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Abstract— The control of bipedal robotic walking remains
a challenging problem in the domains of computation and
experiment, due to the multi-body dynamics and various
sources of uncertainty. In recent years, there has been a rising
trend towards model reduction and the design of intuitive
controllers to overcome the gap between assumed model and
reality. Despite its viability in practical implementation, this
local representation of true dynamics naturally indicate limited
scalibility towards more dynamical behaviors. With the goal of
moving towards increasingly dynamic behaviors, we leverage
the detailed full body dynamics to generate controllers for the
robotic system which utilizes compliant elements in the passive
dynamics. In this process, we present a feasible computation
method that yields walking trajectories for a highly complex
robotic system. Direct implementation of these results on
physical hardware is also performed with minimal tuning and
heuristics. We validate the suggested method by applying a
consistent control scheme across simulation, optimization and
experiment, the result is that the bipedal robot Cassie walks
over a variety of indoor and outdoor terrains reliably.

I. INTRODUCTION

The majority of the work within bipedal locomotion

control design involves some form of model simplification.

A significant subset of the work lies in viewing walking

dynamics as a reduction problem, wherein the complex real

world dynamics are assumed to be governed by the evolution

of some reduced system, such as a LIP models (Linear

Inverted Pendulum [13]), SLIP models (Spring Loaded In-

verted Pendulum [22]), and the ZMP method (Zero Mo-

ment Point [27]). Other works investigate this dimensional

reduction by performing design of locomotion on the passive

dynamics of the system. This can improve model fidelity

and represent more physical details of the system, arising

methods include hybrid zero dynamics (HZD) methods [29]

and other optimization based approaches [23], [7].

Using a pendulum based model can provide intuitive

insights for walking dynamics. However, designing con-

trollers for the more complicated real dynamics becomes

more intractable, which consequently can require empirical

and ad-hoc expertise for realizing experiments. Results such

as [14], [18] designed center of pressure trajectories based

on the COM (center of mass) dynamics of the LIP or

SLIP model, and project the trajectory from the reduced

to full model to achieve walking. The construction built

on simple models demand the controller to compensate

the uncertainties caused by the gap between the assumed

*This research is supported by the NSF under Grant Number 1544332,
1724457, 1724464 and Disney Research LA.

1J. Reher, W. Ma, and A. D. Ames are with the Department of Mechanical
and Civil Engineering, California Institute of Technology, Pasadena, CA
91125 USA. {jreher, wma, ames}@caltech.edu.

Fig. 1. Cassie robot from Agility Robotics in an outdoor environment
(Left); Cassie standing in Simscape (Right).

reduced model dynamics and the full body dynamics. This

can sometimes be an infeasible task and it is not always clear

how to coordinating the full-order system to behave as a low-

dimensional pendulum while respecting physical limits.

Alternatively, by designing controllers which directly con-

sider a more accurate model, a control engineer can better

account for more complex physical phenomena. One exam-

ple is the HZD framework [30], which has been effective

in both theory and experiments for walking [6] and running

[15]. However, this methodology often comes with a high

cost of computation. It can become especially challenging

when solving more dynamical behaviors such as walking on

sand, slippery surfaces and walking/running with compliance

[24]. Therefore, certain levels of approximation have been

suggested: a gait library method [8] which ignores the com-

pliant dynamics in the robot has demonstrated robust walking

behaviors with the addition of several ad-hoc components;

a machine learning method [25] has also been used to train

control policies on a perturbed simulation model.

The approach we propose falls into the second category.

In this paper, we considered walking on the Cassie robot

(Fig. 1) as a constrained dynamical system with compliance.

Then the control of locomotion is carefully posed as a

nonlinear programming problem, which is solved in a fast

gait optimization toolbox [12], [11]. We then present a

minimal set of tools for estimation and control which are

able to realize Cassie walking over various outdoor terrains

with minimal modification in the control implementation. We

report the result as an alternative to model reduction methods,

and a complement to the model based design methods.
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Fig. 2. The configuration coordinates of the Cassie robot: the side view
of Cassie highlights the compliant mechanism (left); the front view of the
robot model (right).

The paper is structured as follows: Section II introduces

the Cassie robot model and how the trajectory optimization

problem with constraints and physical limits produce realiz-

able locomotion. Section III describes the tools we used to

measure and estimate the state of the robot, and introduces

a PD control law with an approximate gravity compensation

term to stabilize the designed trajectories. Lastly, Section

IV presents the walking on hardware, which align with the

behaviors designed in optimization.

II. ROBOTIC MODEL AND GAIT DESIGN

This section presents an efficient and robust trajectory

optimization method, wherein a compliant model of the

Cassie robot (see Fig. 1) will be considered. In developing

this model, we also compare the dynamical difference and

computation efficiency against a simplified model (referred

to henceforth as the simple model), which neglects the

compliant multi-link mechanism that is on the actual robot.

A. Hybrid dynamics with full model

1) State and input space: Utilizing the floating base

convention [9], we define the configuration space of bipedal

walking as Q ⊆ R
n, where n is the unconstrained degrees

of freedom. Let q = (pb, φb, ql) ∈ Q := R
3 × SO(3) ×Ql,

where pb is the global Cartesian position of the body fixed

frame attached to the base linkage (the pelvis), φb is its

global orientation, and ql ∈ Ql ∈ R
nl are the local

coordinates representing rotational joint angles and prismatic

joint displacements. Further, the continuous time state space

X = TQ ⊆ R
2n has coordinates x = (qT , q̇T )T . The

local coordinates are defined as qTl :=
(
qL, qR

)
where the

superscript L/R represents Left/Right leg and

qi∈{L,R} =
(
θihr, θ

i
hp, θ

i
hy, θ

i
k, θ

i
s, θ

i
t, θ

i
hs, θ

i
a

)
. (1)

Among these joints, θhr, θhp, θhy, θk, θa are actuated by

BLDC motors, and θhs, θs are driven by leaf springs, which

are treated in this work as rigid links with a rotational spring

at the pivot. Hence, we are left with one passive joint θt on

each leg and an unconstrained model of the robot consisting

of 22 DOF. The control inputs u ∈ U ⊆ R
m are for the

actuation applied at some joints, with m = 10 for Cassie.

Fig. 3. The directed graph of walking dynamics, on the left is double
support domain Dds and on the right is the single support domain Dss.

2) Hybrid dynamics: We structured the dynamics of walk-

ing on Cassie in a multi-domain and hybrid fashion. A di-

rected cycle is specified for the system and is depicted in Fig.

3. Specifically, walking on Cassie involves two continuous

domains — double support domain Dds and single support

domain Dss, which are connected by two state dependent

events — lift and impact. In addition, we consider the contact

dynamics as a set of holonomic constraints Γv(q) ≡ 0. The

domain index is denoted as v ∈ {ds, ss}. For the double

support phase v = ds, both feet remain static contact with

the ground, and for the single support phase v = ss we

only constrain the stance foot’s contact dynamics. Together

with the multi-bar mechanism constraints we have a set of

holonomic constraints hv := [Γv,Γf ] with v ∈ {ds, ss}.

We then derive the traditional constrained manipulator’s

equations of motion [16] for a particular domain Dv:

D(q)q̈ + h(q, q̇) = Bu+ Jv(q)
Tλ+ ksq + kbq̇ (2)

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0, (3)

where D is the inertia matrix, h contains the Coriolis and

gravity terms, B is the actuation matrix, and the Jacobian

of the holonomic constraint is Jv(q) = ∂hv/∂q with its

corresponding constraint wrenches λ ∈ R
mhv . Note that we

introduced the spring forces as external forces Fs = ksq+kbq̇
with ks, kb the stiffness and damping coefficients. The

transition dynamics between domains is detailed in other

work [9], but briefly speaking, the transition of Dds → Dss

is an identical map and that of Dss → Dds involves jump in

states due to the perfectly inelastic impact model.

3) Model comparison: Cassie was designed to encom-

pass the primary physical attributes of the SLIP model [2]

dynamics. The primary idea is to have a pair of light-

weight legs with a heavy torso so that the actual system can

be approximated by a point-mass with virtual springy legs

(see Fig. 1 and Fig. 2). On Cassie, a compliant multi-link

mechanism is used to transfer power from higher to lower

limbs without allocating the actuators’ major weight onto

the lower limbs, and effectively acts as a pair of springy

legs. However, this compliant mechanism not only increases

local stiffness of the nonlinear dynamics, but also induces

modelling uncertainties for the springy joints. In the way

that the heel springs are modeled in this work, the relatively

small mass can also cause the inertia matrix to be poorly

conditioned. Consequently, designing controllers based on

this compliant structure is both challenging in computational
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Fig. 4. A comparison of the full model vs. simple model.

complexity and experimental implementation. To balance

computation and experiments, two models are considered:

- Simple model assumes all four leaf springs are rigid

linkages, which yields a trivial geometry relations

Γs(q) := θk−θt−13◦ ≡ 0 for the multi-link structure.

- Full model instead treats the rotational joint of the

leaf spring linkage as a torsional joint, with stiffness

and damping effects. In addition, the distance between

the hip and end of the heel spring remains a constant

(as shown by the dash line in Fig. 2). This geometry

relation can be described as a holonomic constraint:

Γf (q) ≡ 0, and is discussed further in Sec. III.

B. Trajectory optimization

Consider an input-output feedback linearization controller

[3] (also known as “computed torque” [16]) uv(x, α) that

stabilizes the continuous dynamics, with α the control pa-

rameters. We convert (2) into a closed-loop feedback system:

ẋ = fv(x) + gv(x)uv(x, α) := fcl(x, α) (4)

where the static parameters α are used to parameterize a

trajectory represented by a 6-th order Bézier polynomial

Bα(t) with t the time. The primary idea is to use the

controller uv(x, α) to drive y(q, t) = ya(q) − Bα(t) → 0
exponentially, with the actual outputs used on Cassie:

ya(q) =







p̄com(q)− psttp(q)
θsthy

p̄com(q)− pswtp (q)
θswhy
φy(q)







∣
∣
∣
∣
∣
∣
∣
∣θsp=0

θhs=0







stance foot positions
stance hip yaw

swing foot positions
swing hip yaw

swing foot pitch







,

where ptp, φy(θtp) are the ankle Cartesian position and pitch,

p̄com(q) = pb +R(φb)[0, 0, −0.125]T , (5)

is the “average” center of mass position of the robot, and

R(φb) is the rotation matrix associated with the floating base.

It should be noted that we are controlling the undeflected

Cartesian positions of the legs by zeroing the spring deflec-

tions. By formulating the outputs in this way, the passive

dynamics of the system will contain the dynamics associated

with the compliant elements [24].

We now have a control parameter optimization problem,

with α the primary decision variables. An optimization pack-

age, FROST [12], [11], was used to convert the following

trajectory optimization problem

min
α,xi,ẋiui

∑

ṗb(i)
T ṗb(i) i ∈ {1, 2, ...M} (6)

s.t. C1. closed loop dynamics eq.(4)

C2. HZD condition : y(i) = 0, ẏ(i) = 0

C3. physical feasibility on x(i)

into a traditional nonlinear programming (NLP) problem that

can be solved by a standard optimization solver. In essence,

we used a direct collocation method to numerically solve the

nonlinear dynamics C1, then an optimization solver such as

IPOPT [28] can address the other nonlinear constraints C2,

C3 on the solved dynamics x(i), where i ∈ {1, 2, 3...M}
with M the total number of nodes. Theoretical details on

HZD can be found in [29]. The feasibility constraints C3

specifies the friction cone, foot clearance, and torque limits.

Additional constraints similar to those detailed in [21] are

added to further restrict the step timing, minimize swing leg

aggressiveness, and ensure small torso movements are also

added for easier implementation on hardware.

As a proof of concept, we only design gaits for stepping

in place by constraining the forward and lateral velocity to

be 0 based on these two models. Later in experiments, a

perturbation from the joystick input can lead to walking.

Corresponding to the stepping in place gait, the objective

function is to minimize the pelvis velocity. All of the

constraints are implemented conservatively so that the results

can be physically implementable on the real robot. Before we

move on to experimental implementation, we shall compare

the optimization results with the simple model and full model.

C. Full model versus simple model

In this section, we formulated two trajectory optimization

problems based on the simple and full model accordingly.

As Table I shows, the motion planning based on the simple

model outperformed that of full model both in terms of

iterative searching and evaluating the closed-loop dynamics.

This is because the trivial setup of the compliant multi-

link mechanism of the simple model significantly reduces

the computational complexity. The obvious advantage of

computation not only makes it more efficient for field tests

[8] and parameter tuning, but also, removed the dependence

on precise modelling, which often requires laborious model

identification for such a high-dimensional system. However,

TABLE I

COMPUTATION PERFORMANCE ON A UBUNTU-BASED COMPUTER WITH

AN I7-6820HQ CPU @2.70GHZ AND 16GB RAM.

simple model full model

# of iterations 275 773

time of IPOPT (s) 20 153

time of evaluation (s) 78 755
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Fig. 5. Vertical leg forces as measured on hardware over four steps of
typical stepping in place for the left (red) and right (blue) legs. Contact
classification is shown as shaded regions, with double-support in green.

for the same reason, to make a simple model based controller

(or trajectory) work successfully in reality, one needs to

design controllers which treat the compliant dynamics as

uncertainty to overcome such dynamical gaps.

While we do not wish to overfit physical reality, suffi-

ciently large uncertainty caused by known modelling error

could result in poor controller design. We argue that a

large portion of this particular trade-off can be compensated

through the inclusion of the compliance which exists in

in the physical model. Other work considering prismatic

passive compliant elements [20], and an embedded complaint

controller [24], have also demonstrated these concepts on

hardware. To demonstrate this, we controlled the full model

walking with a reference trajectory designed based on the

simple model. As the results show in Fig. 4, the leg length

begins to compress and the pelvis drops lower than intended,

this is because the simple model considers the spring com-

ponents supporting the body as a rigid component but the

full model allows for deflection. Another draw back of this

implementation is that the double support domain, depicted

in Fig. 5, will be much longer than intended for the simple

model. This is because the spring swing leg is compressed

and cannot retract itself immediately, resulting in unplanned

contacts. Reality differs from the simple model’s dynamics,

inducing additional forces on the other foot and pushing the

actual dynamics away from its designed behaviors.

III. IMPLEMENTATION ON HARDWARE

A. State measurement and estimation

1) Cassie’s leg as a constrained manipulator: As previ-

ously mentioned, Cassie’s compliant legs were meticulously

designed to provide desirable ground interaction properties

[2] similar to a spring-mass system. Because this structure

is essentially a compliant and constrained 6-bar mechanism,

it affects how we obtain the manipulator Jacobians for the

system. Let r ∈ R
3 be the position of an end-effector

with respect to the robot’s COM. This can be obtained by

r = fFK(q), where fFK(q) : Q → R
3 is the forward

kinematics, and we chose the ankle pitch pivot as the end

effector for Cassie. The general methodology to derive the

constrained forward kinematics of a robotic manipulator is to

open the mechanism loop, propagate the kinematics along the

branches, and add kinematic constraints to close the loop. We

partition the configuration coordinates into active (θa ∈ R
na )

and passive (θp ∈ R
np ) joints, with n = na+np and “active”

describing any joint providing a torque to the system. This

means for each leg, na = 7, np = 1. Next, we apply a

kinematic constraint to the leg. Specifically, the heel spring

is attached to the rear of the tarsus linkage, with its end

constrained via a pushrod affixed to the hip pitch linkage. We

can write the pushrod attachment as a holonomic constraint

applied between the hip and heel spring connectors as,

Γf (ql) := d(ql)− 0.5012 ≡ 0, (7)

where the attachment distance d(ql) ∈ R is obtained via the

forward kinematics from one connector to the other. Further,

we can write the end effector and constraint velocities:

ṙ =
∂r(ql)

∂ql
= Jee(ql)q̇l

Γ̇f =
∂Γf (ql)

∂ql
= Jc(ql)q̇l.

Partition the Jacobians Jc and Jee into active and passive

entries to obtain the system of equations,
{

0 = Jc,aθ̇a + Jc,pθ̇p,

ṙ = Jee,aθ̇a + Jee,pθ̇p,
(8)

where Jc,a ∈ R
np×na , Jc,p ∈ R

np×np , Jee,a ∈ R
3×na ,

and Jee,p ∈ R
3×np . Because we have one passive joint per

constraint (see the tarsus joint in Fig. 2), Jc,p is invertible.

We can then calculate the passive joint velocities from the

active as θ̇p = −J−1
c,pJc,aθ̇a, with

ṙ = (Jee,a − Jee,pJ
−1
c,pJc,a)

︸ ︷︷ ︸

J̄

θ̇a, (9)

where J̄ ∈ R
3×na is the constrained end effector Jaco-

bian. Using this result, we can also compute an implicit

measurement of the quasi-static forces acting at the ankle

when a leg is in contact with the ground. Specifically, let

ūi = [ui, −ksqi − kbq̇i]
T ∈ R

na be the torques associated

with the active joints on leg i ∈ {L,R}, then,

Fgrf,i = −(J̄T
i )−1ūi. (10)

It should be noted that θhs is not directly measurable on

the hardware to compute the contact force. Hence it is

approximated via simple gradient descent inverse kinematics.

2) Contact detection: The state-dependant event—ground

contact—is crucial to controller and estimation routine given

the hybrid nature of bipedal walking. In this work, we utilize

the implicit leg force measurement as a contact switch.

Specifically, if the axial leg force is greater than 75 N

and maintained for over 5 ms then contact is registered

for a given leg. Additionally, if the axial leg force drops

below 75 N then contact is considered broken. Four steps of

contact classification are pictured as shaded regions overlain

on the implicitly measured ground reaction forces in Fig. 5.

Specifically, red shaded regions are classified as left contact,

blue as right, and green as double support.
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Fig. 6. Control and estimation diagram for locomotion. The estimation and
controller blocks are separate threads running in parallel on the robot’s real-
time PC at 500 Hz and 2 kHz respectively. The current controller domain
is triggered via the s{L, R} contact classifier.

3) Estimation of floating base coordinates: Control for

walking robots typically relies on knowledge of the full 6
DOF floating base pose and velocities. However, the propri-

oceptive sensing typically included on these robots cannot

directly measure these states and they must be estimated. To

do this, we choose a set of states which capture the float-

ing base coordinates while providing implicit measurements

through the full body kinematics. Specifically, the estimator

state1 is chosen as x = [R, p, v, ba, bω, ci]
T , where p ∈ R

3 is

the position of the CoM, v is its linear velocity, R ∈ SO(3) is

the rotation describing the orientation of the floating base in

the world, ba ∈ R
3 is the accelerometer bias, bω ∈ R

3 is the

gyroscope bias, and ci,∈ R
3 is the i-th contact location. The

estimator presented here is primarily drawn from [4], from

which we combine measurements on the contact velocities.

The Cassie biped is equipped with 14 rotary encoders and

a VectorNav VN-100 IMU, from which we will utilize the

3-axis accelerometer and gyroscope. The raw accelerometer

and gyroscope data, ã and ω̃, are subject to the additive noise

wa, wω as well as a random-walk bias with noise wba, wbω .

We then can obtain the expected values of acceleration and

angular velocity at the center of mass as:

a = R(ã− ba − wa) + g

ω = ω̃ − bω − wω.

The encoders provide access to the corresponding joint angle

measurements θ̃ and their velocities
˙̃
θ, which are used to

compute implicit measurements of the robot kinematics.

Specifically, we can obtain the position ci and velocity ċi
of the ith foot (i = {L, R}) as:

ci = p+R ·
(
fFK,i(θ̃)

)
− nc

ċi = v +R ·
(
ω×fFK,i(θ̃) + J(θ̃)

˙̃
θ
)
− nċ = 0,

where ω× denotes the cross product matrix of the angular

velocity and the noise v =
[
nT
c , n

T
ċ

]T ∼ N (0, R). We do

not consider the feet of the robot in the filter, and treat the

1This should not be confused with the walking dynamics state x in (4).

ankle pivot as the contact. The discrete Gaussian noise terms

nc and nċ incorporates various sources of noise, including

the measurement noise and modelling uncertainty.

The estimator dynamics is given by its position and orien-

tation along with their associated velocities (see Sec.II-A.1).

We can track the state of the contact location to provide a

relative location of the contact-to-floating base. If no contact

is detected, the associated covariance is set to a large value.

The discrete-time dynamics of the floating base are given by

x̂−
k = fest(x

+
k−1) =










R+
k−1Λ(ω∆t)

p+k−1 + v+k−1∆t+ a 1
2
∆t2

v+k−1 + a∆t

b+a,k−1 + wk,ba

b+ω,k−1 + wk,bω

c+i,k−1 + wk,ci










,

where Λ(ω∆t) is an incremental rotation matrix [4],

Λ(α) := exp(α×)

= I +
sin(||α||)α×

||α||
+

(1− cos(||α||))(α×)2

||α||2
, (11)

with ‖·‖ the Euclidean norm and wk ∼ N (0, Q). If the robot

has established contact with the ground, we have an implicit

measurement of the foot position and velocity relative to the

floating base through the forward kinematics. We then have

the measurement and corresponding prediction models,

zk =

[
fFK,i(θ̃)

ω̃×fFK,i(θ̃) + J(θ̃)
˙̃
θ

]

, h(x̂−
k ) =

[
(R−

k )
T (c−i,k − p−k )

−(R−
k )

T v−k

]

.

The filter presented thus far utilizes additive noise on a

constant foot contact prediction to allow for foot slippage

during stance. However, there are certain scenarios in which

we may want the state estimate to satisfy some physical

constraints on contact during stance. Recent work on esti-

mation for legged robots [10] exploits symmetries naturally

present in the model to provide additional convergence

guarantees, an estimation scheme using full-body dynamics

with assumed knowledge of the contact surface has been used

in a mixed integer Quadratic Program (QP) [26] for handling

contacts, and others have looked at predicting covariance

values for contact velocities through contact force [5]. In

our work, we maintain that the estimate should satisfy the

heuristic inequality:




−a/F̄i

−a/F̄i

−b/F̄i



 ≤ c+i,k − c+i,k−1 ≤





a/F̄i

a/F̄i

0



 , (12)

where a and b are positive tunable scalar values, and F̄i =
||Fgrf,i||. The primary function of this heuristic constraint is

to disallow vertical positional drift in the contact estimate.

We proceed with the standard EKF recursion,

Fk =
∂fest
∂x

∣
∣
∣
∣
x
+

k−1

, Gk =
∂fest
∂w

∣
∣
∣
∣
x
+

k−1

, Hk =
∂h

∂x

∣
∣
∣
∣
x̂
−

k

P−
k = FkP

+
k−1F

T
k +GkQkG

T
k , (13)

also computing x̂−
k via (11) and yk = zk − h(x̂−

k ). The

measurement update with the contact constraint can then be

implemented as a QP:
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Fig. 7. Center of mass positions (left three) and velocities (right three) with respect to the stance foot over 10 seconds of stepping in place on hardware
(solid) versus the optimization result (dashed).

x
+
k = argmin

x∈R18

∥

∥x− x̂
−
k

∥

∥

2

(P−

k
)−1 +

∥

∥yk −Hk(x− x̂
−
k )

∥

∥

2

(Rk)
−1

s.t. Contact constraint: Eq.(12)

where ‖v‖A :=
√
vTAv is the Mahalanobis norm, and the

posteriori error covariance is updated as

P+
k = P−

k − P−
k HT

k (HkP
−
k HT

k +Rk)
−1HkP

−
k . (14)

The QP is solved using a custom MATLAB port of the static

memory implementation of QPOASES2, which is autocoded

for implementation on hardware using Simulink Coder to

allow for hotstarting. The resulting linear velocities will be

used in the next section to stabilize the walking.

B. Virtual Constraint Controller

While model based controllers provide useful tools in

proving dynamical stability, they are sensitive to uncer-

tainty thus not readily suitable for experiments. In practice,

any controller that renders the virtual constraint y(q, t) :=
ya(q) − Bα(t) → 0 sufficiently fast can stabilize the dy-

namics with trajectories given by (7). As such, we formulate

our virtual constraint tracking problem as a task-space PD

controller with a gravity compensation term:

u = −Y (q)−1(Kpy +Kdẏ) +
∑

i∈{R,L}

siJ̄
T
i,mMg,

where Y (q) = ∂ya/∂q and Kp,Kd are the PD gain matrices,

si ∈ [0, 1] is a blending term such that sL + sR = 1,

J̄i,m are the rows of (9) for a given leg corresponding

to the motors, M = 33.32 kg is the total mass of the

robot, and g = [0, 0, −9.81] is the gravitational constant.

Note that si is used to transition the approximate gravity

compensation to the alternating stance legs, see more details

in [22]. Directly implementing this controller with trajectory

obtained from the NLP (7) can at best result in a marginally

stable locomotion for experiments. Motivated by this, a

discrete PD controller to augment the footstrike locations in

the horizontal plane during locomotion is implemented as:

∆pnsf = K̃p(v̄k − vref) + K̃d(v̄k − v̄k−1), (15)

where the average velocity of the current step v̄k and

previous step v̄k−1 are computed directly from the floating

base estimator. The reference velocity vref is obtained from

the average velocity over the first half of the desired walking

cycle, and can be perturbed to command forward or lateral

2https://projects.coin-or.org/qpOASES/wiki/QpoasesEmbedded

velocities to the robot. This regulator-type controller is

largely inspired by early work of [19], and has been suc-

cessfully implemented on similar legged systems [6], [22].

In addition, because the output values are computed based

on a Bézier polynomial, the update value ∆pnsf can directly

augment the last two parameters of the corresponding output

polynomials. We employ a motion transition method [17] to

update the trajectory which results in a smooth tracking and

preservation of the desired impact velocity.

The estimation and control routines are deployed in

Simulink Real-Time, and run on a real-time target ma-

chine on the robot. In order to adhere to the strict tim-

ing requirements of the system we run the estimation and

control routines with concurrently executed multithreading.

The estimation routine runs at 500 Hz, while the control

thread runs at 2 kHz. A block diagram of the software

structure on the robot is shown in Fig. 6. To facilitate

testing before actually running controllers on the physical

hardware, a Simscape Multibody simulation of the robot

provided by Agility Robotics3 was modified to implement

our control algorithm. This was then used to tune controller

parameters before implementation which are directly used on

the physical robot for performing the experiments.

IV. RESULTS AND CONCLUSION

The results presented in this paper were implemented on

Cassie experimentally, with the result being stable walking

on hardware. In Fig. 9, we compared the spring deflection

between the actual experiments and designed behavior from

optimization. Because this matched closely to the planned

compliance, minimal tuning was then required implement a

simple output tracking PD controller. The COM kinematics

are shown in Fig. 7, with the primary difference appearing

in the vertical direction, likely due to the gravity compen-

sation pushing on the ground inconsistent with the designed

motions. Additionally, limit cycles for the knee and hip pitch

joints are shown in Fig. 8 to illustrate stable walking.

The Cassie biped poses a unique challenge due to its

compliant mechanism and highly underactuated nature of the

dynamics. In order to leverage these components in experi-

ments, we constructed a hybrid model for walking dynamics

based on a rigid model (simple model) and compliant model

(full model). A comparison of these two models with regards

to computation performance and simulation suggested two

directions: ignoring the compliance and designing controllers

which are robust to the mismatch, and using a more complex

3https://github.com/agilityrobotics/agility-cassie-doc
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Fig. 8. Limit cycles for the right knee and hip over 10 seconds of stepping
in place on hardware (solid) versus the nominal cycle (dashed).

Fig. 9. Deflections of the stance knee and heel springs over 10 seconds
of walking on hardware (solid) versus the optimization result (dashed).

model which designs locomotive behaviors encoding the

compliant behavior. We then posed an optimization prob-

lem to design gaits for the 22 DOF compliant robot and

present an algorithmic approach to estimate and control the

hardware. The result is that Cassie walks with experiment-

level robustness in various environments: indoor and outdoor

(see snapshots in Fig. 10 and the video [1]). Future work

includes mitigating the computational burden for the full

body dynamics and designing robust controllers to further

overcome a reasonable degree of model uncertainty.
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