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Abstract. In this paper, we consider hybrid models of mechanical sys-
tems undergoing impacts — Lagrangian hybrid systems, and study their
periodic orbits in the presence of Zeno behavior, where an infinite se-
quence of impacts converges in finite time. The main result of this paper
is explicit conditions under which the existence of stable periodic orbits
for a Lagrangian hybrid system with perfectly plastic impacts implies the
existence of periodic orbits in the same system with non-plastic impacts.
Such periodic orbits contain phases of constrained and unconstrained
motion, and the transition between them necessarily involves Zeno be-
havior. The result is practically useful for a wide range of unilaterally
constrained mechanical systems under cyclic motion, as demonstrated
through the example of a double pendulum with a mechanical stop.

1 Introduction

Periodic orbits play a fundamental role in the design and analysis of hybrid
systems modeling a myriad of applications ranging from biological systems to
chemical processes to robotics [25]. To provide a concrete example, bipedal robots
are naturally modeled by hybrid systems [8, 13]. The entire process of obtaining
walking gaits for bipedal robots can be viewed simply as designing control laws
that create stable periodic orbits in a specific hybrid system. This is a theme
that is repeated throughout the various applications of hybrid systems [12].

In order to better understand the role that periodic orbits play in hybrid sys-
tems, we must first restrict our attention to hybrid systems that model a wide
range of physical systems but are simple enough to be amenable to analysis. In
this light, we consider Lagrangian hybrid systems modeling mechanical systems
undergoing impacts; systems of this form have a rich history and are useful in
a wide-variety of applications [5, 20, 26]. In particular, a hybrid Lagrangian con-
sists of a configuration space, a Lagrangian modeling a mechanical systems, and
a unilateral constraint function that gives the set of admissible configurations
for this system. When the system’s configuration reaches the boundary of its



admissible region, the system undergoes an impact event, resulting in discontin-
uous velocity jump. The benefit of studying systems of this form is that they
often display Zeno behavior (when an infinite number of impacts occur in a fi-
nite amount of time), so they give an ideal class of systems in which to gain an
intuitive understanding of Zeno behavior and its relationship to periodic orbits
in hybrid systems, which is the main focus of this paper.

Before discussing the type of periodic orbits that will be studied in this paper,
we must first explain how one deals with Zeno behavior in Lagrangian hybrid
systems by completing the hybrid model of these systems. Using the special
structure of Lagrangian hybrid systems, the main observation is that points to
which Zeno executions converge—Zeno points—must satisfy constraints imposed
by the unilateral constraint function. These constraints are holonomic in nature,
which implies that after the Zeno point, the hybrid system should switch to a
holonomically constrained dynamical system evolving on the surface of zero level
set of the constraint function. Moreover, if the force constraining the dynamical
system to that surface becomes zero, there should be a switch back to the original
hybrid system. These observations allow one to formally complete a Lagrangian
hybrid system by adding an additional post-Zeno domain of constrained motion
to the system [2, 18].

In this paper, we study periodic orbits for completed Lagrangian hybrid
systems, that pass through both the original and the post-Zeno domains of the
hybrid system. Such periodic orbits are of paramount importance to a wide
variety of applications, e.g., this is the type of orbits one obtains in bipedal
robots. In particular, we begin by considering a simple periodic orbit which is
an orbit that contains a single event of perfectly plastic impact. That is, after
the impact, the system instantly switches to the post-Zeno domain. The key
question is: what happens to a simple periodic orbit when the impacts are not
perfectly plastic? The main result of this paper guarantees existence of a periodic
orbit for completed Lagrangian hybrid system with non-plastic impacts given a
stable periodic for the same system with plastic impacts; moreover, we give
explicit bounds on the degree of plasticity that ensures the existence of such
orbit.

The importance of the main result of this paper lies in the fact that impacts
in mechanical systems are never perfectly plastic, so it is important to understand
what happens to periodic orbits for perfectly plastic impacts in the case of non-
plasticity. Using the example of a bipedal robot with knees [8, 13, 22], the knee
locking (leg straightening) is modeled as a perfectly plastic impact. If one were
to find a walking gait for this biped under this assumption, the main result of
this paper would ensure that there would also be a walking gait in the case when
the knee locking is not perfectly plastic, as would be true in reality. In light of
this example, we conclude the paper by applying the main result of this paper
to a double pendulum with a mechanical stop, which models a single leg of a
bipedal robot with knees.

Both periodic orbits and Zeno behavior have been well-studied in the litera-
ture although they have yet to be studied simultaneously. With regard to Zeno



behavior, it has been studied in the context of mechanical systems in [14, 17]
with results that complement the results of this paper, and studied for other
hybrid models in [6, 10, 21, 23, 27]. Periodic orbits have primarily been studied in
hybrid systems in the context of bipedal locomotion for dynamic walking [8, 9,
15] and running [7], assuming perfectly plastic impacts. The pioneering work in
[4] focuses on design of stable tracking control for cyclic tasks with Zeno behavior
in Lagrangian hybrid systems, assuming that the system is fully actuated, i.e., all
degrees-of-freedom are controlled. Note, however, that this assumption generally
does not hold for locomotion systems, which are essentially underactuated.

2 Lagrangian Hybrid Systems

In this section, we introduce the notion of a hybrid Lagrangian and the associated
Lagrangian hybrid system. Hybrid Lagrangians of this form have been studied
in the context of Zeno behavior and reduction; see [1] and [17]. We begin this
section by reviewing the notion of a simple hybrid system.

Definition 1. A simple hybrid system is a tuple H = (D, G, R, f), where

– D is a smooth manifold called the domain,
– G is an embedded submanifold of D called the guard,
– R is a smooth map R : G → D called the reset map,
– f is a vector field on the manifold D.

Hybrid executions. A hybrid execution of a simple hybrid system H is a
tuple χ = (Λ, I, C), where

– Λ = {0, 1, 2, . . .} ⊆ N is an indexing set.
– I = {Ii}i∈Λ is a hybrid interval where Ii = [ti, ti+1] if i, i + 1 ∈ Λ and

IN−1 = [tN−1, tN ] or [tN−1, tN ) or [tN−1,∞) if |Λ| = N , N finite. Here,
ti, ti+1, tN ∈ IR and ti ≤ ti+1.

– C = {ci}i∈Λ is a collection of integral curves of f , i.e., ċi(t) = f(ci(t)) for
t ∈ Ii, i ∈ Λ,

And the following conditions hold for every i, i + 1 ∈ Λ:

(i) ci(ti+1) ∈ G,
(ii) R(ci(ti+1)) = ci+1(ti+1),
(iii) ti+1 = min{t ∈ Ii : ci(t) ∈ G}.

The initial condition for the hybrid execution is c0(t0).

Lagrangians. Let q ∈ IRn be the configuration of a mechanical system3. In this
paper, we will consider Lagrangians, L : IR2n → IR, describing mechanical, or
robotic, systems, which are Lagrangians of the form L(q, q̇) = 1

2 q̇T M(q)q̇−V (q),

3 For simplicity, we assume that the configuration space is identical to IRn



where M(q) is the (positive definite) inertial matrix, 1
2 q̇T M(q)q̇ is the kinetic

energy and V (q) is the potential energy. We will also consider a control law
u(q, q̇), which is a given smooth function u : IR2n → IRn. In this case, the Euler-
Lagrange equations yield the (unconstrained, controlled) equations of motion for
the system:

M(q)q̈ + C(q, q̇) + N(q) = u(q, q̇), (1)

where C(q, q̇) is the vector of centripetal and Coriolis terms (cf. [16]) and N(q) =
∂V
∂q (q). Defining the state of the system as x = (q, q̇), the Lagrangian vector field,
fL, associated to L takes the familiar form:

ẋ = fL(x) =
(

q̇
M(q)−1(−C(q, q̇)−N(q) + u(q, q̇))

)
. (2)

This process of associating a dynamical system to a Lagrangian will be mirrored
in the setting of hybrid systems. First, we introduce the notion of a hybrid
Lagrangian.

Definition 2. A simple hybrid Lagrangian is defined to be a tuple L = (Q,L, h),
where

– Q is the configuration space (assumed to be identical to IRn),
– L : TQ → IR is a hyperregular Lagrangian,
– h : Q → IR provides a unilateral constraint on the configuration space; we

assume that the zero level set h−1(0) is a smooth manifold.

Simple Lagrangian hybrid systems. For a given Lagrangian, there is an
associated dynamical system. Similarly, given a hybrid Lagrangian L = (Q,L, h)
the simple Lagrangian hybrid system associated to L is the simple hybrid system
HL = (DL, GL, RL, fL). First, we define

DL = {(q, q̇) ∈ TQ : h(q) ≥ 0},
GL = {(q, q̇) ∈ TQ : h(q) = 0 and dh(q)q̇ ≤ 0},

where dh(q) = [∂h
∂q (q)]T = [ ∂h

∂q1
(q) · · · ∂h

∂qn
(q) ]. In this paper, we adopt the reset

map ([5]) RL(q, q̇) = (q, PL(q, q̇)), which is based on the impact equation

PL(q, q̇)= q̇−(1 + e)
dh(q)q̇

dh(q)M(q)−1dh(q)T
M(q)−1dh(q)T, (3)

where 0 ≤ e ≤ 1 is the coefficient of restitution, which is a measure of the energy
dissipated through impact. This reset map corresponds to rigid-body collision
under the assumption of frictionless impact. Examples of more complicated col-
lision laws that account for friction can be found in [5] and [24]. Finally, fL = fL

is the Lagrangian vector field associated to L in (2).



3 Zeno Behavior and Completed Hybrid Systems

In this section we define Zeno behavior in Lagrangian hybrid systems, introduce
the notion of a completed hybrid system ([2, 18]), and define the notions of sim-
ple periodic orbit and Zeno periodic orbit, corresponding to periodic completed
executions under plastic and non-plastic impacts. Then we define the stability
of periodic orbits.

Zeno behavior. A hybrid execution χ is Zeno if Λ = N and limi→∞ ti = t∞ <
∞. Here t∞ is called the Zeno time. If χ is a Zeno execution of a Lagrangian
hybrid system HL, then its Zeno point is defined to be

x∞ = (q∞, q̇∞) = lim
i→∞

ci(ti) = lim
i→∞

(qi(ti), q̇i(ti)).

These limit points essentially lie on the constraint surface in state space, which
is defined by S = {(q, q̇) ∈ IR2n : h(q) = 0 and dh(q)q̇ = 0}.

Constrained dynamical systems. We now define the holonomically con-
strained dynamical system DL associated with the hybrid Lagrangian L. For
such systems, the constrained equations of motion can be obtained from the
equations of motion for the unconstrained system (1), and are given by (cf. [16])

M(q)q̈ + C(q, q̇)q̇ + N(q) = dh(q)T λ + u(q, q̇), (4)

where λ is the Lagrange multiplier which represents the contact force. Differen-
tiating the constraint equation h(q) = 0 twice with respect to time and substi-
tuting the solution for q̈ in (4), the solution for the constraint force λ is obtained
as follows:

λ(q, q̇) =
(
dh(q)M(q)−1dh(q)T

)−1

(
dh(q)M(q)−1(C(q, q̇)q̇ + N(q)− u(q, q̇))− q̇T H(q)q̇

)
.

(5)

From the constrained equations of motion, for x = (q, q̇), we get the vector field

ẋ = f̃L(x) =

(
q̇

M(q)−1(−C(q, q̇)q̇ −N(q) + u(q, q̇) + dh(q)T λ(q, q̇))

)

Note that f̃L defines a vector field on the manifold TQ|h−1(0), from which we
obtain the dynamical system DL = (TQ|h−1(0), f̃L). For this dynamical system,
q(t) slides along the constraint surface S as long as the constraint force λ is
positive.

A constrained execution χ̃ of DL is a pair (Ĩ , c̃) where Ĩ = [t̃0, t̃f ]⊂ IR if t̃f
is finite and Ĩ =[t̃0, t̃f )⊂ IR if t̃f =∞, and c̃ : Ĩ → TQ, with c̃(t)= (q(t), q̇(t)) a
solution to the dynamical system DL satisfying the following properties:

(i) h(q0(t̃0)) = 0,
(ii) dh(q0(t̃0))q̇0(t̃0) = 0,
(iii) λ(q(t̃0), q̇(t̃0)) > 0,

(iv) t̃f = min{t ∈ Ĩ : λ(q(t), q̇(t)) = 0}.
(6)



Fig. 1. A graphical representation of a completed hybrid system.

Using the notation and concepts introduced thus far, we introduce the notion
of a completed hybrid system.

Definition 3. If L is a simple hybrid Lagrangian and HL the corresponding La-
grangian hybrid system, the corresponding completed Lagrangian hybrid system4

is defined to be:

H L :=
{

DL if h(q) = 0 , dh(q)q̇ = 0, and λ(q, q̇) > 0
HL otherwise.

Remarks. The system H L can be viewed simply as a hybrid system with two
domains; in this case, the reset maps are the identity, and the guards are given
as in Fig. 1. Also note that the only way for the transition to be made from the
hybrid system HL to the constrained system DL is if a specific Zeno execution
reaches its Zeno point. Second, a transition for DL to HL happens when the
constraint force λ crosses zero. Finally, it is shown in [18] that the constraint
acceleration ḧ(q, q̇) and the constraint force λ(q, q̇) in (5) satisfy complementarity
relation. That is, while sliding along the constraint surface S, either ḧ = 0 and
λ > 0, corresponding to maintaining constrained motion, or ḧ > 0 and λ = 0,
corresponding to leaving the constraint surface and switching back to the hybrid
system. Thus, the definition of the completed hybrid system is consistent.

The completed execution. Having introduced the notion of a completed
hybrid system, we must introduce the semantics of solutions of systems of this
form. That is, we must introduce the notion of a completed execution.

Definition 4. Given a simple hybrid Lagrangian L and the associated completed
system H L, a completed execution χ is a (possibly infinite) ordered sequence of
alternating constrained and hybrid executions χ = {χ̃(1), χ(2), χ̃(3), χ(4), ...},
4 As was orginally pointed out in [2], this terminology (and notation) is borrowed from

topology, where a metric space can be completed to ensure that “limits exist.”



with χ̃(i) and χ(j) executions of DL and HL, respectively, that satisfy the follow-
ing conditions:

(i) For each pair χ̃(i) and χ(i+1),

t̃
(i)
f = t

(i+1)
0 and c̃(i)(t̃(i)f ) = c

(i+1)
0 (t(i+1)

0 ).

(ii) For each pair χ(i) and χ̃(i+1),

t
(i)
∞ = t̃

(i+1)
0 and c

(i)
∞ = c̃(i+1)(t̃(i+1)

0 ).

where the superscript (i) denotes values corresponding to the ith execution in χ,
and t

(i)
∞ , c

(i)
∞ denote the Zeno time and Zeno point associated with the ith hybrid

execution χ(i).

Periodic orbits of completed hybrid systems. In the special case of plastic
impacts e = 0, a simple periodic orbit is a completed execution χ with initial
condition c̃(1)(0) = x∗ that satisfies c̃(3)(t̃(3)0 ) = x∗. The period of χ is T = t̃

(3)
0 . In

other words, this orbit consists of a constrained execution starting at x∗, followed
by a hybrid (unconstrained) execution which is ended by a single plastic collision
at t = T , that resets the state back to x∗.

For non-plastic impacts e > 0, a Zeno periodic orbit is a completed execution
χ with initial condition c̃(1)(0) = x∗ that satisfies c

(2)
∞ = c̃(3)(t̃(3)0 ) = x∗. The

period of χ is T = t
(2)
∞ = t̃

(3)
0 . In other words, this orbit consists of a constrained

execution starting at x∗, followed by a Zeno execution with infinite number of
non-plastic impacts, which converges in finite time back to x∗.

Stability of hybrid periodic orbits. We now define the stability of hybrid
periodic orbits.

Definition 5. A Zeno (or simple) periodic orbit χ = {χ̃(1), χ(2), χ̃(3), χ(4), ...}
with initial condition x∗ ∈ S is locally exponentially stable if there exist a
neighborhood U ⊂ S of x∗ and a scalar γ ∈ (0, 1) such that for any ini-
tial condition x0 = c̃(1)(0) ∈ U , the resulting completed execution satisfies
‖c̃(2k+1)(t̃(2k+1)

0 )− x∗‖ ≤ ‖x0 − x∗‖γk for k = 1, 2, . . ..

Choice of coordinates. In the rest of this paper, we assume that the general-
ized coordinates contain the constraint function h as a coordinate, i.e. q = (z, h).
This assumption is quite general, since a transformation to such coordinate set
must exist, at least locally, due to the regularity of h(q). The state of the sys-
tem thus takes the form x = (z, h, ż, ḣ) ∈ IR2n. When the coordinates take this
special form, the reset map (3) simplifies to

PL(q, q̇) =
(

ż − (1 + e)ḣη(z)
−eḣ

)
, where η(z) =

[M−1(q)]1...n−1,n

[M−1(q)]n,n

∣∣∣∣
h=0

. (7)

The instantaneous solution for the accelerations q̈ in (1) is given by

q̈(q, q̇) = (z̈(q, q̇), ḧ(q, q̇)) = M(q)−1 (u(q, q̇)− C(q, q̇)−N(q)) . (8)



4 Main Result

In this section we present the main result of this paper, namely, conditions under
which the existence and stability of a simple periodic orbit imply existence of a
Zeno periodic orbit.

4.1 Statement of Main Result

Before stating this result, some preliminary setup is needed. We can write x∗ =
(z∗, 0, ż∗, 0), and define three types of neighborhoods of x∗ in three different
subspaces of IR2n. For ε1, ε2, ε3, ε4 > 0, the neighborhoods Ω1(ε1), Ω2(ε1, ε2)
and Ω4(ε1, ε2, ε3, ε4) are defined as follows.

Ω1(ε1) = {(q, q̇) : h = 0, ḣ = 0, and ‖z − z∗‖ < ε1}
Ω2(ε1, ε2) = {(q, q̇) : h = 0, ḣ = 0, ‖z − z∗‖ < ε1, and ‖ż − ż∗‖ < ε2}

Ω4(ε1, ε2, ε3, ε4) = {(q, q̇) : ‖z−z∗‖<ε1, ‖ż−ż∗‖<ε2, 0<h<ε3, and |ḣ|<ε4}
Assume we are given a control law u(q, q̇) and a starting point x∗ ∈ S for

which there exists of a simple periodic periodic orbit χ∗ starting at x∗ which is
locally exponentially stable. Define v∗ =

∣∣∣ḣ(2)

0 (t(2)1 )
∣∣∣, which is the pre-collision

velocity at the single (plastic) collision in the periodic orbit. The following as-
sumption is a direct implication of the stability of χ∗:

Assumption 1. Assume that there exist ε1, ε2 > 0,κ ≥ 1 and γ∈(0, 1), such that
for any initial condition x0 ∈ Ω2(ε1, ε2), the corresponding completed execution
with e = 0 satisfies the two following requirements:

(a) c̃(3)(t̃(3)0 ) ∈ Ω2(γε1, γε2)

(b)
∣∣∣ḣ0(t

(2)
1 )

∣∣∣ < κv∗.
(9)

Setup. To provide the conditions needed for the main result, for the given ε1, ε2
and κ, let the neighborhood Ω be defined as Ω = Ω4(ε1, ε2, ε3, κv∗) for some
ε3 > 0, and define the following scalars:

amin = −max(q,q̇)∈Ω ḧ(q, q̇)

amax = −min(q,q̇)∈Ω ḧ(q, q̇)

δ =
√∣∣∣amax

amin

∣∣∣

żmax = ‖ż∗‖+ ε2

z̈max = max(q,q̇)∈Ω ‖z̈(q, q̇)‖
ηmax = maxz∈Ω1(ε1) ‖η(z)‖.

(10)

The following theorem establishes sufficient conditions for existence of a Zeno
periodic orbit given a simple periodic orbit.



Theorem 1. Consider a simple periodic orbit χ∗ which is locally exponentially
stable, and the given ε1, ε2 > 0, κ ≥ 1, and γ ∈ (0, 1) that satisfy Assumption
1. Then for a given coefficient of restitution e, if the neighborhood Ω and its
associated scalars defined in (10) satisfy the following conditions:

amax ≥ amin > 0 (11)

eδ < 1 (12)

2eκv∗

amin(1− δe)
żmax ≤ ε1(1− γ) (13)

(
1 + δ

1− δe
ηmax +

2
amin(1− δe)

z̈max

)
eκv∗ ≤ ε2(1− γ), (14)

(eκv∗)2

2amin
≤ ε3 (15)

then there exists a Zeno periodic orbit with initial condition within Ω2(ε1, ε2).

4.2 Proof of the Main Result

Before proving Theorem 1, we must define some preliminary notation. Consider
the completed execution χ with e = 0, and the execution χ′ with e > 0 under the
same given initial condition x0 ∈Ω2(ε1, ε2). Since we are only interested in the
first hybrid and constrained elements of χ and χ′, we simplify the notation by
defining χ = {χ̃, χ, ...} and χ′ = {χ̃′, χ′, ...}. Since the constrained motion does
not contain any collisions, it is clear that χ̃ = χ̃′. Moreover, the hybrid executions
χ and χ′ are also identical until the first collision time, that is c0(t) = c′0(t) for
t ∈ [t0, t1] and t1 = t′1. Therefore, we will compare the solutions c′i(t) and ci(t)
for i > 1, i.e. after the time t1.

We now give the outline of the proof, which is divided into three steps. The
first step proves that if the hybrid execution χ′ stays within the neighborhood
Ω, then conditions (11) and (12) imply that it is a Zeno execution. Step 2 verifies
that under conditions (13) and (14), the execution χ′ actually stays within Ω.
The results of these two steps are stated as two lemmas, whose detailed proofs
are relegated to [19] due to space constraints. Finally, the third step utilizes the
two previous steps to complete the proof of Theorem 1.

Step 1. Consider a neighborhood Ω that satisfies conditions (11) and (12),
and assume that the trajectory of the hybrid execution χ′ satisfies c′i(t) ∈ Ω
for all t ∈ I ′i, i ∈ Λ′ \ {0}. This assumption implies that the h-component of
c′i(t) = (z′i(t), h

′
i(t), ż

′
i(t), ḣ

′
i(t)) satisfies the second-order differential inclusion

ḧ
′
i(t) ∈ [−amax,−amin], (16)

for all t ∈ I ′i, i ∈ Λ′ \ {0}. At each collision time t′i, i ∈ Λ′ \ {0}, (16) is
re-initialized according to the collision law (7) as

ḣ
′
i+1(t

′
i) = −eḣ

′
i(t
′
i), and h′i+1(t

′
i) = h′i(t

′
i) = 0. (17)



Let τi = t′i+1 − t′i, which is the time difference between consecutive collisions,
and let vi = −ḣ

′
i−1(t

′
i), which is the pre-collision velocity at time t′i. The follow-

ing lemma summarizes results on the hybrid execution χ′ under the differential
inclusion (16).

Lemma 1 ([19]). Assume that the hybrid execution χ′ satisfies the differential
inclusion (16) for all t ∈ I ′i, i ∈ Λ′ \ {0}, and that amin, amax, and δ satisfy
conditions (11) and (12). Then χ′ is a Zeno execution with a Zeno time t∞.
Moreover, the solution c′i(t) satisfies the following for all i ≥ 1

vi ≤ v1(eδ)i−1 (18)
∣∣∣ḣ′i(t)

∣∣∣ ≤ v1 for all t ∈ I ′i (19)

τi ≤ 2ev1

amin
(eδ)i−1 (20)

t′∞ − t′1 ≤
2ev1

amin(1− eδ)
(21)

h′i(t) ≤
e2v2

1

2amin
for all t ∈ I ′i. (22)

The key idea in the proof is utilization of optimal control theory to find the
“most unstable” execution under the differential inclusion (16) and the impact
law (17). It is shown in [19] that all possible executions satisfy the bound vi+1 ≤
eδvi. Therefore, condition (12) implies that the vi-s are bounded by the decaying
geometric series (18). All other bounds in (19)-(22) are then implied by (18).

Step 2: We now verify that for any initial condition in Ω2(ε1, ε2), the solution
actually stays within Ω, as summarized in the following lemma.

Lemma 2 ([19]). Consider a neighborhood Ω that satisfies conditions (11)-
(14). Then for any initial condition x0 ∈ Ω2(ε1, ε2), the hybrid execution χ′ is a
Zeno execution that satisfies c′i(t) ∈ Ω for all t ∈ I ′i, i ∈ Λ′ \ {0}.

The main idea of the proof in [19], is to assume that the execution initially
stays within the neighborhood Ω, and use (18)-(22) to find bounds on q(t), q̇(t)
during the execution. Then, conditions (11)-(15) guarantee that the execution
does not leave Ω at all times.

Step 3: We now utilize Lemma 1 and Lemma 2 to prove the main result.

Proof (of Theorem 1). Consider the completed execution χ′ = {χ̃′, χ′, ...} with
e > 0, under initial condition x0 ∈ Ω2(ε1, ε2). Lemma 1 and Lemma 2 imply
that χ′ is a Zeno execution which reaches S in time t∞, and that c′i(t) ∈ Ω for
all i ≥ 1. Define the function Φ : Ω2(ε1, ε2) → S as Φ(x0) = c′∞, under initial
condition c′0(0) = x0. Note that Φ is well-defined, since for any initial condition
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Fig. 2. (a) The constrained double pendulum system (b) Time plots of the solution
θ1(t) and θ2(t) of the double pendulum with no actuation under plastic collisions.

within Ω2(ε1, ε2), a Zeno execution is guaranteed. Moreover, since the limit point
satisfies c′∞ ∈Ω ∩ S = Ω2(ε1, ε2), Φ maps Ω2(ε1, ε2) onto itself. The continuity
of the hybrid flow with respect to its initial condition, which is a fundamental
property of a completed hybrid system with a single constraint (cf. [5]) implies
that Φ is continuous. Invoking the fixed point theorem (cf. [11]), we conclude
that there exists a fixed point x̄ ∈ Ω2(ε1, ε2) such that Φ(x̄) = x̄. Finally, the
definition of Φ then implies that x̄ corresponds to the starting point of a Zeno
periodic orbit with period T ′ = t′∞.

5 Simulation Example

This section demonstrates the theoretical results on a constrained double pendu-
lum, which is depicted in Figure 2(a). The double pendulum consists of two rigid
links of masses m1,m2, lengths L1, L2, and uniform mass distribution, which are
attached by revolute joints, while a mechanical stop dictates the range of motion
of the lower link. The upper joint is actuated by a torque u1, while the lower
joint is passive. This example serves as a simplified model of a leg with a passive
knee and a mechanical stop.

The configuration of the double pendulum is q = (θ1, θ2), and the constraint
that represents the mechanical stop is given by h(q) = θ2 ≥ 0. Note that in
that case the coordinates are already in the form q = (z, h), where z = θ1

and h = θ2. The Lagrangian of the system is given by L(q, q̇) = 1
2 q̇T M(q)q̇ +

( 1
2m1L1 + m2L1)g cos θ1 + 1

2m2L2g cos(θ1 + θ2), with the elements of the 2×2
inertia matrix M(q) given by M11 =m1L

2
1/3+m2(L2

1+L2
2/3+L1L2 cos θ2), M12 =

M21 = m2(3L1L2 cos θ2+2L2
2)/6, M22 = m2L

2
2/3. The values of parameters for

the simulations were chosen as m1 =m2 =L1 =L2 =g=1.
The first running simulation shows the motion of the uncontrolled system i.e.

u1 = 0, under plastic collisions, i.e. e = 0. Fig. 2(b) shows the time plots of θ1(t)
and θ2(t) under initial condition q(0) = (−0.08, 0) and q̇(0) = (0, 0). The parts
of unconstrained motion appear as dashed curves, and the parts of constrained
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 Fig. 4. Time plots of θ1(t) and θ2(t) for the controlled double pendulum with e = 0.5.

motion appear as solid curves. The points of collision events are marked with
squares (‘¥’) on the curve of θ1(t). The double pendulum exhibits a slightly
decaying periodic-like motion with two plastic collisions per cycle. At each cycle,
after the first plastic collision, the constraint force λ required to maintain the
constraint θ2 = 0 is negative. Thus, the lower link instantaneously detaches to
another phase of unconstrained motion, until a second plastic collision occurs.
After the second collision, the lower link locks at θ2 = 0, and the pendulum
switches to a constrained motion with positive constraint force λ > 0 for some
finite time, until λ crosses zero, and the lower link detaches again.

In order to obtain a non-decaying periodic solution with a single plastic
collision per cycle, i.e., a simple periodic orbit, we add a PD control law for
the torque u1 as u1(θ1, θ̇1) = −k1(θ1−θ1e)−c1θ̇1. The control parameters are
chosen as k1 =0.5, θ1e =π/9 and c1 =−0.01. The proportional term associated
with k1 was chosen as to increase the positive acceleration θ̈1 and decrease the
negative acceleration θ̈2 for θ1 < 0, and thus increase the constraint force λ
that ensures that after the first collision, the lower link does not detach. The
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 Fig. 5. Time plots of θ1(t) and θ2(t) for the controlled double pendulum with e=0.9225.

negative dissipation term associated with c1 injects a small amount of energy
to the system, that compensates for the losses due to collisions. In simulation
under the control law with the same initial condition as above, we obtained
convergence to a simple periodic orbit with a single plastic collision per cycle.
Figures 3(a) and 3(b) show the phase portraits of the periodic orbit in (θ1, θ̇1)-
and (θ2, θ̇2)- planes, respectively. (Time plots of θ1 and θ2 appear in [19]).

Next, we apply Theorem 1 to check for existence of a Zeno periodic orbit
with e > 0. One can verify numerically that the assumptions of the theorem
are satisfied and that, in particular, the simple periodic orbit obtained through
the control law is locally exponentially stable with γ = 0.9404. Choosing ε1 =
0.017, ε2 = 0.06 and ε3 = 0.005, Theorem 1 implies that the existence of a
Zeno periodic orbit with initial condition within Ω2(ε1, ε2) is guaranteed for any
e ≤ 0.0015. Simulation of the double-pendulum system with e = 0.0015 verifies
the existence of a Zeno periodic orbit. The simulation results were not shown,
since they are not visually distinguishable from the results with e = 0.

In order to illustrate the strong conservatism of Theorem 1, we conducted
another simulation under the same initial condition, with a coefficient of restitu-
tion e = 0.5. The infinite Zeno executions were truncated after a finite number
of collisions at which the collision velocity ḣ is below a threshold of 10−10. The
simulation results, which are shown in the time plots of Figure 4, clearly indicate
the existence of a Zeno periodic orbit, which was verified numerically to be also
locally stable. Figures 3(a) and 3(b) show the phase portraits of the periodic
orbits in (θ1, θ̇1)- and (θ2, θ̇2)- planes, respectively, for coefficients of restitution
e = 0 (plastic impacts) and e = 0.5. The thick (blue) curves correspond to the
case e = 0, and the thin (black) curves correspond to the case e = 0.5. The parts
of unconstrained motion appear as dashed curves, and the parts of constrained
motion appear as solid curves. Note that in Figure 3(b), the constrained motion
collapses to the single point (θ2, θ̇2) = 0. From the figures, one can clearly see
how the simple periodic orbit is perturbed under non-plastic impacts.



Finally, we gradually increased the coefficient of restitution e and numerically
checked for existence of Zeno periodic orbits. The largest value of e for which
we obtained such an orbit was e = 0.9225. For this value of e, the duration of
the constrained motion in the Zeno periodic orbit is very short, as shown in the
simulation results of Figure 5. For larger values of e, the phase of constrained
motion vanishes, and the execution is no longer Zeno. This transition can be
viewed as a new type of bifurcation in Lagrangian hybrid systems, in which a
Zeno periodic orbit ceases to be Zeno. To our knowledge, this type of bifurcation
was never studied before in the recently emerging literature on bifurcations in
non-smooth mechanical systems, (cf. [3, 12]).

6 Conclusion

This paper considered two types of periodic orbits in completed Lagrangian hy-
brid systems: simple and Zeno. The main result presented is sufficient conditions
on when a simple periodic orbit in a Lagrangian hybrid system implies the ex-
istence of a Zeno periodic orbit in the same Lagrangian hybrid system with a
different coefficient of restitution. Moreover, these conditions give an explicit up-
per bound the change in the coefficient of restitution that guarantees existence
of the Zeno periodic orbit.

The results indicate two major future research directions: better bounds on
the allowable change in the coefficient of restitution and conditions on the preser-
vation of stability. For the first direction, as was illustrated by the example, the
obtained bounds are strongly conservative; computing tighter bounds in a rig-
orous fashion will be practically useful and theoretically satisfying. The second
future research direction—studying stability—is even more interesting. The au-
thors have been able to show that under certain simplifying assumptions, stabil-
ity of the simple periodic orbit directly implies the stability of the Zeno periodic
orbit. However, this preliminary result was not included in the paper due to
space constraints. In the future, understanding how stability extends from one
type of orbit to the other with the fewest possible assumptions will provide new
and interesting challenges. Finally, extending the results to Lagrangian hybrid
system with multiple constraints will enable the analysis of full models of bipeds
with knees for designing stable walking and running under non-plastic impacts.
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