canonical human function’—which is the solution to a lin-
ear spring-damper system under constant force. Examination of the data for walking upstairs and
downstairs, however, reveals a need for the augmentation of this function. It is found that walking
upstairs and downstairs, and the transitions between these behaviors and flat-ground walking, can
be represented—with a high degree of accuracy—by the response of a linear spring-mass-damper
system subject to a sinusoidal excitation, which has the form

y=e"8n" (¢ cos(wat) + ¢1 sin(wgt))+go/ w2 +ca(wn, w, L, b) cos(wt)+c3(wy, w, ¢, b) sin(wt),

‘human’=linear spring-mass-damper system ‘environment’ =sinusoidal excitation
ey
where co and ¢; are the initial conditions decided by the initial position y(0) and the initial velocity
¥(0), £ is the damping ratio, w, is the natural frequency, wg = /1 — £2w,, is the damped frequency,
the constant term g is the gravity term, b and w are the amplitude and frequency of the sinusoidal
excitation, respectively; ¢, and c3 are functions of w,, w, &, and b given by

c2 = 2btw)/(w* +2(=1 + 26%) 0?02 + o)), )
c3 = (b(—w? + 02) /(0* +2(~1 + 28w’ 0> + w}). (3)

Manipulation of (1) yields the following simplified form, which we term the ECHF:
ya () = e " (ay cos(ast) + oy sin(ast)) + as cos(ast) + k(er) sin(agt) + a7, 4)

where k(o) = (201506) /(@ + a3 — aZ). Comparing this form with the solution of linear spring-
mass-damper systems, we have «; = £w,, @ = €1, @3 = Wy, A4 = C1, X5 = C3, Qg = W, and
a7 = go/ a),% Note that in the form of (1), the homogenous solution terms and the gravity related
constant correspond to the basic solution of the ‘linear spring-mass-damper’ system of human loco-
motion while the sinusoidal excitation terms are due to the external excitation imparted on the
system by the environment—which is, in this case, the elevation of the walking surface. Moreover,
for the case of walking on flat ground, the sinusoidal excitation terms can be removed, which is the
case discussed in [18]. The reason to execute this manipulation (4) is that the ECHF has a simpler
form that yields efficiency for the optimization problem that will be discussed later.

With the ECHF in hand, it is important to note how the ideas considered in this paper, and the
control approach taken, draw motivation from human walking. The realization of physical human
walking is achieved via a highly sophisticated and complex system—the coordination of the mus-
cular and nervous systems required even for the simple task of taking one step is still not fully
understood. Therefore, rather than trying to understand the complete dynamics of human walking,
we take a control theorist perspective: We view the human walking system as a ‘black box’. In this
light, the problem becomes to find the ‘outputs’ of this black box that characterize the behavior of
the system. By tracking these outputs in a robot, through virtual output constraints, the result is a
robot that displays the same qualitative behaviors as the human despite the differences in dynamics.
Similar approaches have been taken in the robotics community; some of these approaches to note
are the following: polynomial functions used in [27], B-spline functions in [28], and Bezier series
applied in [12, 13]. However, unlike all these functions, the ECHF provides a simpler form (requires
fewer parameters) that appears to characterize all the basic human locomotion primitives (walking,
stair ascending, stair descending, and running [38]). Moreover, another advantage to our approach
over other similar methods (e.g., a 4¢h order polynomial function used in [15]) is the better behav-
ior of the ECHF outside the nominal operation region. As shown in Figure 3, both the ECHF (with
correlation as 0.9934) and the 4¢/ order polynomial function (with the correlation as 0.9875) can fit
the human data very well. However, the 4t/ order polynomial function blows up outside the opera-
tion window immediately and becomes infeasible while the ECHF still remains a reasonable value,
which we claim is very important to give the robot more robustness while handling the external
disturbance. As a robot will always miss the designed right time frame in real world because of the
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Figure 3. Stance knee angle data fit comparison between the extended canonical human function (ECHF)

and the 4t/ order polynomial function outside of the nominal operation region, which is obtained by extend-

ing 20% of the nominal operation region. The superscripts H, E, and P denote the human data, ECHF
fitting, and polynomial fitting, respectively.

environment disturbance and model uncertainty, the behavior outside the nominal region plays a key
role to the stability and robustness of the robot. Evidence of the robustness of using the ECHF on
a physical robot can be seen on AMBER [29]. In the next section, we discuss the specific outputs
chosen to characterize human walking and show that the ECHF represents these certain outputs of
human data with high correlations.

2.4. Human outputs

While analyzing the human data, we seek human outputs that satisfy the specific criteria mentioned
in [18]. A total of four kinematic outputs are required for the fully actuated four-DOF robot model
in consideration. Analysis of the human data yields the following four outputs (seen in Figure 6(c)),
which seem to fully describe the four-DOF analog of the human locomotion system:

1. the linearized forward position of the hip,
5phip = _estc + (_esf — k) Ly,

where L. and L, are the lengths of the calf and thigh, respectively, and 6, s is the stance ankle
angle measured from the vertical line to the calf, which can be seen in Figure 6(a);

2. the hip angle, 8;,, which is the angle measured from stance thigh to nonstance thigh;

3. the stance knee angle 6 ;

4. the nonstance knee angle, 6, .

To calculate the mean human outputs, the following three steps are performed. First, we compute
the kinematic outputs, from human data, of all six subjects considered in this paper. The mass and
length distribution for each subject can be seen in Table I. Second, we determine which subject has
the shortest single step interval, via using the domain breakdown procedure from Section 2.2. Then,
we denote this step interval as the ‘reference step interval’. For all other subjects, we scale all four
kinematic outputs to the reference step interval. Finally, we average the outputs of all six subjects
to obtain the mean human outputs, which can be seen in Figures 4 and 5. Explicitly, fg,us, and
ds correspond to the data of walking on flat ground, upstairs, and downstairs, respectively. And
f — u represents the data of transition from walking on flat ground to walking on upstairs; similar
definition holds for other three terms.

Examination of human locomotion data reveals that the time derivative of linearized hip position
is approximately constant, as seen in Figures 4(a) and 5(a). Thus, we fit the linearized hip position

Copyright © 2013 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2013)
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Table I. Description of each of the subjects.

Subject Age (years) Height (m) Weight (kg) my (kg) my (kg) me (kg) Ly (mm) L. (mm)
S1 30 173 82.5 50.7 7.5 35 45.8 38.5
Sa 30 163 69.5 42.7 6.3 35 39.0 36.6
S3 30 160 65.0 40.0 5.9 2.7 36.8 32.7
S4 26 164 67.5 41.5 6.1 2.8 38.1 36.5
Ss 25 182 92.5 56.9 8.4 3.9 47.1 41.2
Se 25 166 584 359 53 2.5 40.5 38.0
Smean 27.7 168 72.6 44.1 6.5 3.0 41.0 37.5

The subject number is in the left column, and the L, (mm), L;(mm), m. (kg), and m; (kg) measurements
correspond to the lengths described in Figure 6(a). The measurements 7. and m; are calculated according to

the mass distribution in Ref. [30].
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Figure 4. Fitted extended canonical human function and corresponding mean human data of motion

primitives.

with straight line as Sp}”ll ip = Vhipls where vy,;,, is the forward hip velocity. Utilizing the ECHF, the

remaining three desired outputs of a robot can be stated as follows:

d

Ghip(tv ahlp)
d

Gsk(t’ ask)

d
Gnsk (t ’ ansk)

yu(t, apip),
yE (T, o),

yH(t, O5nsk)v

(&)

where, for example, osr = (Xsk.1, sk 2> Usk.3» Usk 4> sk 55 Usk 6> Osk.7) in (4). The parameters of all
the outputs can be combined into a single parameter vector: & = (Vp;p, Qhip, Osk» Onsk) € R?2. By
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Figure 5. Fitted extended canonical human function and corresponding mean human data of motion
transitions.

fitting these functions, via least square fits that yield high correlation coefficients, to corresponding
human data, we claim that the canonical human function accurately describes human walking data.
To determine the parameters for the ECHF, the following optimization is solved:

a™® = argmin Costyp (). (6)
acR22

This optimization problem produces the least square fits (the detailed form of the cost function
can be referred to [18]) of the ECHF to the corresponding human data. The parameters obtained
through this process are given in Table II, together with the correlation of each function to the corre-
sponding set of data. Additionally, the functions for each kinematic constraint and each locomotion
behavior (three motion primitives and four motion transitions) are plotted with the corresponding
human data in Figures 4 and 5. Note that all the correlations are higher than 0.99, which implies that
the ECHF can be fitted to the outputs of all three types of motion primitive and four types of motion

transition universally with a high degree of accuracy.

3. ROBOT MODEL

With the goal to achieve human-like robotic walking, we consider a robotic model with mass and
length parameters as determined by human subject data. To reduce computational complexity, while
preserving the form of the human lower body, we construct the model as a serial chain of rigid
links. Each link / has a length L; and a mass m;, which is a point mass located at a distance r;
from the base of the link. The resulting model configuration is shown in Figure 6(a), while the mass
and length distribution are shown in Figure 6(b). The specific values of these parameters for each
single subject are obtained by applying Winter’s [30] mass and length distribution to the human
test subject. The mass and length of all subjects considered in this paper are averaged to obtain the
parameters of the mean human data model, which can be seen in Table II. The modeling process
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Figure 6. The modeled robot’s configuration, mass and length distribution, and virtual constraints.

Table II. Fitted parameter values for human functions.

yf =at, yg = yg(t) given in (4)
Function ap ap as as as ae az Correlation
sp,{l 5;) 0.934 0 0 0 0 0 0 0.9991
spyt, 0.639 0 0 0 0 0 0 0.9954
sp;fgp 0.546 0 0 0 0 0 0 0.9976
9,{5, 2.675 0.981 6.063 0.937 0 0 —0.353 0.9991
o 2.093 1.192 6.039 0.286 —0.038 12572  —0.353 1.0000
eggp 0.103 0.158 8.167 —0.238 —0.009  22.08 —0.153 0.9999
esf;f 3322 —0.174 13.66 0.040 0 0 0.333 0.9934
6% 4.402 0.787 3.318 0.543 —0.010  16.09 0.236 1.0000
oas 0.548 —10.34 0535  —11.35 —0.065  17.33 10.70 0.9992
078 —0.861  —0.344 10.57 0.046 0 0 0.681 0.9996
e;fsk —2.059 0.276 0.074 1.072 —0.409  10.90 0.407 0.9999
695 2.667 1.264 3.460 2.197 —0.180  13.90 —0.172 0.9998
8pj " 1.085 0 0 0 0 0 0 0.9993
p
szl.‘p’f 0.799 0 0 0 0 0 0 0.9981
Sp}];i:d 0.668 0 0 0 0 0 0 0.9990
sppy’ 0913 0 0 0 0 0 0 0.9996
9,{1.;“ —3.215 0.331 7.876 —0.045 0.087  16.66 0.276 1.0000
9};1.; f 0.444 0.186 1.747 —1.741 0.160 8.610 0.490 1.0000
ehfi:d —0227  —0.102 4.192 —0.697 0.064  13.58 0.495 1.0000
e;jl.;f —2.480  —0.947 1.930 0.041 0.044 1687 1.050 0.9999
es{j” 0.705  —0.191 9.239 0.872 0.140 9.420 0.200 0.9940
es’Hf 3.820 0.514 4.154 0.185 —0.009  17.24 0.261 1.0000
es,jd —1307  —0.556 2.804 0.069 —0.010  22.05 0914 0.9997
ej*f 1.057  —0.703 5.593 1.094 0.611 6.759 0.278 0.9901
6" 0217  —0.473 9.417 —0.021 —0.128  15.81 0.908 0.9999
0" 1.691  —0.335 7.973 —0.265 —0.019 8.197 0.677 0.9999
6’ ;’d 0.919 0.112 8.101 0.574 —0.034  16.88 0.567 1.0000
0% & f 1.301 0.372 10.82 —0.024 —0.106  11.14 0.777 0.9999

considers the common assumptions in the bipedal robot literature [10], which imply the existence
of both continuous and discrete dynamic behaviors that are observed in phases of single support and
double support. Based on the model specifications, the following sections give the derivation of the
dynamics of the system.
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3.1. Continuous dynamics

Given the configuration space Q: ¢ = {0sr; Osk; Onip: Onsk }» using the method of Lagrange with
holonomic constraints, we can obtain the dynamics of the continuous phase as

D(9)§ + H(q.§) + AT ()1 = B(q)u, )

where D(q) and B(q) are the generalized inertia and torque distribution maps, respectively, and
H(q,q) = C(q,9)q + G(q) contains terms resulting from the Coriolis effect and gravity. Note
that, here, B(q)u provides full actuation as modeled, which will be discussed later in Section 4.
A(g) € R¥ is a set of k velocity constraints corresponding to holonomic constraints; A are
Lagrange multipliers that are used to enforce holonomic constraints. The formula of A can be given
with the method from Chapter 6 in [31] as follows:

A= (A9 D@ A@)) T (A@)g + Alg) D™ (B(g)u — H(q,9)))- ®)

Substituting this equation back into (7) leads to the affine control system for the continuous
dynamics, FG:

X = f(q.9) + g(@u, )
where f(q,q) and g(q) are defined as follows:

q 0
f(q.¢)=| D1 (@) (AT (9)O(q)A(9)D ™" (q) = D) ,g(q)=[ -1 4T }
(H(q.4) — AT (9)0(q) A(q)d) D™ (q)(I— A" (9)©(q)A(q)) B(q)

(10)
where, for simplicity, ©(q) = A(q) D~ (q) AT (¢).

In this paper, two types of continuous walking behavior with different dynamic models are con-
sidered. The first type is stationary behavior that contains standing still on flat ground, in which case
both feet are pinned to the ground. The second type is a set of three mobile behaviors, in which case
one leg is pinned to the ground while the other leg swings freely.

3.1.1. Stationary motion primitive. For stationary behavior, Lagrange multipliers are needed to
ensure that the swing foot remains in contact with the ground. Thus, fs(g,q) and gs(q) are defined
with the form given by (10).

3.1.2. Mobile motion primitive. For the mobile behavior, the swing foot is not constrained, that is,
A(g) = 0. Thus, the affine control system of mobile locomotion can be reduced to the following
form:

. q 0
Jm(q.q) = |: D_l(q)H(q,L}) i| . &m(q) = |: D_l(q)B(q) ] . (1)

3.2. Discrete dynamics

With the modeling assumption that the discrete dynamics phase occurs instantaneously, the dynamic
response is modeled as an impact on the system. Specifically, the method of [32] is used to model the
plastic rigid-body impacts as impulse responses. The detailed derivation can be found in Chapter 3
in [10]; thus, it is omitted here for space consideration.

With the assumption of symmetric walking, we use a stance/nonstance notation for the legs. To
effect this statement that the legs be ‘switched’ at impact, and thereby reduce the complexity of the
model, the reset map can be implemented as follows:

Alg.d) = [ Por ¥ } , (12)

where A is the relabeling [18, 33] that switches the stance and nonstance leg at impact, and A
determines the change of velocity due to the impact. Further details can be found in [18].
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4. CONTROLLER DESIGN

The purpose of this section is to specify a controller, u, for the given control system (10). Motivated
by the desire to obtain human-like bipedal robotic locomotion, we seek to construct a controller that
drives the outputs of the robot to the corresponding outputs of the human. Formally, we seek a u,,
that guarantees that y“(q) — yg (t) as t — oo, where y? are the outputs of the robot (computed
via kinematics) and yg are the outputs of the human as represented by the ECHF. As the dynam-
ics of the robot model are highly nonlinear, the natural choice of control method for this system is
feedback linearization [34].

4.1. Parameterization of time

Autonomous control has several advantages for the control of bipedal robots (see [35]). With this
consideration, we introduce a state-based parameterization of time in our system; this is a common
practice in [10, 12]. As shown in Section 2.4, analysis of human data reveals that the linearized for-
ward position of the hip dpj;, evolves in an approximately linear manner with respect to time, that
is, 8ppip(t, vhip) ~ vp;pt. Taking advantage of this observation, the following parameterization of
time is formed:

o, (@) —dpi ()

Vhip

(13)

t(q) =
where §p {fip (g) is the linearized forward position of the hip at the beginning of the current step.

4.2. Controller specification

With the parameterization of time in place, the control law can be defined explicitly with the ECHF
discussed in Section 2. Particularly, we define the (relative degree 2) actual outputs of the robot to be
the output functions considered in Section 2 and the desired outputs to be the outputs of the human
as represented by the ECHF but with parameterized time 7(q):
Onip 01, (T(@)s hip)
Y@ =| Ou |. V@ =| 04((@.om) |- (14)
0
nsk e,fsk (T(Q)vansk)

Similarly, with the goal of controlling the velocity of the robot, we define the relative degree 1
outputs to be the velocity of the hip and the desired velocity of the hip:
Yi(@.9) = d8pnip(@)q. Via = Vhip. (15)

The goal is for the outputs of the robot to agree with the outputs of the human, motivating the final
form of the human-inspired outputs to be used in feedback linearization:

) — yl,a(q’q‘) 1 _[ yil(q’q.)_vhip j| 16
Yeld-d) [ V2.0(9) V5@ = v4a@) | (10)
Therefore, the feedback linearization controller, 14 (g, ¢), can now be stated as follows:

el 0 | Lfyia(g.q) £y1.0(4.9)
Ua(q.q) = =Aq (”)([ LiLsyaa(a,d) | +[ 26L 1 v2.0(4.4) }*[ )20 (q) D
(17)

with control gain ¢ and decoupling matrix .A4(q, ¢) given by

o Lgyl,a(q’q.)
Au(q.q) = [ LgLfyz,a(q’q) ]

Because of the criterion that the outputs should be mutually exclusive [18], the decoupling matrix
is guaranteed to be nonsingular. It follows that for a control gain ¢ > 0, the control law u, renders
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the outputs exponentially stable [34]. That is, the outputs of the robot converge to the ECHF expo-
nentially. Note that because the parameters « are so important and change for each motion primitive,
we explicitly define the controller u, and desired output functions yg corresponding to . The goal
of Section 6 will be to determine the parameters, «, of this control law to achieve different walking
behaviors based upon the human data.

5. HYBRID AND META-HYBRID SYSTEMS

In this section, it is shown that primary modes of bipedal locomotion—such as walking, standing,
and traversing stairways—can each be represented by a unique hybrid control system. However,
control of functional bipedal robots requires dominion over multiple primary modes of locomotion.
Therefore, to develop a functional locomotion control scheme, one must introduce auxiliary hybrid
systems, which evolve the state of the robot during transitions between primary modes. To this
end, we propose the concept of a meta-hybrid system, which consists of both primary and auxiliary
hybrid systems formally merged together in a way that allows for the motion planning through both
motion primitives and motion transitions.

5.1. Hybrid system for the biped

Given the Lagrangian and impact dynamics of the robot model in Section 3, a natural choice of
mathematical representation for this model is a hybrid system [18], which exhibits both continuous
and discrete dynamics. Formally, we begin by writing the hybrid control system for the robot as

G = (DR SR AR fR R UR), (18)

which depends on a unilateral constraint function, %, representing the ferrain of the hybrid system.
The superscript R denotes that the following notations are for the robot in this paper particularly.
Specifically, £ is the height of the nonstance foot above the walking surface, for example, a staircase
or level ground, and % characterizes the allowable configuration, that is, the domain. With both feet
on flat ground, the stationary behavior domain is defined as follows:

. oh .
Dy, = {(q,q)GTQ:hs(q)=Oand %qﬂ}. (19)
Similarly, the domain of mobile behaviors can be stated as follows:
DR ={(¢.9) € TQ: hm(q) = 0}. (20)

The guard is the boundary of the domain with the additional assumption that the unilateral constraint
is decreasing, as stated as follows:

dh(q)

SR = {(q,c})eTQ:h(q)=0and Q<o}. 1)

The remaining elements are specified by the dynamics of the robot; that is, they are intrinsic to the
model and consistent for all hybrid system representations of the robot, yet they are independent of
the terrain. These elements are given by

o AR s the reset map, corresponding to the impact equations as defined in (12),
o UR =R*, as we assume full control authority.

Applying the human-inspired feedback control law u(g, ¢) as defined in (17), we have the hybrid
system as

AR = (DR.SKAR 1), (22)
with £.R(q,9) = fR(q.9) + gR(@Qualq.q).
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Note that, as stated in Section 3.1, we have different ( f R, gR) with respect to the domains, that
is, the types of motion primitive. Therefore, with different domains and ( /&, g®), we define the
different types of hybrid control system as %}52) with i = s or m corresponding to the stationary
motion primitive or mobile motion primitives. The more detailed explanation about the notations

can be referred to Table III and IV.

For each type of hybrid system, we have made the dependence of faR on the parameters o € R??
of the human walking functions explicitly (note that faR also depends on the control gain €, but
because the same gain will be used in all cases for the robot, it is not explicitly stated). The end
result of the modeling process is that two different types of hybrid system are defined based on
the types of motion primitive. Specifically, for each type of motion, a hybrid system %”(;zi) that
depends on the type of behavior (through i = s or m), the terrain it is walking on (through /), and
the parameters of the human-inspired control « has been defined.

Table III. Definition of primary symbols.

Osr Stance ankle angle
Onip Nonstance hip angle
Osk Stance knee angle
Onsk Nonstance knee angle

o Parameter vector

q Body coordinates of the robot
8phip Linearized forward hip position
Vhip Desired forward velocity of the hip
v () Extended canonical human function
L Lagrangian equation

Agq Holonomic constraints matrix

Torque distribution matrix

IIE=TQATRAI Y
oq

Domain of hybrid system
Switching surface of hybrid system
Affine control system of hybrid system
Set of admissible control

State space

Poincaré map

Poincaré section

Directed graph

Set of vertices

Set of edges

Full zero dynamics surface

Partial zero dynamics surface

B

U Feedback controller FHZD Full hybrid zero dynamics surface

D Inertial matrix PHZD Partial hybrid zero dynamics surface

C Coriolis matrix TQ Tangent space of the configuration space Q

Q Configuration space M Collection of motion primitives

Tq Parameterized time w.r.t q T Collection of motion transitions

v1(g,q) Output of relative degree one MA Meta-hybrid system

v2(q) Outputs of relative degree 2 HE Hybrid control system

v(q,q)  Grouped outputs with different I Hybrid system

relative degrees
Ag State relabeling matrix (@), 19(05)) Point on the intersection of the FHZD surface
and the guard
Ay Velocity relabeling procedure (I q;v) Fixed point of specified motion primitive v
with control gain €
€ Controller gain A(g,q) Decoupling matrix
Table IV. Definition of superscript and subscript symbols.
Superscript symbols Subscript symbols

NR Notation for robot Ny Notation for motion primitives. v € {ss, fg,us,ds}

N4 Notation for actual outputs Ne Notation for motion transitions. e € {(ss, fg),
(f8.55), (f&.us). (us, 8).(fg.ds).(ds, f8)}

N4 Notation for desired outputs Ngy Notation w.r.t specified o

NH Notation for human data or outputs Nj Notation w.r.t specified guard &

N* Optimized parameter Niar(ey Target motion primitive for motion transition e

N/ =% Transition from flat ground to upstairs  Ngg,(¢) Source motion primitive for motion transition e

(other similar notations have similar
meaning)
N Mobile related locomotion NS stationary related locomotion

N stands for any primary notation that appeared in Table III. For example, ) stands for the optimized parameter

of motion transition e.
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5.2. Meta-hybrid systems

A meta-hybrid system is a hybrid system of hybrid systems, which contains multiple locomotion
behaviors and transitions between these behaviors.

Definition 1
A meta-hybrid system is a tuple,

%% == (Fa %5 y)s
where

o I' = (V,E) is a directed graph, with V' as a set of vertices, or nodes, and £ C Q x Q a set
of edges; for e = (¢,q’) € E, denote the source of e by sor(e) = ¢ and the target of e by
tar(e) = ¢’.

o { My }vey is a collection of motion primitives, each represented by a hybrid system:

%v - (Dv’Sv’ Av, fv)
o {T,}eck is a collection of motion transitions, represented by hybrid systems of the form:

% = (Dtar(e), 'Star(e)a Atar(e’:‘)’ fE)-

That is, 7, has the same domain, guard, and reset map as .#,(¢) but has a different vector field

Je-

5.2.1. Hybrid period orbits and the Poincaré map. In order to establish the stability of k-periodic
orbits, we will use the standard technique of studying the corresponding Poincaré map. In particular,
taking G to be the Poincaré section, one obtains the Poincaré map, P : G — G, which is a partial
map defined by

P(z) = c(1(2)),

where c¢(¢) is the solution to X = f(x) with ¢(0) = R(z) and t(z) is the time-to-impact function.
In particular, if z* is a k- with defining z* as the k-fixed point of P (under suitable assumptions on
z*, G, and the transversally of O and G) a k-periodic orbit O with z* € O is locally exponentially
stable if and only if Pk is locally exponentially stable (as a discrete-time dynamical system, Z;1
= P(z;))(the detailed definition can also be seen in [19]). Although it is not possible to explicitly
compute the Poincaré map, one can compute a numerical approximation of this map through simu-
lation and thereby test its stability numerically. This gives a concrete method for practically testing
the stability of periodic orbits.

In this paper, we consider a Poincaré map for hybrid systems (e.g., a meta-hybrid system) that are
no longer ‘simple’—meaning that they exhibit multidomain, that is, more than one type of impact
will happen. The stability of a hybrid system that undergoes sequences of different domains has been
discussed in detail in [36]. Particularly, a periodic orbit can be constructed transversally; therefore,
a nontrivial Poincaré map can be computed explicitly to numerically prove the stability of a mul-
tidomain hybrid system. Here, the robot will evolve through three motion primitives and two motion
transitions, which will incur five impacts for one periodic orbit. Numerical approximations of the
eigenvalues of the Poincaré map for the meta-hybrid system are obtained by simulating the system,
from one motion primitive, through a motion transition, to the next motion primitive. The meta-
hybrid system is deemed stable if for every motion primitive—motion transition—-motion primitive
cycle, the eigenvalues have a magnitude less than unity.

6. MOTION PRIMITIVES AND TRANSITIONS

In this section, we will explicitly construct a meta-hybrid system for a bipedal robot, with the
motion primitives and transitions between these behaviors. Following this construction, the exe-
cution of this meta-hybrid system will be introduced. The resulting behavior displayed by the robot,
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while performing these transitions and motion primitives, will be shown via results from simulation.
Formally, the goal of this section is to construct a meta-hybrid system for the bipedal robot:

MAR =R, R, TR

With the four motion primitives, standing still on flat ground s, walking on flat ground fg, upstairs
us, and downstairs ds, we have the directed graph TR = (VR ER), where

VR = {ss, fg,us,ds},
ER = {(ss. f2).(fg.51p). (fg.us), (us, £2). (fg.ds). (ds, fg)}.

Note that the transitions between standing still on flat ground to going upstairs or downstairs and
the transitions between going upstairs and downstairs are not considered in this work for the sake of
simplicity, but the methods outlined in this paper could still be applied. The total graph T'® can be
seen in Figure 7. The remainder of this section will be devoted to constructing the motion primitives
and motion transitions.

6.1. Motion primitives

Motion primitives are the core modes of locomotion of this study; this section discusses the devel-
opment of controllers for motion primitives and the simulations resulting from the application of
these controllers to the robot model.

6.1.1. Motion primitive collection. Using the concepts developed throughout this paper, we can
now construct mathematical representations of a bipedal robot conducting each of the four different
motion primitives of interest. In particular, we can model the robot in different domains as follows:

e standing still on flat ground: j‘fh )’ where hgs(q) =0,

walking on flat ground.: (}Iff o) where h 7o (q) = Znsr (q),

walking upstairs: %”h a Y where hy5(q) = Znsf (@) — Zstair

walking downstairs: i%”(hdsyads), where hgs(q) = Znsr (q) + Zstair-

The superscript s of %” corresponds to the stationary motion primitive with the affine control
system defined by (10) in Wthh the holonomic constraints are enforced and the domain is defined
by (19). Similarly, the mobile motion primitives are denoted with superscript m with the control

Figure 7. Meta-system representation for the four motion primitives in consideration.
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system defined by (11) and the domain defined by (20). To effect these behaviors on the robot, it is
necessary to design controllers for each motion primitive, that is, determine the control parameters
oy, v € VR which will result in stable walking for the robot in each domain.

6.1.2. Controller development. Because of the differences between the two groups of motion
primitives, we introduce two different methods of obtaining the control parameters o, v € V&,

Stationary motion primitive. For the stand still motion primitive, holonomic constraints and
Lagrange multipliers are introduced to ensure that both feet are pinned to the ground while the angles
and the velocities of the system are driven to zero. A time-based tracking controller, therefore, is
constructed for the stationary motion primitive.

Mobile motion primitives. The goal of this section is to discuss the main result of this paper;
that is, starting from human data directly, through an optimization algorithm, which is subject to
specific constraints, we obtain control parameters o, v € VR for all three mobile motion prim-
itives. These control parameters guarantee stable walking while simultaneously achieving a high
degree correlation fit to the human data. This methodology has been discussed in [18] for the case
of flat-ground walking. Here, we extend the methodology to all the three mobile motion primitives.
We also show that, with reasonable modifications to this methodology, we can achieve remarkable
results for motion transitions—a topic that will be discussed in later sections.

6.1.3. Partial hybrid zero dynamics. As discussed in Section 4, the goal of the control law uy (17)
is to drive the human-inspired output y,(¢q,¢) — 0 exponentially at a rate of €. Therefore, for the
continuous dynamics, the controller renders the full zero dynamics surface:

FZy ={(q.9) € TQR:Ya(q.4) =0, Lsyy24(q)=0}. (23)

While this surface is invariant for continuous dynamics, however, this is not the case for discrete
dynamics. In particular, the discrete impacts in the system cause the state to be ‘thrown’ off of
the zero dynamics surface. Therefore, a hybrid system has full hybrid zero dynamics if the zero
dynamics are invariant through impact: AR(SR NFZ,) C FZ, [18].

While the realization of FHZD renders many ‘nice’ properties for the system, it is quite difficult
in the case of bipedal robotic walking because it would force the highly nonlinear hybrid system to
evolve on a 1D manifold. Therefore, we seek to enforce zero dynamics only for the relative degree
2 outputs. We refer to this as the partial zero dynamics surface, given by

PZy, =1{(q.9) € TOR :y24(q) =0, L s, y24(q) =0}. (24)

Particularly, we can define the PHZD as AR(SRNFZ,) C PZ,. The consideration of this modifica-
tion is that PHZD allows some ‘freedom’ in the movement of the system to account for differences
between the robot model and human. Moreover, because the only output that is not included in
the partial zero dynamics surface is the output that forces the forward hip velocity to be constant,
enforcing PHZD simply means that we allow the velocity of the hip to compensate for the shocks
in the system due to impact. After constraining the system on the PHZD surface invariantly through
impact, we will achieve a system evolving with a 2D zero dynamics manifold that is determined by
the parameters o only. Note that the PHZD surface is consistent for all three mobile motion primi-
tives; thus, the conclusion obtained in [19] for walking on flat ground also applies for the remaining
two motion primitives.

6.1.4. Human-inspired optimization. With the PHZD in mind, the goal to develop the controller
becomes to find parameters «; that solve the following constrained optimization problem:

a = argmin Costyp (o) (25)
ayeR22
st AR(SR NFZy,) CPZy,, (PHZD)
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with Costyp being the same as that in (6) and v € {fg,us,ds}. This is simply the optimization
problem in (6) that is used to determine the parameters of the ECHF to give the best fit of the human
walking functions to the human output data of three motion primitives but subject to constraints
that ensure PHZD. Note that S ,fi are different for different motion primitives. This method can be
applied to all three mobile motion primitives; the only difference is the height above the walking
surface hy, that is, the guard.

In order to solve (25) explicitly, we restate the PHZD constraints with applying the inverse kine-
matics methodology discussed in [18] in such a way that it can be practically solved. Specifically,
because of the formula of the outputs we choose (all outputs are linear) and the way we parameter-
ize the time, a point (% (oty), Uy (ay)) € FZy, N S fv on the intersection of the full zero dynamics
surface and the switching surface can be explicitly computed in terms of the parameters «, (detail
derivation can be seen in [18]). Therefore, with the notation of partial zero dynamics surface and the
point (9 (), Oy (0ty)), we formally redefine PHZD as the following human-inspired optimization
problem theorem:

Theorem 1
The parameters o solving the constrained optimization problem

o= 22%1112? Costup (ay) (26)

st yaa(Bu(ey) =0 (C1)

dy2.0 (Dot (@) Ay (30 (@) Py (@) = 0 (C2)
A (9 (o)) (@) <0 (C3)

yield hybrid zero dynamics: AR(S iﬁ NFZyx) C PZg:x. Furthermore, if

8Py (D0 (@) = 8% , (Ag93) () o

Vhip,w

T(Du(ay)) =

)

then there exists a constant € > 0 such that for all € > €, the hybrid system %fy’;’l*) has an expo-
et
nentially stable periodic orbit. Moreover, the fixed point of this periodic orbit, (¢;,,¢; ), satisfies

the property that
Jim (g2,.42,) = (Bu (o). do (@), 27)

This theorem follows from a combination of Theorem 1 in [18] and Theorem 2 in [19] but is
extended to the case of different motion primitives. The proof of this theorem is also similar to
the proof in those two papers; because this proof would require the introduction of numerous con-
structions that are not necessary to the rest of the results given in this paper, we will not state
it in explicit detail. The only difference is that for different motion primitives, we have different
guards £, (¢)—which renders the proof, for the most part, unchanged. The proof of the first part of
Theorem 1 is the same as in [18] because PHZD is invariant corresponding to the height guard.
For the proof of the second part, it is similar to the proof of Theorem 2 in [19] but with a constant
shift in the Poincaré map for different motion primitives (different guards); however, these shifts do
not affect the proof of the existence of the fixed point (J, (), ¥y (r))). Note that Theorem 1 does
not guarantee the convergence to the fixed point but ensures the existence of the fixed point if the
optimization problem subject to the PHZD constraints can be solved. It is these special constraints
that guarantee stable walking that are the highlights of this optimization paper. Again, as we know
that these constraints are highly nonlinear, it is difficult (if not impossible) to locate or to identify
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the global minimum. However, we argue that with sufficient small feasibility, we can conclude that
a good solution that guarantees stable walking with PHZD will be found. Feasibility, one of the
outputs of MATLAB built-in function fmincon, denotes the maximum constraint violation.

Now, we can restate the main result of this paper; starting from the human data, through the
inverse kinematics and the parameters obtained from optimization problem (26), we can determine
the fixed points (%, (), Uy ())), where v € { fg,us, ds}, to the stable hybrid periodic orbits of all
three mobile motion primitives. Because the cost function of the optimization problem only depends

AWAWII I B IAWAVAN

(a) Walking on flat ground.
rh r) r} L L ?’ W W h
(b) Walking upstairs.
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(c) Walking downstairs.

Figure 8. Snapshots from robotic locomotion simulations exhibiting the three motion primitives.
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Figure 9. Phase portraits for the motion primitives.
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on the human walking data, we reinforce the fact that we can automatically generate a controller,
which yields a stable walking gait and the fixed point of its stable hybrid periodic orbit, by only
using the human walking data—for all three mobile motion primitives.

6.1.5. Simulation results. Using the results of Theorem 1, which yields the parameters for the
human-inspired controller «;;, along with a fixed point to the Poincaré map, we obtain stable walk-
ing for each motion primitive. Note that the feasibility of each case is less than 1e —10. The resulting
locomotion gaits from simulation are given in Figure 8; these figures show the evolution of the robot
during the single support phase of the gait, each of which qualitatively resembles the corresponding
human gait quite well. The video for each motion primitive can be seen in [37]. The phase portraits
for each motion primitive simulation are shown in Figure 9. The stability of each phase portrait
is numerically verified via numerical approximation of the eigenvalues of the Poincaré map. All
maximum eigenvalues are less than 1 as shown in Figure 10, which implies that the corresponding
motion primitives are stable. Note that during the review process of this paper, we also achieved
bipedal robotic running (with a speed of 2.5 m/s) using the human-inspired optimization with ECHF
(see [38]).

Along with stable walking, the simulation results show that the bipedal model considered in this
paper has achieved human-like walking for each mobile motion primitive. Table V contains the
specific parameters o obtained through the optimization mentioned earlier. The correlations are
all higher than 0.96, which are close to the fitting correlations, and costs from optimization are
low. Plots of the human walking functions with these parameters, as compared with the human
data, can be seen in Figure 11. From the figure and the table, one can conclude that the bipedal
robot considered in this paper, with human-inspired locomotion controller, has achieved qualita-
tively human-like walking. It is also important to note that the velocities after impact for all motion
primitives are below 7 rad/s, which is quite realistic in a physical context.

6.2. Motion transitions

This section discusses the development and simulation of motion transitions, which are explicitly
built upon the motion primitives obtained in the previous section.

6.2.1. Motion transition collection. We are interested in developing motion primitives based upon
the meta-hybrid system graph I'®, which gives the allowable transitions between different walking
behaviors. Based upon the definition of a meta-hybrid system (Definition 1), the motion transitions
must satisfy very specific conditions with regard to the motion primitives. Therefore, the specific
motion transition hybrid systems we are interested in must have the form

o standing still to walking on flat ground: jﬁllffg,a(”,fg))’ where h £4(q) = Znsr (q):

o walking on flat ground to stand still: %”(}If’s A foss)’ where /45(q) = 0;
58 %(fg.ss

e walking on flat ground to upstairs: jﬁfﬁa(fg )’ where hy5(q) = Znsf (@) — Zstairs

R.m

hygus, 1))’
R.m
(hasa(rg.as)’

o walking upstairs to flat ground: where /1 4 (q) = 257 (q);

e walking on flat ground to downstairs: where hgs(q) = Znsr (q) + Zstair;

e walking downstairs to flat ground: f%”(;la:: s re)’ where /1 £, (q) = Znsr (q)-

FG-SS-FG
FG-DS-FG
FG-US-FG ) ) )

|
|
|
|
|
|
1
0 0.2 0.4 0.6 0.8 1
Eigenvalue Magnitude

Figure 10. Eigenvalues of motions.
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Table V. Optimized parameter values and cost for human functions.

y{=ait, y§=yp(t)givenin (4)

Function ay a as as as ae az Correlation  Cost
81)1{5; 0.925 0 0 0 0 0 0 0.9991 *
9}{;’; —1.941 0.320 5.865 —0.109 0 0 0.267 0.9958 *
es;;cg 4.852 —0.223 12.01 0.125 0 0 0.323 0.9787 *
Gnsi —0.617 —0.330 9.381 0.209 0 0 0.649 0.9948 1.179
SPpr 0.623 0 0 0 0 0 0 0.9985 *
G;I‘l.sp 3.790 1.428 5.942 1.090 0.025  20.87 —0.648 0.9993 *
9;‘,5 6.409 0.772 2.059 3.175 0.007 9.191 0.203 0.9956 *
9,’:5} —3.037 0.292 2.842 0.200 —0.267 12.01 0.274 0.9987 0.868
Sphl.sp 0.535 0 0 0 0 0 0 0.9981 *
Ggisp 3.658 —1.926 0.246  —7.356 0.320 4.766 1.541 0.9656 *
Gsds 0.296  —10.727 0.484 —5320 —0.102 17.57 10.98 0.9830 *
Gnss 6.960 —0.547 11.31 —0.870 0.586 7.978 0.964 0.9956 2.817
Sphl._)u 0.760 0 0 0 0 0 0 0.9993 *
p
thi;u —-3.014 0.196 4825 —0.126 0.284 11.12 0.106 0.9984 *
Qs;;c_)u 0.841 —0.148 6.676 1.062 0.082 6.822 0.167 0.9091 *
QnS:u 1.367 —0.602 10.02 0.069 0.009 15.93 0911 0.9991 3.113
apzl.‘p’f 0.774 0 0 0 0 0 0 0.9981 *
GZ;f 0.854 0.828 4.000 —0.410 0.095 10.01 —0.118 0.9999 *
Qu_)f 2.455 0.498 2.063 —1.113 0.011 24.18 0.474 0.9822 *

gu>/ 0.852 —0.163 6.802 1.067  —0.000 6.855 0.462 0.9931 2.000

Sp,{i;’d 0.730 0 0 0 0 0 0 0.9990 *
6777 —1568 0138 4988 —0212 0216 1227 0232 0944
es}"d 0239 6709 0235 1574 0126 1372  —6735 09382  *
/7% 0587 6138 0482 9738 0257 1632  —546 04249 1022
spp’ 0730 0 0 0 0 0 0 09996
op>)  —0M7 0731 4147 1574 0977 1405 —1772 09302
esj("f —0060 —9.575 0273 4584 0062 1748 9661 02506  *
0 0560 2269 6766 2642 —1386 6518 0949 09396 1166

Note that, the cost is the combination cost of all the four outputs. The asterisk indicates that the cost of each
individual output is not available here but will be sent upon request.

Because we have two types of motion primitives, the methodology to determine the control
parameters «), e € E corresponding to different transitions will be different. Therefore, we
separate the six motion transitions into two groups: the first group contains two motion tran-
sitions related to the stand still motion primitive, which are %”R’_S -, and e _ ;

.. . . (hrg.0ss.7g) (hss.( rg.s5))
the remaining four motion transitions belong to the second group. We name the first group as
‘stationary related motion transitions’ and the second group as ‘mobile related motion transitions’.
In the following section, we discuss the optimization problems through which the motion transitions

are obtained.

6.2.2. Controller development. Motion transitions connect two different motion primitives. There-
fore, we have to take both the source and target motion primitives into consideration while we are
constructing optimizations for motion transitions.

Stationary related motion transitions. To determine the parameters «), e € E, of the stationary
related motion transitions, we use the fixed points corresponding to motion primitives of standing
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Figure 11. Optimized extended canonical human functions with parameters obtained by solving the
optimization problem (6) and the corresponding mean human data of three motion primitives.

still on flat ground and flat-ground walking. In particular, (9, («)), Dy (ay) esS Rv ,v e VE (here,
v € {ss, fg}) are the fixed points of each motion primitive, which are computed via Theorem 1
in closed form. The second main result of this paper can now be stated: Because we can explicitly
compute the fixed points of periodic orbits of all three mobile motion primitives with Theorem 1,
we propose that utilizing the fixed points obtained earlier in an optimization problem can also ren-
der the parameters of controllers for motion transitions. At a high level, the goal of the motion
transition optimization is to generate desired output functions, which effect smooth connections, or
‘transitions’, between the corresponding source and the target motion primitives. Formally, these
objectives can be stated in an optimization problem:

of = argmin ([|(Fy(@e), De(@e)) = (Brar(€) (@ iy(e))> Diarte) ooy )

acR22

st y4,.(0)— yg»a;‘o,(e> ©0)=0 (28)

Va0 = V54r  (0)=0,

where, here, yg e (t) are the desired relative degree 2 outputs of the robot with parameters o,;

at);r(e) and a:‘m(e) are the optimized parameters of the target and source motion primitives, ,///tﬁ(e)

and §r(e), respectively. They are obtained explicitly by solving the optimization problem (26),
and (ﬁtar(e)(a;r( e)), ﬁtar(e) (at’;r( e))) is the fixed point of target motion primitive. Note that, here,

tar(e),sor(e) € {ss, fg}. (Fe(ce), 15(3(053)) is the pre-impact point of the end of the transition,
which is the point at the intersection of the full zero dynamics surface of the transition and the guard
of the target motion primitive (thus, this point can be computed via the methodology of inverse
kinematics). Through the cost function, we enforce the end point of the transition to be as close to
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the fixed point of the target motion primitive as possible, while constraining the transition to start
with the fixed point of the source motion primitive. Some augmentation constraints, such as angle
limits, have been added to ensure that the transition behavior is as human-like as possible. Solving
this optimization renders the parameters ) for the two stationary motion transitions.

Mobile related motion transitions. To generate the parameters o), ¢ € E, of the mobile related
motion transitions, we turn to a different approach. As we have the human data for these four motion
transitions, we use the same cost function as in (6) with the constraints corresponding to the target
and source motion primitives. The problem can be stated as

. .
«, = argmin Costyp(ce)
acR22

s.t yiae 0) — yj,a:m(e) 0)=0

a0 = ¥5gr  (0)=0

d d 29
y2,0le (‘Cae,a;kar(e), (X;(or(e)) _yzva;kar(e) (Tag’a;kar(e), a:or(e)) = 0 ( )

5d * * -d * * _
V2., (‘Cae ’ atar(e)’ asor(e)) - y2,at*ar(€) (Tae ’ atar(e)’ asor(e)) =0

Sp}lfip (ﬁtar(e) (a;kar(e))) - Sp}lfip (Aq ﬁsor(e) (a;kor(e)))

* —
Tae» O{tar(e)’ asor(e) - .
Vhip.e

where the elements are the same as those in (28) except that zar(e),sor(e) € {fg,us,ds};
Costyp (o) is the cost givenin (6) and e € E R Note that Tae» ozt* ar(e)’ a:o r(e) is an approximation of
the transition time interval, which is computed with the assumption that the hip velocity of the tran-
sition behavior is constant—examination of human data for the hip position, given in Figure 5(a),
reveals that this assumption is reasonable. Sp,ﬁp(ﬁ,a,(e)(a:ar(e))) and Splﬁp(Aqﬁwr(e)(a;"or(e)))
are the pre-impact hip position of target motion primitive and the post-impact hip position of source
motion primitive, respectively. And vj;p . is the actual hip velocity of the specified motion tran-
sition. The optimization here constrains both the start and end points of transitions to be the fixed
points of source and target modes, respectively. From a geometric view, we can interpret this process
as constructing a topology transformation going smoothly from one convex invariant set to another
convex invariant set. By solving this optimization problem, we obtain parameters ¢ for all four
motion transitions.

In this framework, the motion transitions play an important role in the motion planning of the
robot, that is, switching between different motion primitives. Rather than switching directly between
different motion primitives (ZMP is used in [39], whereas central pattern generator is used [40]),
we utilize the motion transition as a ‘buffer’ to connect the fixed point of each motion primitive to
ensure the stability of system while switching. One main advantage of the introduction of motion
transitions is that the system can deal with big variation of the terrain with the guarantee of good
stability. Another advantage is that the motion transition generates smooth human-like switching
process without using high gain and would not generate torque spikes.

This approach is different from funneling work [41], in which the controllable state space is cov-
ered with the regions of attraction from many locally stabilizing controllers to ensure robustness of
the transitions. Therefore, the motion planning can be considered as switching between different
funnels that, for example, can be computed numerically using the method in [42]. Compared with
all the pioneering funneling works [41, 43, 44], we focus more on constructing a directed graph
consisting nodes (motion primitives) and edges (motion transitions) instead of building funnels.
Then, the motion can be planned in the directed graph through switching among the designed nodes
via the corresponding edges. Because the motion transitions are optimized in such a way that the
fixed point of motion primitives, which are asymptotically stable, can be connected directly and
smoothly, the stability of the motion planning can be guaranteed naturally. Particularly, the numer-
ical method of Poincaré map is used to prove the stability of the transition behaviors, which will
be discussed later.
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Note that, as in the case of the optimization for PHZD, we only constrain the relative degree 2
outputs. Thus, some ‘freedom’ is given to the robot to compensate for the differences between the
robot and the physical human body. Solving these two optimization problems yields parameters o,
e € ER; therefore, yields the motion transition hybrid system: .7, = %ﬁ(;f”( ) with e € ER and

tar(e)- e
i €{s,m}.

6.2.3. Simulations results. For the mobile related motion transitions, the simulation results show
that the robot considered in this paper achieves human-like motion transitions. Table V contains
the specific o) obtained through the optimization for each mobile related motion transition. The
correlations of transitions related to going upstairs are all higher than 0.98, and the costs are on par
with the costs of the motion primitives. For the transitions corresponding to going downstairs, the
correlations are still high (higher than 0.93) except for one output. This could be related to the fact
that the experimental human data of going downstairs contain a relatively high amount of noise.
Plots of the human walking functions with these parameters, as compared with human data, can be
seen in Figure 12.

Three simulations were performed in which motion primitives and motion transitions were com-
bined. To construct a Poincaré map, and thus establish a notion of the stability of a meta-system,
the biped must start and end in the same mode; therefore, we chose to simulate three locomotion
cycles: walking on flat ground to stand still to walking on flat ground (FG-SS-FG), walking on flat
ground to walking upstairs to walking on flat ground (FG-US-FG), and walking on flat ground to
walking down stairs to walking on flat ground (FG-DS-FG). Numerical approximation yields eigen-
values for all three simulations; the maximum eigenvalue of each is below unity, which implies that
all three meta-systems are stable. The phase portraits of these three meta-systems can be seen in
Figure 13, from which it can be seen that all velocities after impact for all three meta-systems

e) =
= £
o =
2 @
& <
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Time (s) Time (s)
H,f— H,u— f H,f—d H,d—f H,f— H,u— f H,f—d H.d— f
O Opy;p Y0 I, o opyp <4 Opyg, o by, Yo Oy, o Oy <4 Oy
S —u 5 a,u—f 5 a,f—d 5 a,d— f ga,fﬂu 0(1,'u~>f eu.fﬁd ea.daf
— Phip Phip hip hip hip hip hip — Uhip

Angle (rad)
Angle (rad)

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 05
Time (s) Time (s)
H, Hou—s | H,f—d H,d— f H, Hu—s f H,f—d H,d— f
° ‘9sk;Hu o 0" ; a eskf ; < eskd ; ° ensfljgﬁu ¢ O ; g ansfl_c . < ans(éc ;
a,f—ru a,u— a,f— a,d— a,f—u a,u— a,f— a,d—
ask gsk osk osk ansk ansk ensk ensk
(c) Optimized stance knee angle of mean data (d) Optimized nonstance knee angle of mean data

Figure 12. Optimized extended canonical human functions with parameters obtained by solving the
optimization problem (6) and the corresponding mean human data of four motion transitions.
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Figure 13. Phase portraits for the combination of motion primitives and motion transitions.

Figure 14. Snapshots from the simulated composition of multiple locomotion modes.

are below 10 rad/s, which is reasonably feasible in practice. Finally, we simulated all four motion
primitives together with the six motion transitions; snapshots from the simulation can be seen in
Figure 14. And the detailed video that shows the whole process can be seen in [37].
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