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ABSTRACT
The equivalence of the stability of periodic orbits with the
stability of fixed points of a Poincaré map is a well-known
fact for smooth dynamical systems. In particular, the eigen-
values of the linearization of a Poincaré map can be used to
determine the stability of periodic orbits. The main objec-
tive of this paper is to study the properties of Poincaré maps
for hybrid systems as they relate to the stability of hybrid
periodic orbits. The main result is that the properties of
Poincaré maps for hybrid systems are fundamentally differ-
ent from those for smooth systems, especially with respect
to the linearization of the Poincaré map and its eigenvalues.
In particular, the linearization of any Poincaré map for a
smooth dynamical system will have one trivial eigenvalue
equal to 1 that does not affect the stability of the orbit.
For hybrid systems, the trivial eigenvalues are equal to 0
and the number of trivial eigenvalues is bounded above by
dimensionality differences between the different discrete do-
mains of the hybrid system and the rank of the reset maps.
Specifically, if n is the minimum dimension of the domains
of the hybrid system, then the Poincaré map on a domain
of dimension m ≥ n results in at least m − n + 1 trivial 0
eigenvalues, with the remaining eigenvalues determining the
stability of the hybrid periodic orbit. These results will be
demonstrated on a nontrivial multi-domain hybrid system:
a planar bipedal robot with knees.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Stability (and in-
stability); I.6.8 [Simulation and Modeling]: Types of
Simulation—Continuous, Discrete event

General Terms
Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’10, April 12–15, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

Keywords
Stability, Periodic orbits, Poincaré maps, Robotic bipedal
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1. INTRODUCTION
A hybrid system consists of both smooth and discrete

components, and it is the interaction between these com-
ponents that results in phenomena which cannot occur for
smooth dynamical systems. This implies that hybrid sys-
tems are fundamentally different objects than smooth dy-
namical systems; for example, results on the existence and
uniqueness of solutions to hybrid systems are not the same
as for smooth systems [17, 18] and hybrid systems display
unique behavior such as Zenoness [14]. Similarly, we may
not treat the stability of hybrid system equilibria in the same
way as the stability of equilibria of smooth dynamical sys-
tems; see [6] for a survey of results on the stability of hybrid
systems. It is therefore natural to ask, how does the sta-
bility and analysis of periodic orbits of hybrid systems, and
particularly the associated Poincaré map, differ from that of
periodic orbits of smooth dynamical systems?

The stability of periodic orbits of smooth dynamical sys-
tems is established using two facts. First, the stability of a
periodic orbit is equivalent to the stability of the discrete dy-
namical system defined by a Poincaré map associated with
that orbit. Second, the linearization of any stable Poincaré
map associated with a stable periodic orbit will always have
one eigenvalue equal to 1 with the remaining eigenvalues of
magnitude less than 1. The eigenvalue equal to 1 is triv-
ial since it does not relate to the stability of the system.
Intuitively speaking, the trivial eigenvalue corresponds to
perturbations in the direction of the closed orbit [10, 23,
24].

The primary objective of this paper is to study proper-
ties of Poincaré maps associated with hybrid periodic orbits.
The main conclusion of this work is that Poincaré maps asso-
ciated with hybrid periodic orbits have fundamentally differ-
ent properties from those associated with periodic orbits of
smooth systems. To demonstrate this, the main result of this
paper is an upper bound on the number of trivial eigenvalues
of the linearization of the Poincaré map. In particular, for
a hybrid system, the linearization of the Poincaré map has
at least one trivial eigenvalue and all the trivial eigenvalues
are equal to 0; more precisely, if n is the smallest dimen-
sion of the domains of the hybrid system, then considering
the Poincaré map on a domain of dimension m ≥ n results
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in at least m − n + 1 trivial 0 eigenvalues. The remaining
eigenvalues of the linearization of the Poincaré map of the
hybrid system determine the stability of the hybrid periodic
orbit. In addition, we show through a counterexample that
a strict equality on the number trivial eigenvalues cannot be
obtained in general and that single-domain hybrid systems
have exactly one trivial eigenvalue equal to 0.

It is worth noting that although many references discuss
the application of the Poincaré map to multi-domain [27]
and single-domain hybrid systems [5, 7], the authors have
not yet found existing work that explicitly compares the
properties of Poincaré maps for hybrid systems with those
of Poincaré maps for smooth systems. Therefore the main
result can be considered novel and complementary to prior
work, for example to [19] or [21].

Furthermore, although our definition of the Poincaré map
is consistent with prior work [27], our approach is unique in
that we compute the linearization of the Poincaré map by
simply taking its derivative, as one might expect. This is at
odds with the approach taken in the literature, since we do
not require an external formula to compute the derivative of
the Poincaré map. In [11, 12] and in [16] different formulas
are derived under special assumptions and used to define the
linearization of the Poincaré map. These formulas cannot be
used here since they do not apply to multi-domain hybrid
systems, especially when one of the domains has a different
dimension, like the planar kneed biped discussed in Section
5.2. In particular, the linearization of the Poincaré map
should be given by its derivative alone.

We begin our discussion in Section 2, where we review
results on smooth dynamical systems that will be useful for
proving the main result of this work. Standard references
for smooth systems include [10] and [24]; a manual for com-
puting results related to standard dynamical systems theory
may be found in [23]. The results in Section 2 apply only
to the smooth components of a periodic hybrid system. In
Section 3 we provide basic definitions of hybrid systems and
their solutions and describe the smooth and discrete com-
ponents. Although alternative definitions of hybrid systems
may be found in [12] or in [7], the theoretical framework
we develop in Section 3 is amenable to the study of peri-
odic hybrid systems with more than one domain. In Section
4 we consider Poincaré maps associated with periodic or-
bits of hybrid systems and derive general properties of their
linearization with a special focus on the number of trivial
eigenvalues. Finally, we illustrate our results on two exam-
ples in the final Section 5, one of which is the nontrivial
two-domain planar kneed bipedal walker.

2. ORBITS OF SMOOTH SYSTEMS
As will be formally discussed in Section 3, a hybrid sys-

tem consists of collections of smooth and discrete compo-
nents. The smooth parts are solution curves to differential
equations defined by smooth vector fields. In this section,
therefore, we review standard results on orbits of smooth
dynamical systems which will be necessary to our analysis
of Poincaré maps for hybrid systems in Section 4, beginning
with the introduction of basic notation.

Flows. Let M be a manifold and TM its tangent bundle.
Let f : M → TM be a Lipschitz continuous vector field
such that for the canonical projection map π : TM → M ,
π ◦ f = idM . We will assume that M ⊂ R

n, in which case

we can write the vector field in coordinates as ẋ = f(x) with
x ∈M ⊂ R

n where necessarily ẋ ∈ TxM . A smooth function
g : M → N between manifolds induces a map between the
tangent space Dg(x) : TxM → Tg(x)N ; in coordinates, this
is just the Jacobian or derivative.

The unique solution to the vector field ẋ = f(x) is a tra-
jectory c : I ⊂ [0,∞) → M , which is referred to as an
integral curve or orbit of f(x) with initial condition c(t0) if
I = [t0, t1]. The flow of the vector field ẋ = f(x) is a map
φ : I×U → V , where U is some neighborhood of x0 = c(t0),
satisfying φt(x0) = c(t). The flow has the following proper-
ties: for r, s, t ∈ I ,

c(t0) = φ0(c(t0))

c(t0 + t+ s) = φt+s(c(t0)) = φt ◦ φs(c(t0))

φ−r ◦ φr(x0) = x0 ⇒ φ−r = (φr)
−1

The flow with t a parameter, φt : U → V , is a diffeomor-
phism for all t ∈ I .

Sections. It is standard practice [24] to define the Poincaré
map of a dynamical system on a certain smooth hypersurface
that we construct, if possible, through a point of the flow.

Definition 1. A local section of a vector field ẋ = f(x) on
M is a smooth codimension-1 submanifold of M given by:

S = {x ∈M | h(x) = 0 and Lfh(x) 	= 0}
where h : M → R is a C1 function and Lfh is the Lie
derivative. More generally, any submanifold N ⊂ M is said
to be transverse to the flow (or vector field f) if f(x) is not
in TxN .

In fact, we may construct a local section through any
point of a flow (that is not an equilibrium point) as a re-
sult of the following lemma from [25].

Lemma 1 (Smale, 1963). For f(x) a vector field de-
fined on a smooth manifoldM , if for some x ∈M , f(x) 	= 0,
then there exists a local section S through x, i.e., x ∈ S with
S a local section.

Time-to-impacts map. The next fact that will be needed
is that the time for a flow to reach a local section is given
by a well-defined map. We apply the following lemma from
[10], the proof of which follows from a direct application of
the implicit function theorem.

Lemma 2 (Hirsch & Smale, 1974). Let S be a local
section and x0 ∈ M such that x1 = φt(x0) ∈ S. Then there
exists a unique, C1 function τ : U0 → R called the time-to-
impact map such that for U0 a sufficiently small neighbor-
hood of x0, φτ(x)(x) ∈ S for all x ∈ U0.

The proof of this lemma [10] yields the derivative of the
time-to-impact map, given by:

Dτ (x0) = −Dh(x1)Dxφt(x0)

Lfh(x1)
. (1)

This will be useful throughout the course of the paper.

Remark 1. Consider the map φτ (− ) := φτ( − )(− ) which
by Lemma 2 takes any point in a sufficiently small neighbor-
hood U0 of x0 to the local section S; that is φτ (− ) : U0 →
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φτ (U0) ⊂ S. As was noted in [25], for φt(x0) a closed (or pe-
riodic) orbit of a smooth dynamical system with x0 ∈ U0∩S,
φτ : U0 ∩ S → φτ (U0) ∩ S is a diffeomorphism, called the
associated diffeomorphism to S. We will prove that under
certain conditions φτ is a diffeomorphism even if φt(x0) is
not a closed orbit. In order to do so it is necessary to con-
sider the variational equation of the flow.

Variational Equations. The variational equation is the
linearization of ẋ = f(x) about a trajectory x(t) with initial
condition x(t0) = x0; see [23, 24] for more on the variational
equation. It is a nonautonomous linear equation

ż = A(t)z := Df
(
x(t)

)
z (2)

with solution z(t) = φ̇t(x0) and fundamental matrix solution

Φt(x0) := Dxφt(x0) =
∂φt(x0)

∂x0

which satisfies

φ̇t(x0) = Φt(x0)Φ
−1
0 (x0)φ̇0(x0) = Φt(x0)φ̇0(x0).

That is, for x1 = φt(x0),

φ̇t(x0) = Dxφt(x0)φ̇0(x0),

f(x1) = Dxφt(x0)f(x0). (3)

The fundamental matrix solution is also called the space
derivative of the flow and is always nonsingular. The total
derivative of the flow at x = φτ (x0) is given by

Dφτ (x0) = Dxφt(x0) + φ̇τ (x0)Dτ (x0) (4)

where Dφτ (x0) : Tx0U0 → Txφτ (U0). The rank of this map
at x0 will be of special interest. In order to compute its
rank we first note the following standard result, which may
be easily proven using [24, 10].

Proposition 1. The following are equivalent:

(C1) φt is a closed orbit with period T .

(C2) Dτ (x0) ≡ 0.

(C3) ΦT (x0)f(x0) = f(x0).

Remark 2. It is important to note that we may not as-
sume that Proposition 1 applies to hybrid systems. For ex-
ample, the formula derived in [12] is used in [11] to recover
property (C3) for the planar compass biped. However, no
proof of this fact is provided and, as mentioned earlier, this
formula does apply to more general hybrid systems. Indeed,
one can easily use the following theorem to show that this
Proposition cannot hold for hybrid systems.

Rank of the total derivative. The following theorem
will be of use in Section 4 and may be used to show that
multi-domain hybrid systems—under suitable assumptions
and conditions—do not satisfy conditions (C1)-(C3).

Theorem 1. Let S be a local section and x0 ∈ U0 with S
and U0 as in Lemma 2. If dim(M) = n then Dφτ (x0) has
rank n− 1 if and only if x(t) = φt(x0) is not a closed orbit.

Proof. (⇒) Suppose that Dφτ (x0) has rank n − 1. We
will show that this implies that x(t) is not a closed orbit.
Assume that the trajectory x(t) is a closed orbit with period
T = τ (x0) and initial condition x0 ∈ U0. Since x(t) is a
closed orbit,Dτ (x0) = 0 by Proposition 1, and thus equation
(4) simplifies toDφτ (x0) = ΦT (x0), which is a rank nmatrix
and nonsingular. But since Dφτ (x0) has rank n − 1 our
assumption that x(t) is a closed orbit must be incorrect,
implying that x(t) is not a closed orbit.

(⇐) Suppose that the trajectory x(t) = φt(x0) is not a
closed orbit. Let τ (x0) = T and x1 = φT (x0). Note that
x0 ∈ U0 but not necessarily in S. By Proposition 1, it follows
that ΦT (x0)f(x0) = f(x1), f(x1) 	= f(x0) and Dτ (x0) 	= 0.

Finally, it is possible to choose coordinates so that φ̇T (x0) =
f(x1) = (0, . . . , 1)T . Taking the total derivative (4) in these
coordinates, coupled with (1) yields:

Dφτ (x0) = ΦT (x0) + φ̇T (x0)Dτ (x1)

=

(
In×n − φ̇T (x0)Dh(x1)

Lfh(x1)

)
ΦT (x0)

=

(
In×n −

[
0n−1×n−1 0n−1×1

proj(Dh(x1)) 1

])
ΦT (x0)

=

[
In−1×n−1 0n−1×1

−proj(Dh(x1)) 0

]
ΦT (x0)

where

proj(Dh(x1)) :=
1

Dh(x1)n

(
Dh(x1)1 · · · Dh(x1)n−1

)
Because ΦT (x0) is nonsingular, it follows that:

rank(Dφτ (x0)) = rank

([
In−1×n−1 0n−1×1

−proj(Dh(x1)) 0

])
= n− 1

Moreover, for the choice of coordinates it is easy to see that
ker(Dφτ (x0)) = span(f(x0)).

Diffeomorphisms between sections. Now that we know
the rank of Dφτ we may use the inverse function theorem
to show that φτ restricted to a section is a diffeomorphism
onto its image.

Recall that the inverse function theorem states [4] that
for a function between open sets f : W → Z if, for some
w ∈ W , Df(w) is nonsingular then ∃ some W ′ ⊆ W for
which f :W ′ → f(W ′) is a diffeomorphism.

Corollary 1. Let x0 ∈M with S0 a local section through
x0, S a local section through x1 = φt(x0) and U0 a neigh-
borhood of x0 such that φτ (x) ∈ S for all x ∈ U0. Then
for V0 := U0 ∩ S0 and V := φτ (U0) ∩ S, the restriction map
φτ : V0 → V is a diffeomorphism.

Proof. Let ψ0 : V0 → R
n−1 and ψ : V → R

n−1 be
local coordinate maps. Note that φτ has inverse φ−τ and
is bijective. The expression for Dφτ : Tx0V0 → TxV in
coordinates is

Dφτ (x0) = Dψ ◦Dφτ (x0) ◦Dψ−1
0

Since ψ and ψ0 are coordinate transforms, Dψ and Dψ−1
0

both have rank n − 1, and rank(Dφτ ) = n − 1 by the pre-
ceding theorem. This implies that rank(Dφτ ) = n − 1 and
is thus invertible on all points of V0. Since it is invertible,
by the inverse function theorem φτ is a diffeomorphism from
all of V0 to V .
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3. HYBRID SYSTEMS AND
PERIODIC ORBITS

The goal of this paper is to study the properties of Poincaré
maps for hybrid systems. Since these maps are associated
with periodic orbits for hybrid systems, i.e., hybrid periodic
orbits, we will restrict our attention to hybrid systems with
an underlying graph that is “periodic”, or in the language of
graphs, cyclic. We begin by introducing the notions of hy-
brid systems on a cycle and their executions. We will revisit
the results of the previous section in this context and con-
clude with assumptions necessary to the following sections.

Hybrid systems and executions.

Definition 2. A k-domain hybrid system on a cycle is a
tuple

H = (Γ, D,G,R, F )

• Γ = (Q,E) is a directed cycle such thatQ = {q1, . . . , qk}
is a set of k vertices and E = {e1 = (q1, q2), e2 =
(q2, q3), . . . , ek = (qk, q1)} ⊂ Q × Q. With the set E
we define maps sor : E → V which returns the source
of an edge, the first element in the edge tuple, and
tar : E → V , which returns the target of an edge or
the second element in the edge tuple.

• D = {Dq}q∈Q is a collection of smooth manifolds called
domains, where Dq is assumed to be embedded sub-
manifolds of Rnq for some nq ≥ 1.

• G = {Ge}e∈E is a collection of guards, where Ge is
assumed to be an embedded submanifold of Dsor(e).

• R = {Re} is a collection of reset maps which are
smooth maps Re : Ge → Dtar(e).

• F = {fq}q∈Q is a collection of Lipschitz vector fields
on Dq, such that ẋ = fq(x).

We will assume that the hybrid systems under consid-
eration are deterministic and non-blocking ; in the case of
hybrid systems on a cycle, these assumptions tend to hold
in general under reasonable assumptions [15]. This assump-
tion allows us to treat any point of a hybrid execution as an
initial condition, and to assume that executions are permit-
ted to either reach a guard or evolve for infinite time on a
domain. Since these notions are not central to questions of
periodic stability, we refer the interested reader to [17] for
more on these topics.

Definition 3. An execution of H is a tuple

χ = (Λ, I, ρ, C)

• Λ = {0, 1, 2, 3, . . . } ⊆ N is a finite or infinite indexing
set.

• I = {Ii}i∈Λ such that with |Λ| = N , Ii = [ti, ti+1] ⊂ R

and ti ≤ ti+1 for 0 ≤ i < N − 1. If N is finite then
IN−1 = [tN−1, tN ] or [tN−1, tN) or [tN−1,∞), with
tN−1 ≤ tN .

• ρ : Λ → Q is a map such that eρ(i) := (ρ(i), ρ(i+1)) ∈
E.

• C = {ci}i∈Λ is a set of continuous trajectories where
each ci is the integral curve of the vector field fρ(i) on
Dρ(i).

It is required that ∀ i, i+ 1 < |Λ| − 1,

• ci(ti+1) ∈ G(ρ(i),ρ(i+1)) = Geρ(i)

• Reρ(i) (ci(ti+1)) = ci+1(ti+1)

and ∀ t ∈ Ii and i ≤ |Λ| − 1, ci(t) ∈ Dρ(i).

Note that the discrete component of the initial condition
of the execution is ρ(0) = qi for i ∈ {1, . . . , k} and the
continuous component is the trajectory with initial condition
c0(t0) ∈ Dqi .

Hybrid periodic orbits. The orbits of hybrid systems
are fundamentally different than those for smooth dynam-
ical systems. In particular, since the flow on a domain is
mapped to the next as soon as it reaches the guard, we may
not assume that a hybrid periodic orbit is closed under any
flow. This is in contrast with periodic orbits of smooth sys-
tems which are by definition closed under the flow. Clearly,
Proposition 1 does not include hybrid systems.

Definition 4. A hybrid periodic orbit O = (Λ, I, ρ, C) with
period T is an execution of the k-domain hybrid system on
a cycle H such that for all n ∈ Λ,

• ρ(n) = ρ(n+ k),

• In + T = In+k,

• cn(t) = cn+k(t+ T ).

Application of results from Section 2. The results of
Section 2, and specifically Lemma 1, Lemma 2 and Corollary
1, apply to the integral curves of a hybrid execution, i.e., its
“continuous component”, allowing us to draw the following
two conclusions.

(H1) Given any execution χ of H, for every cn ∈ C we
may construct a local section Sn

0 through cn(tn) and a
section Sn ⊂ Geρ(n)

through cn(tn+1).

We may of course define sections through any point of a
hybrid execution, but we are particularly interested in the
sections through the endpoints of the flow on each domain.

(H2) Let φ
ρ(n)
t denote the flow of the autonomous vector

field fρ(n) ∈ F on Dρ(n). Since

cn(tn+1) = φ
ρ(n)
tn+1−tn

(c(tn)) ∈ Sn,

there exists a neighborhood Un
0 about cn(tn) and a

time-to-impact map τn : Un
0 → R such that φ

ρ(n)
τn maps

V n
0 := Un

0 ∩Sn
0 diffeomorphically to V n := φ

ρ(n)
τn (Un

0 )∩
Sn, where we write φ

ρ(n)
τ (− ) := φ

ρ(n)
τn( − )(− ) for ease

of notation.

Assumptions. Since we are interested in studying Poincaré
maps, we begin by assuming that the system has a hybrid
periodic orbit.

(A1) H has a hybrid periodic orbit O = (Λ, I, ρ, C).

The following two assumptions ensure that the guards and
reset maps are sufficiently “well-behaved.” That is, we as-
sume that for every e ∈ E,
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(A2) Ge is a section, i.e., Ge is transverse to the vector
field fsor(e) and dim(Ge) = dim(Dsor(e))− 1.

(A3) Re has constant rank re and Re(Ge) is a submanifold
of Dtar(e).

Note that since Re has constant rank, and because Re :
Ge → R(Ge) is obviously surjective, Re is a submersion onto
its image. This implies that:

re = rank(Re) = dim(R(Ge)) ≤ dim(Dsor(e))− 1.

with the last inequality following from (A2) since the di-
mension of Re(Ge) is at most the dimension of Ge.

Implications of assumptions. The following implications
of the results in Section 2 will be important in proving the
main results of this paper.

Under assumption (A1), and as a result of the fact that
cn(tn) = cn+k(tn+k) and cn(tn+1) = cn+k(tn+k+1), the ele-
ments Sn

0 , S
n, Un

0 , τ
n, V n

0 and V n can be indexed by the
vertex set Q of the graph Γ of H rather than the indexing set
Λ (since, for example, one can take Sn = Sn+k). Coupling
this with assumptions (A2) and (A3), (H1) and (H2) can
be restated in the following manner:

(HA1) Given any hybrid periodic orbit O of H, for ev-

ery cn ∈ C we may construct a local section S
ρ(n)
0

through the initial condition cn(tn) and a local sec-

tion Sρ(n) := Geρ(n)
through cn(tn+1) = φ

ρ(n)
τ (cn(tn)),

where τρ(n) : U
ρ(n)
0 → R and again we adopt the nota-

tion φ
ρ(n)
τ (− ) := φ

ρ(n)

τρ(n)( − )
(− ).

(HA2) There exists a neighborhood U
ρ(n)
0 about cn(tn)

such that φ
ρ(n)
τ maps V

ρ(n)
0 := U

ρ(n)
0 ∩ S

ρ(n)
0 diffeo-

morphically to V ρ(n) := φ
ρ(n)
τ (U

ρ(n)
0 ) ∩Geρ(n)

.

4. POINCARÉ MAPS FOR
HYBRID SYSTEMS

In this section we introduce Poincaré maps for hybrid sys-
tems, and study the properties of these maps. In particular,
since we are interested in the stability of hybrid periodic
orbits, we consider the linearization of Poincaré maps for
hybrid systems. The main result of this paper is an upper
bound on the number of trivial eigenvalues of the lineariza-
tion based upon dimensionality differences between the dif-
ferent domains of the hybrid system and the minimum rank
of the reset maps.

Poincaré maps for smooth systems. Recall (cf. [10] or
[24]) that a Poincaré map for a smooth dynamical system
is defined on a section S of the flow, say through some ini-
tial condition x0. Recall from Section 2 that if the system
evolves on some subset of Rn then dim(S) = n − 1. If the
flow intercepts S at least once more then we may define the
first-return map x0 �→ φτ (x0). By the proof of Lemma 2
all points of S0 = U0 ∩ S 	= ∅ also reach S, where U0 is
some sufficiently small neighborhood of x0. Then we de-
fine P : S0 → S, such that for all x ∈ S0, P (x) := φτ (x).
The Poincaré map thus defines a discrete dynamical system
xk+1 = P (xk).

The importance of Poincaré maps is that they allow one
to determine the stability of periodic obits. In particular, if

φt(x0) is a closed orbit then φτ (x0) = x0 and the Poincaré
map has a fixed point x0 = P (x0). The stability of the
periodic orbit is equivalent to the stability of the discrete
time dynamical system xk+1 = P (xk) at the fixed point
x0. This, in turn, is equivalent to the stability of the lin-
earization of this nonlinear discrete time dynamical system:
xk+1 = DP (x0)xk which can be determined by simply con-
sidering the eigenvalues of DP (x0). In particular, if we com-
pute DP (x0) in natural coordinates in R

n then one eigen-
value of the linearization will be trivial with value 1 corre-
sponding to perturbations out of the section in the direction
of the vector field at x0; this can be seen by (C3) in Propo-
sition 1 since for closed orbits f(x0) is an eigenvector of
the fundamental solution matrix. The other eigenvalues are
nontrivial and determine stability; if they all have magni-
tude less than 1 the discrete time system is stable, so the
nonlinear system is stable so the periodic orbit is stable. The
additional advantage of considering the Poincaré map and
its linearization is that it is easy and numerically robust to
compute its eigenvalues.

Poincaré maps for hybrid systems. We now define
Poincaré maps for hybrid systems by considering the first-
return map of a hybrid periodic orbit. The following is not
a novel definition of Poincaré maps and may be compared
with similar definitions found in [27].

Definition 5. Let O be a hybrid periodic orbit of H with
initial condition ρ(0) = q and x0 = c0(t0) ∈ V q ⊂ Sq , where
V q is the neighborhood in Sq containing x0 as defined in
(HA1) and (HA2). The hybrid Poincaré map Pq : V q →
Sq is the partial function:

Pq(x) = φρ(k)
τ ◦Reρ(k−1)

◦ · · · ◦ φρ(i+1)
τ ◦ Reρ(i)◦

· · · ◦ φρ(1)
τ ◦ Reρ(0) (x), (5)

where, of course, ρ(k) = ρ(0) = q.

Remark 3. Note that Pq is a partial function because there
is no guarantee that the neighborhoods V q

0 on each domain
line up with the image of the reset map from the previous
domain, i.e., it is not yet guaranteed that Re(V

sor(e)) ⊂
V

tar(e)
0 . Of course, one can ensure that this property holds

by decreasing the size of U
sor(e)
0 as needed, thus making Pq

a function rather than a partial function. As we will see, the
fact that the Poincaré map is a partial function will restrict
our ability to determine its exact rank.

Remark 4. Of course, we may consider other Poincaré
maps defined from arbitrary sections in Dq. It is easy to
see that the linearization of any two Poincaré maps defined
from arbitrary sections in the same domain Dq will share
the same eigenvalues, and thus the same stability proper-
ties. This is a consequence of Corollary 1, which asserts
that the flow φt defines a diffeomorphism between any two
sections in a given domain. Denote the derivative of this
diffeomorphism by Q. If Pq and P ′

q are the Poincaré maps
defined from two sections in Dq then DP ′

q = QDPqQ
−1,

implying that the linearizations have the same eigenvalues.
This basic result will hold for any hybrid system H, as

long as the Poincaré maps are defined from sections in the
same domain.
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Stability of hybrid periodic orbits. Since Pq defines a
map Pq : V q → Sq one obtains a discrete dynamical sys-
tem associated to O given by xk1 = Pq(xk). It is important
to establish, as with smooth dynamical systems, that the
stability of this discrete time system directly relates to the
stability of the periodic orbit O; note that the definition of
the stability of a hybrid periodic orbit is completely anal-
ogous to the definitions for smooth systems [13] and has
been provided for single-domain hybrid systems in [9] and
[2]. The relationship between the stability of a hybrid peri-
odic orbit and the stability of the hybrid Poincaré map has
been considered in the case when the hybrid system H only
has one domain, i.e., Q = {q} has already been considered
in [19]. In particular, there is the following result:

Theorem 2 (Morris & Grizzle, 2005). Let H be a
single-domain hybrid system, i.e., Q = {q}. Then x∗ =
Pq(x

∗) is an exponentially stable fixed point of the Poincaré
map Pq : V q → Sq if and only if O is exponentially stable.

Although this theorem is proven for single-domain hybrid
systems, the proof relies on arguments that are not specific
to single-domain hybrid systems. In particular, following
from the proof of this theorem in [19], if the hybrid periodic
orbit O is exponentially stable then necessity is proven by
showing that the distance from any point on Sq

0 near x∗ to
O shrinks exponentially with each iteration of the Poincaré
map—this can be similarly shown for the hybrid Poincaré
map defined for multi-domain systems since it is simply a
local argument on the section Sq

0 . Conversely, if the fixed
point x∗ is exponentially stable, then sufficiency follows from
using the fact that the vector field on the domain is locally
Lipschitz to find an appropriate bound on the distance be-
tween O and a neighborhood of x∗ in Sq

0—for multiple do-
mains, one would simply consider the bound obtained from
the Lipschitz constants on each domain to again obtain a
bound on the distance between O and a neighborhood of
x∗ in Sq

0 . Therefore, Theorem 2 and its proof can be easily
extended to multi-domain hybrid systems.

Poincaré maps of single-domain hybrid systems. Us-
ing Theorem 2, we can establish the stability of a hybrid pe-
riodic orbit by considering the eigenvalues of the lineariza-
tion of the Poincaré map, DPq(x0). Our main result ad-
dresses the question: what are the trivial eigenvalues of
the hybrid Poincaré map associated with this orbit and how
many of them are there? We will show that in the case of
hybrid systems there is at least one trivial eigenvalue equal
to 0, rather than exactly one trivial eigenvalue equal to 1 as
in the case of smooth systems.

We begin by considering the case of a hybrid system H
with one domain; these are often referred to as simple hybrid
systems and have been well-studied in the context of hybrid
mechanical systems [22].

Theorem 3. Let H be a single-domain hybrid system,
i.e., Q = {q} and E = {e = (q, q)}. If Re(Ge) is trans-
verse to fq then

rank(DPq(x
∗)) = rank(Re) ≤ dim(Dq)− 1

with x∗ a fixed point of the hybrid Poincaré map Pq.

Proof. Let the hybrid periodic orbit O have initial con-
dition x∗ ∈ V q . Since H is a single-domain hybrid system,

Pq = φq
τ ◦ Re with Pq : V q → Ge, and Pq(x

∗) = x∗. We
know Ge is a section from assumption (A2), so it follows
that rank(Re) = dim(Re(Ge)) ≤ dim(Dq) − 1. If Re(Ge) is
transverse to fq then we may assume that Sq

0 is chosen so
that Re(Ge) ⊂ Sq

0 . Therefore, we can view Re as a well-
defined function Re : V q → Re(Ge) ∩ V q

0 .
Now let φq

τ |Ge : Re(Ge)∩ V q
0 → V q denote the restriction

of the diffeomorphism φq
τ : V q

0 → V q. We can write the
Poincaré map as

Pq = φq
τ ◦Re = φq

τ |Ge ◦ Re.

We are interested in the rank of

DPq(x
∗) = Dφq

τ |Ge(Re(x
∗))DRe(x

∗).

Since rank(DRe(x
∗)) = rank(Re) ≤ dim(Dq)−1 andDRe(x

∗)
is surjective (since Re maps to a subset of Re(Ge) and has
constant rank by (A3)), it follows that1

rank(DPq(x
∗)) = rank

(
Dφq

τ |Ge(Re(x
∗))
)
.

Now let ι : Re(Ge) ∩ V q
0 → V q

0 be the inclusion which
implies that rank(ι) = dim(Re(Ge)) = rank(Re). Since φ

q
τ :

V q
0 → V q is a diffeomorphism and φq

τ |Ge = φq
τ ◦ ι,

rank(φq
τ |Ge) = rank(φq

τ ◦ ι) = rank(ι),

establishing the desired result.

If we assume thatRe is also an embedding then rank(Re) =
dim(Ge) = dim(Dq)− 1 and so

rank(DPq(x
∗)) = dim(Dq)− 1.

That is, the linearization of the hybrid Poincaré map has
exactly one trivial eigenvalue with value 0. It will be shown
through a counterexample in Section 5.1 that a similar equal-
ity is not guaranteed for multi-domain hybrid systems.

Multi-domain hybrid systems. The goal now is to better
understand the rank of the hybrid Poincaré map for multi-
domain hybrid systems. We will show that the trivial eigen-
values of the linearization of the hybrid Poincaré map are
0, as in the single-domain case. However, unlike the single-
domain case, it is only possible, in general, to establish upper
and lower bounds on the number of trivial eigenvalues.

We begin by isolating the terms in the Poincaré map and
its derivative that appear due to each edge in the directed
cycle.

Definition 6. Let e = (q, q′) ∈ E. The edge map Pe :

V q → V q′ is given by:

Pe := φq′
τ ◦ Re,

with V q and V q′ given as in (HA2). It follows that if q =
ρ(0) then the hybrid Poincaré map is given by

Pq = Peρ(k−1)
◦ · · · ◦ Peρ(1) ◦ Peρ(0)

We can establish both upper and lower bounds for Pe.
First, it is necessary to note a basic fact from linear algebra.

1For an m×n matrix A and an n×p matrix B, rank(AB) =
rank(A) if B has rank n, or if B is surjective.

156



If Ai, i = 1, . . . , k are ni−1 × ni matrices then

rank

(
k∏

i=1

Ai

)
≤ min

i∈{1,...,k}
{rank(Ai)} (6)

rank

(
k∏

i=1

Ai

)
≥

k∑
i=1

rank(Ai)−
k∑

i=1

ni (7)

Using this, we establish the following bounds on the rank of
the edge map.

Lemma 3. If dim(Dq) ≤ dim(Dq′) and Re(Ge) is trans-
verse to the flow fq′ then

rank(Pe) = rank(Re),

and if dim(Dq) > dim(Dq′) then

rank(Pe) ≥ rank(Re)− 1

Proof. Let dim(Dq) ≤ dim(Dq′) and Re(Ge) be trans-
verse to the flow fq′ . Then as in the proof of Theorem 3,
because Ge is a section and Re(Ge) is transverse to fq′ , we

may assume that Sq′
0 is chosen so that Re(Ge) ⊂ Sq′

0 . We

can therefore view Re as a function Re : V q → Re(Ge)∩V q′
0

and let φq′
τ |Ge : Re(Ge)∩V q′

0 → V q′ be the restriction of the

diffeomorphism φq′
τ : V q′

0 → V q′ . Writing Pe = φq′
τ |Ge ◦ Re

allows one to show that

rank(Pe) = rank(Re),

again by the same reasoning in the proof of Theorem 3, i.e.,

because Dφq′
τ |Ge has full column rank equal to rank(Re).

Now let dim(Dq) > dim(Dq′). In this case, for x ∈ V q ,

Dφq′
τ (Re(x)) and DRe(x) can be expressed in coordinates as

dim(Dq′) − 1× dim(Dq′) and dim(Dq′)× dim(Dq) − 1 ma-

trices. Moreover, since rank(φq′
τ ) = dim(Dq′) − 1 it follows

from (7) that

rank(Pe) ≥ rank(Re)+rank(φq′
τ )−dim(Dq′) = rank(Re)−1

as desired.

Remark 5. Lemma 3 states that we cannot determine the
exact rank of an edge map if the dimension of the target do-
main is strictly less than the dimension of the source domain.
Since we cannot determine the exact rank of all such edge
maps, we cannot determine the exact rank of the Poincaré
map.

Before stating the main theorem for multi-domain hybrid
systems, we first note that in order to obtain a tighter lower
bound on the rank of Pq we need to keep track of the number
of edges which have target domains that are smaller in di-
mension than their source domains, as this negatively affects
the bound on Pq , as a consequence of Lemma 3.

Definition 7. Let m be the number of decreasing edges
for which Re maps from a higher dimensional domain to a
lower dimensional domain. Then m is given by

m =
∣∣{e ∈ E : dim(Dsor(e)) > dim(Dtar(e))}

∣∣
Theorem 4. Let H be a hybrid system satisfying assump-

tions (A1)-(A3) with x∗ a fixed point of the hybrid Poincaré
map Pq. For any q ∈ Q,

rank(DPq(x
∗)) ≤ min

e∈E
{rank(Re)} ≤ min

q∈Q
{dim(Dq)− 1}.

If for every e ∈ E such that dim(Dsor(e)) ≤ dim(Dtar(e)),

Ge(Re) is transverse to the flow f tar(e), then

rank(DPq(x
∗)) ≥

∑
e∈E

rank(Re)−m−
∑

q′∈Q−{q}
(dim(Dq′)− 1)

where m is the number of decreasing edges.

Proof. The first inequality is a result of applying (6)
together with the fact that the graph is cyclic. In particular,
by the definition of the edge map (Definition 6)

rank(Pq) = rank(Peρ(k−1)
◦ · · · ◦ Peρ(1) ◦ Peρ(0) ) (8)

≤ min
e∈E

{rank(Pe)}.

Now, since Pe = φ
tar(e)
τ ◦Re and rank(φ

tar(e)
τ ) = dim(Dtar(e))−

1 by Theorem 1,

rank(Pe) ≤ min{rank(Re),dim(Dtar(e))− 1}.
Therefore,

rank(DPq(x
∗)) ≤ min

{
min
e∈E

{rank(Re)},min
q∈Q

{dim(Dq)− 1}
}

Finally, since rank(Re) ≤ dim(Dsor(e)) − 1 and because the
graph is a cycle,

min
e∈E

{rank(Re)} ≤ min
q∈Q

{dim(Dq)− 1}

which yields the upper bound on rank(DPq(x
∗)).

The second equality follows by applying (7) coupled with

Lemma 3. Note that for each map Pe : V sor(e) → V tar(e),
the derivative DPe(x) can be expressed in coordinates as a
dim(Dsor(e)) − 1 × dim(Dtar(e)) matrix. By (8) and (7) we

have2

rank(Pq) ≥
∑
e∈E

rank(Pe)−
∑

q′∈Q−{q}
(dim(Dq′)− 1) .

Now by Lemma 3 and with m the number of decreasing
edges as in Definition 7, it is easy to see that the desired
lower bound on rank(Pq) is obtained.

We may use the above Theorem to guarantee that a given
Poincaré map will have at least a certain number of trivial
eigenvalues equal to 0. However, guaranteeing the exact
number is not possible in general. That is, unlike single-
domain hybrid systems or even smooth dynamical systems,
there are hybrid systems such that

rank(DPq(x
∗)) < min

e∈E
{rank(Re)}.

The first example of the following section serves as an exam-
ple of this strict inequality, and provides a counter-example
to the assertion that the rank of the Poincaré map can be
exactly determined for hybrid systems.

5. APPLICATIONS
In this section we apply the conclusions of the preceding

sections on two separate applications. The first application
is a simple example of a hybrid system whose Poincaré maps
have rank strictly less than the upper bound in Theorem 4.
In the second example we determine that the Poincaré maps

2Note that dim(Dq)−1 is not subtracted from the sum of the
ranks since it corresponds to n0 and nk using the notation
of the dimensions of the matrices given in (7).
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Figure 1: Limit cycle of the two-domain system in
Section 5.1. All grey trajectories in D1 (shown solid)
and D2 (dash-dotted) converge to the stable periodic
orbit (black) after one traversal of the cycle.

associated with a nontrivial model of a planar bipedal robot
with knees have rank equal to the upper bound established
in the main theorem, and it is shown that the periodic orbit
is stable.

5.1 Zero-rank Poincaré maps
In this first application we emphasize two ideas. First, the

following two-domain hybrid system is an example of a sys-
tem that can have hybrid Poincaré maps with rank strictly
less than the upper bound derived in Theorem 4. Secondly,
computations will show that the rank of both Poincaré maps
is equal to 0. This means that the hybrid limit cycle is not
sensitive to perturbations away from it; such systems are
sometimes called superstable, or are said to display instan-
taneous convergence to a limit cycle.

We define the first domain, D1, of this two-domain hybrid
system to be the upper-right quadrant of R

2. The vector
field in this domain is

f1(x, y) =
(−y + x(1− x2 − y2), x+ y(1− x2 − y2)

)T
.

The flow resets to the next domain when it reaches the pos-
itive y-axis, which we define to be the guard Ge1 . The reset
map Re1 projects the y-axis into R

3 such that

Re1(0, y) = (0, y, 0)T

clearly has rank 1.
The flow in the second domain, D2, is the linear system

f2(x, y, z)
T = (−x,−z, y)T ,

and is permitted to flow from the y-axis in R
3 until it reaches

the xz-plane, which defines Ge2 . All points on the xz-plane
are mapped back to the first domain by the reset map

Re2(x, 0, z) = (x+ 1, 0)T ,

which also has rank 1.
Considering Theorem 4 and Lemma 3 together yields

0 ≤ rank(P1) ≤ 1, 0 ≤ rank(P2) ≤ 1,

where P1 is the Poincaré map defined from Ge1 and P2 like-
wise from Ge2 . We find that rank(P1) = rank(P2) = 0,
through numeric computation. Therefore, equality with the
upper bound of Theorem 4 is not obtained. In addition, we
may interpret this to mean that all trajectories emanating
from Ge1 or Ge2 will converge to the limit cycle after at
most one iteration — see Figure 1.

5.2 Planar kneed bipedal robot
The application of interest to this work is a controlled

planar biped with locking knees walking on flat ground, as
studied in [1]. It may be considered the augmentation of the
planar compass biped described in [8, 26] with an additional
domain where the stance leg is locked and the non-stance
leg is unlocked at the knee.

Planar biped model. The planar biped is a two-domain
hybrid system on a cycle

H = (Γ, D,G,R, FG)

with graph structure Γ =
{
Q = {u, l}, E = {eu = (u, l), el =

(l, u)}} and domains D = {Du, Dl}. In the so-called un-
locked domain Du, the non-stance calf pivots about the
knee and we model the biped as a 3-link planar mecha-
nism. The dynamics evolve on the tangent bundle to the
configuration space Θu := T

3, which we give coordinates
θu = (θs, θns, θk)

T with the stance leg angle denoted by θs,
non-stance thigh angle by θns, and non-stance calf angle
by θk. Each angle is measured from the vertical. Since
the non-stance thigh and calf are locked together in the
locked domain Dl the dynamics evolve on the tangent bun-
dle to the configuration space Θl := T

2 with coordinates
θl = (θs, θns)

T . We transition from Du to Dl when the knee
locks, and from Dl to Du when the foot strikes the ground.

Each domain and guard is defined using unilateral con-
straint functions hi : Di → R, for i ∈ Q. In the locked
domain the end of the non-stance foot is aboveground when
the function hl : Dl → R

hl(θl) = l (cos(θs)− cos(θns))

is positive, and strikes the ground when hl is equal to 0. The
unlocked domain is subject to the constraint hu : Du → R

such that

hu(θu) = θk − θns

is positive when the knee is bent and equal to 0 at kneestrike,
when it locks. The constraint functions define our domains
such that

Di =

{(
θi
θ̇i

)
∈ TQi | hi(θi) > 0

}
,

for i ∈ Q. They also define transitions to the next domain
in the cycle such that

Gei =

{(
θi
θ̇i

)
∈ TQi | hi(θi) = 0 and ḣi(θi) < 0

}
.

Geu is the set of states where the leg is locking and Gel is
the set of states where the swing foot is striking the ground.
Note that each Gei is a codimension-1 submanifold transver-

sal to the vector field fi, since ḣi = Lfihi < 0, for each
i ∈ Q.

The reset maps R = {Reu , Rel} model transitions from
one domain to the next. We make the standard assumption
that all impacts are perfectly plastic; detailed discussions of
and formulas for the impact map may be found in [9, 3, 1]
and so will not be repeated due to space constraints.

We derive the equations of motion on each configura-
tion space using the Euler-Lagrange equations. This en-
tails finding the Lagrangian on each domain, a functional
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Figure 2: Biped dimensions, point-mass locations
and measuring conventions.

Li : Di → R, such that for i ∈ Q,

Li =
1

2
θ̇Ti Mi(θi) θ̇i − Vi(θi)

where xT
i = (θi, θ̇i)

T . Then the Euler-Lagrange equations
take the standard form [20]

Bivi =
d

dt

(
∂Li

∂θ̇i

)
− ∂Li

∂θi

=Mi(θi)θ̈i +Ci(θi, θ̇i)θ̇i +Ni(θi)

where if dim(Qi) = n, the Coriolis matrix Ci is a n × n
matrix, the gravitational torque vector Ni is n×1, and Bivi
is an appropriate control input. Since we want the biped to
walk on flat ground we will use controlled symmetries [26,
1] as our control law on each domain.

The above defines fi(xi), for every i ∈ Q as follows:

ẋi = fi(xi) =

(
θ̇i

M−1
i (θi)

(
Bi vi −Ni(θi)− Ci(θi, θ̇i)θ̇i

))

Simulation results. A periodic orbit O for the planar
kneed bipedH was found through exhaustive numeric search3

after selecting a reasonable set of mass and length parame-
ters for the biped:

M = mt = 5 kg, mc = 0.5 kg

L = 1 m, rc = 0.375 m, rt = 0.175 m

By choosing an initial condition for this hybrid periodic orbit
on the guard Geu of the unlocked domain Dρ(0) = Du we
ensure that our first continuous trajectory is a single point.
That is,

c0(t0) = c0(t1) = (0.021462, −0.26990, −0.26990,

0.82882, −0.45645, −11.454)T

The initial condition in the locked domain after the instan-
taneous transition due to kneestrike is given byReu(c0(t1)) =
c1(t1). The biped flows on Dρ(1) = Dl until footstrike,
when the flow reaches the guard Gel . Theorem 1 predicts
that the flow from initial condition to the guard on this
domain should have rank 3, i.e. the total derivative Dφl

τ

given by equation (4) should have rank 3. The eigenvalues

3An approach to finding periodic orbits of smooth systems,
and to computing the space derivative Φi

τ in equation (3) is
described in [23].
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Figure 3: Biped phase portrait. In Dl the non-stance
calf angle θk (shown dashed) is equal to the non-
stance angle θns (dashed-dotted).

of Dφl
τ (c1(t1)) = Φl

τ (c1(t1)) + fl(c1(t2))Dτ (c1(t1)) are

σ
(
Dφl

τ (c1(t1))
)
=

⎛
⎜⎜⎝

1.2765
−0.23479

8.8037 × 10−17

0.41277

⎞
⎟⎟⎠ .

Note that one eigenvalue is close to machine precision, mean-
ing that it is virtually equal to 0. This allows us to conclude
that the numeric results agree with Theorem 1.

At footstrike we transition back to the unlocked domain
Dρ(2) = Du, with initial condition given by Rel (c1(t2)) =
c2(t2). A similar computation confirms that Dφu

τ (c2(t2))
has rank 5, as expected.

Since we have already computed the total derivative on
each domain, it is straightforward to compute the eigenval-
ues of the linearization of the Poincaré maps. The first-
return map of c0(t0) is given by

Pu(c0(t0)) = φu
τ ◦ Rel ◦ φl

τ ◦Reu(c0(t0))

The eigenvalues of the linearization of the Poincaré map
from the guard in this domain are given by

σ
(
DPu(c0(t0))

)
=

⎛
⎜⎜⎜⎝
0.58775 ± 0.50861i
−6.1057 × 10−16

0.16871
1.1819 × 10−16

−6.5121 × 10−18

⎞
⎟⎟⎟⎠

The 3 eigenvalues close to machine precision are trivial eigen-
values, so rank(Pu) = 3. The remaining nontrivial eigenval-
ues all have magnitude less than 1, so Pu is also stable.

Similarly, the first-return map of an initial condition in
Gel is given by

Pl(c0(t0)) = φl
τ ◦Reu ◦ φu

τ ◦Rel (c0(t0)).

The eigenvalues of its linearization are

σ
(
DPl(c0(t0))

)
=

⎛
⎝0.58836 ± 0.50742i

0.16930
−1.1201 × 10−15

⎞
⎠

where c0(t0) = (0.23720, −0.23720, 1.5163, 1.6023)T . One
eigenvalue close to machine precision is trivial, implying that
rank(Pl) = 3. The remaining eigenvalues are within the unit
circle, implying that Pl is stable.

Since rank(Pu) = rank(Pl) = 3, equality with the upper
bound derived on the rank in Theorem 4 is achieved for this
particular system and the stability of each Poincaré map is
determined by exactly 3 eigenvalues.
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6. CONCLUSIONS AND FUTURE WORK
We have shown that the properties of Poincaré maps of hy-

brid systems are fundamentally different from the properties
of Poincaré maps for smooth systems. The trivial eigenval-
ues of the linearization of a hybrid Poincaré map are equal
to 0, and the number of trivial eigenvalues is bounded above
by dimensionality differences between the discrete domains
of the hybrid system and the minimum rank of the reset
maps. We have illustrated these conclusions on a nontrivial
hybrid system — a planar kneed biped — and on a simple
two-domain hybrid system with rank strictly less than the
derived upper bound, thereby showing that equality with
the upper bound cannot be obtained for general hybrid sys-
tems, i.e. only upper and lower bounds on the rank can be
given.

Future work will be directed towards deriving conditions
that will allow us to determine the rank of the Poincaré map
exactly, or at least obtain tighter upper and lower bounds on
the rank. It is also important to understand how Poincaré
maps defined on different sections in different domains relate
to each other.
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