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Abstract

Dynamic walking on bipedal robots has evolved from an idea in science

fiction to a practical reality. This is due to continued progress in three

key areas: a mathematical understanding of locomotion, the compu-

tational ability to encode this mathematics through optimization, and

the hardware capable of realizing this understanding in practice. In this

context, this review article outlines the end-to-end process of methods

which have proven effective in the literature for achieving dynamic walk-

ing on bipedal robots. We begin by introducing mathematical models

of locomotion, from reduced order models that capture essential walk-

ing behaviors to hybrid dynamical systems that encode the full order

continuous dynamics along with discrete footstrike dynamics. These

models form the basis for gait generation via (nonlinear) optimization

problems. Finally, models and their generated gaits merge in the con-

text of real-time control, wherein walking behaviors are translated to

hardware. The concepts presented are illustrated throughout in sim-

ulation, and experimental instantiation on multiple walking platforms

are highlighted to demonstrate the ability to realize dynamic walking

on bipedal robots that is agile and efficient.
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1. INTRODUCTION

The realization of human-like capabilities on artificial machines has captured the imagina-

tion of humanity for centuries. The earliest attempts to realize this were through purely

mechanical means. In 1495, Leonardo da Vinci detailed his Automa cavaliere, a primitive

humanoid in a knights armor and operated by a number of pulleys and cables. However,

these mechanical automatons lacked the ability to apply feedback control and thus the field

remained largely dormant until digital computers became broadly available. In 1921 the

word “robot” was coined by Czech playwriter Karel Carek, just 40 years before micropro-

cessors were introduced and soon thereafter the field of legged robots began to emerge.

Today, the field of robotic legged locomotion is of special interest to researchers as

humans increasingly look to augment their natural environments with intelligent machines.

In order for these robots to navigate the unstructured environments of the world and perform

tasks, they must have the capability to reliably and efficiently locomote. The first control

paradigms for robotic walking used a notion of static stability where the vertical projection

of the Center of Mass (COM) is contained to the support polygon of the feet, leading to the

WABOT 1 robot in the early 1970s at Waseda university (1) and the first active exoskeletons

by Vukobratović at the Mihailo Puppin Institute (2). This static stability criterion was very

restrictive, leading to the development of the Zero Moment Point criterion (3, 4), which

enabled a wider range of robotic locomotion capabilities by generalizing from the COM

to the Center of Pressure (COP). Despite this generalization, it still restricts the motion

of the robot to be relatively conservative and does not allow for more dynamic motions

when compared to the capabilities of biological walkers (5). Nevertheless, this methodology

has been perhaps the most popular methodology to date for realizing robotic locomotion.

Several of this method has been applied to various successful humanoid robots such as the

Honda ASIMO robot (6), the HRP series (7, 8, 9), and HUBO (10).

As the field progressed into the 1980’s it became clear that to achieve truly dynamic

locomotion it was necessary to further exploit the natural nonlinear dynamics of these sys-

tems in an energy efficient and stable fashion. In stark contrast to the concept of fully

actuated humanoid locomotion, Mark Raibert and the LegLab launched a series of hopping

robots which demonstrated running behaviors and flips (11, 12). To achieve these behaviors,

there was a shift from the conservative walking models encoded by the zero moment point

to reduced order models (e.g. the spring loaded inverted pendulum) that ensure dynamic

locomotion through the creation of stable periodic orbits (13). Building upon this core idea,

Tad McGeer began development of completely passive walking machines, which would ulti-

mately give rise to the field of passive dynamic walking (14). The downside of this method

is that the system has little to no actuation with which it can respond to perturbations or

to perform other tasks. However, these breakthroughs were critical in demonstrating that

dynamic robotic locomotion was possible on systems which were not fully actuated, and

that this underactuation could actually be leveraged to improve their performance.

Despite the advances leading up to the turn of the century, there remained a growing

gap between the physical capabilities of robotic systems and the development of controllers

to exploit them. This was particularly stark in the area of underactuated walking, where the

lack of formal approaches that leverage the intrinsically nonlinear dynamics of locomotion

limited the ability to fully exploit the robot’s actuation authority. In the early 2000’s, a

key contribution to this area was introduced by Jessy Grizzle et al. (15) in which they

developed the notion of virtual constraints, or holonomic constraints enforced via control

rather than a physical mechanism. Enforcing these constraints leads to low-dimensional
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invariant surfaces, the zero dynamics surface, in the continuous phase of the model. These

virtual constraints could then be designed such that this surface is hybrid invariant - being

invariant under both the continuous and discrete dynamics - ultimately leading to the

concept of Hybrid Zero Dynamics (HZD) (16). The end result is formal guarantees on the

generation and stabilization of periodic orbits (17), i.e., walking gaits. This paradigm for

control of dynamic underactuated locomotion has pushed boundaries on what is achievable,

including: fast running (18, 19) and efficient humanoid walking (20, 21).

As we examine this brief historical outline of key developments in dynamic walking, it

can be observed that with each new proposed methodology comes a greater understanding

of how to model, plan, and execute increasingly complex behaviors on these robotic systems.

Due to the inherently difficult nature of dynamic walking, successes in the field have typically

been achieved by considering all aspects of the problem, often with explicit consideration of

the interplay between modeling and feedback control (see Fig. 1). Specifically, the robotic

and locomotive models which are used ultimately inform the planning problem and therefore

the resulting behavior. Controllers which can actuate and coordinate the limbs must then

be developed which, ideally, provide tracking, convergence and stability guarantees. In this

review, we therefore examine how this interplay between modeling, motion planning, and

trajectory regulation has shaped the dynamic walking on bipedal robots to date.

The remainder of this paper is structured as follows. In Section 2 we present reduced-

order models that have provided canonical examples of dynamic locomotion, and in Section

3 we introduce extensions to hybrid system models for dynamic walking. Section 4 discusses

how these models have been used to generate stable walking motions through various motion

planning approaches and corresponding optimization problems. Finally, Section 5 provides

several existing methods for controlling the robot as informed by the methods introduced

in the earlier sections, with a view toward hardware realization. This interconnection can

be seen in Figure 1, where each subsequent section is informed by the prior.

Figure 1

Dynamic walking is a complex behavior, requiring control designers and roboticists to
simultaneously consider: robotic models, the transcription of locomotion into a motion planning
problem, and the coordination and actuation of the system via control laws. Depicted here is the

interconnection of these components, which provides an outline for this review article.

www.annualreviews.org • Dynamic Walking 3



Figure 2

A visual demonstration of the robotic configuration and contact constraints which are applied to
the robot. (a) The floating-base coordinate system for a Cassie bipedal robot, with a coordinate

frame attached to the hip and rotational joints connecting rigid linkages of the body. (b) Contact

geometry of the constraints for an underactuated flat-foot contact and a point-foot contact.

2. DYNAMIC MODELS OF BIPEDAL LOCOMOTION

In this section, we provide background on the modeling of dynamic bipedal robots and con-

textualize several of the most popular approaches for encoding or approximating locomotion

via reduced order models. A unifying theme among the broad spectrum of models used

for legged locomotion, both in this section and the next, is that the system must undergo

intermittent contact with the surrounding environment in order to move. This fact is inex-

plicably tied to legged locomotion. How the overall walking system is ultimately modeled

plays a critical role in the planning and control approaches that realize locomotion.

2.1. Bipedal Robots: Floating Base Systems with Contacts

Bipedal robotic platforms are conveniently modeled using a tree-like structure with an

ordered collection of rigid linkages. This structure lends itself well to generalization, and

thus tools to facilitate the generation of symbolic (22) or algebraic (23) expressions for the

kinematics and dynamics of the robot are commonly used. The robot itself must ambulate

through a sequence of contact conditions with the environment. Because interactions with

the environment are always changing, a convenient method for modeling the system is to

construct a representation of the robot in a general position, and then enforcing ground

contacts through forces arising from the associated holonomic constraints that are imposed

at the feet. This is often referred to as the floating-base model of the robot.

2.1.1. The Configuration Space. In order to represent the floating-base, let R0 be a fixed

inertial frame attached to the world and let Rb be a body reference frame rigidly attached to

the pelvis of the robot with the origin located at the center of the hip. Then the Cartesian

position pb ∈ R3 and orientation ψb ∈ SO(3) compose the floating base coordinates of frame

Rb with respect to R0. The remaining coordinates which dictate the shape of the actual

robot, ql ∈ Ql ⊂ Rnl , are the local coordinates representing rotational joint angles and

prismatic joint displacements. An image of this floating base coordinate system definition

for a Cassie bipedal robot is given in Figure 2(a). The combined set of coordinates is

q = (pTb , φ
T
b , ql)

T ∈ Q = R3 × SO(3)×Ql with the states x = (qT , q̇T )T ∈ TQ = X.
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2.1.2. Continuous Dynamics. Traditional methods for modeling the dynamics of floating-

base systems typically result in the separation of the equations of motion into multiple

parts (24); one arising from the multibody continuous dynamics, and the other imposed

via constraints on contacts with the environment. If we continue with the assumption that

the robot structure is a rigid collection of linkages then we can consider the continuous

dynamics of a bipedal robot in the Lagrangian form (see (25)):

D(q)q̈ +H(q, q̇) = Bu+ Jh(q)Tλ, 1.

where D(q) is the inertia matrix, H(q, q̇) contains the Coriolis and gravity terms, B is

the actuation matrix, u ∈ U ⊆ Rm is the control input, and the Jacobian of the holonomic

constraints applied to the robot is Jh(q) = ∂h
∂q

(q) with the corresponding wrenches λ ∈ Rmh .

These dynamics can be expressed in a state-space representation as:

d

dt

[
q

q̇

]
=

[
q̇

D−1(q)
(
Jh(q)Tλ−H(q, q̇)

)]︸ ︷︷ ︸
f(x)

+

[
0

D(q)−1B

]
︸ ︷︷ ︸

g(x)

u. 2.

2.1.3. Contact Forces. The fact that the robotic model is derived using a floating-base

representation means that as we manipulate the robot, the resulting ground force interaction

through the Lagrangian dynamics in Equation 1 is critical. The most popular method for

modeling ground interaction is to assume rigid contacts with nonpenetration, the resulting

forces are then considered to be unilateral (24), meaning that they can push and not pull

on the ground. The resulting normal force cannot be negative, λz ≥ 0, and this implies

that when this condition crosses zero that the contact will leave the ground. A point of the

robot in static contact with the ground will satisfy a closure equation of the form:

η(q) =
[
pc(q)

T , φc(q)
T
]T

= constant, 3.

where pc(q) is the Cartesian position of the contact point and φc(q) is a rotation between

contacting bodies (26). Differentiating twice yields acceleration constraints on the robot:

Jh(q)q̈ + J̇h(q, q̇)q̇ = 0, 4.

leading to a system of equations, with Equations 1 and 4 coupling the accelerations to the

inputs and resulting constraint forces. The geometry of robotic feet is often given as either

a flat foot or a single point of contact, shown in Figure 2(b). Assuming three non-collinear

points of contact, the foot can be modeled as a flat plane. The position and orientation of

the plane with respect to the ground will then create a 6 degree-of-freedom (DOF) closure

constraint in Equation 3 (mh = 6). Alternatively, many underactuated robots have point-

feet. If the assumption is made that the foot will not yaw while in contact, then this will

form a 4 DOF constraint on the Cartesian positions and rotation about the z-axis (mh = 4).

Finally, when designing motions for the robot it is important to also model the real-

world limitations to the allowed tangential force before it will break a nonslip condition.

The most popular approach is to employ a classical Amontons-Coulomb model of (dry)

friction (26). For a friction coefficient µ, the space of valid reaction forces is characterized

by the friction cone:

C =
{

(λx, λy, λz) ∈ R3
∣∣λz ≥ 0;

√
λ2
x + λ2

y ≤ µλz
}
. 5.
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Figure 3

A depiction of the principles and modeling assumptions of the LIPM approach: (a) Visualization

of the of the ZMP, where the foot is “dynamically balanced” if the resultant force F is within the
support polygon. (b) LIPM with a telescoping leg and actuated ankle to control the robot along a

horizontal surface. (c) Support polygon and an example of a planned ZMP trajectory.

2.2. Linear Inverted Pendulum and the Zero Moment Point

In this section, we describe the basic aspects of the Zero Moment Point (ZMP) and how it

has been used in linear inverted pendulum models (LIPM) of locomotion. The concept of

the ZMP is identical to the center of pressure (COP), and was originally introduced through

a series of observations on the stability of anthropomorphic walkers by Vukobrativic̀ in the

early 1970’s (27, 3). The primary interpretation of the ZMP is: the point on the ground at

which the reaction forces between the robot’s contacts and the ground produce no horizontal

moment. Consider a robot standing in single-support, with a finite number of contact points

(pi) that constrain the foot to be flat. As shown in Figure 3(a), the resultant forces will

consist of normal (λn) and tangential components (λt). The ZMP is then computed as:

pZMP :=

∑N
i=1 piλi,n∑N
i=1 λi,n

. 6.

This led to perhaps the most commonly used dynamic stability margin (28, 29, 30, 31, 32),

referred to as the ZMP criterion, which states that a movement is stable so long as the ZMP

remains within the convex hull of the contact points (also known as the support polygon).

This notion is conservative, and controlling these motions typically require the robot to

remain fully actuated, with position controlled joints and load cells in the feet.

The ZMP criterion has been tied extensively to the linear inverted pendulum model

(LIPM) in order to considerably simplify the trajectory design process, as the ZMP can be

written explicitly in terms of the COM dynamics (33). This has led to many researchers to

consider a Newton-Euler representation of the centroidal dynamics, written as:

m(c̈+ g) =
∑
i

λi, L̇ =
∑
i

(pi − c)× λi, 7.

with c the COM position, L =
∑
k(xk − c) × mkẋk + Ikωk the angular momentum, g

gravitational acceleration, λi the contact forces, pi is each contact force position, ẋk, ωk the

linear and angular velocities on the k-th linkage, mk, Ik are the masses and inertia tensors,

and m the total mass of the robot. If we constrain the motion of a fully actuated inverted

pendulum with a massless telescoping leg such that the COM moves along a horizontal
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(x,y) plane, then we obtain a linear expression for the robot dynamics. An example of the

LIPM is visualized in Figure 3(b). The dynamics of the LIPM at a given height, zc, is:

ẍ =
g

zc
x+

1

mzc
uy, ÿ =

g

zc
y +

1

mzc
ux, 8.

where m is the mass of the robot, g is the acceleration of gravity, and ux, uy are the torques

about the x and y axes of the attachment to the ground, i.e., the ankle. The ZMP location

on the ground can also be directly written in terms of the LIPM dynamics as:

pxZMP = x− zc
g
ẍ, pyZMP = y − zc

g
ÿ. 9.

The LIPM can be viewed as a cart-table system (4), where the cart-table lies on a base with

a geometry corresponding the the support polygon (34). Designing walking with the ZMP

can be essentially reduced to an inverse kinematics problem, where the primary planning

is done on the ZMP trajectory. Figure 3(c) shows an example ZMP trajectory for several

forward steps, wherein the trajectory for this walking is planned so that the ZMP always

stays within the support polygon. ZMP walking has largely been applied to humanoids,

such as the WABIAN robots (1), HRP series (7, 9), Johnnie (35), and HUBO (10).

2.3. Capturability and Nonlinear Inverted Pendulum Models

Rather than characterize the stability of walking based on the ZMP, Pratt (36) and Hof (37)

independently introduced the idea of a Capture Point (CP), referred to as the “extrapolated

center of mass” (XCOM) by Hof. The CP can be intuitively described as the point on the

ground onto which the robot has to step to come to a complete rest. In canonical examples

of the CP methods, the overall walking motions of the robot are planned and controlled

based on the (instantaneous) capture point (ICP) dynamics. In this case, the COM of the

robot is constrained to move at a constant height along a horizontal plane, and thus uses

a LIP representation of the robotic system. It was shown in (38) that for the compound

variable rx,yic = c+
√

zc
gz
ċ, that the unstable portion of the resulting system dynamics (along

the horizontal direction) can be written in a constrained fashion as follows:

ṙx,yic =

√
gz
zc

(rx,yic − r
x,y
CMP ), subject to: rx,yic ∈ conv{px,yi }, 10.

Figure 4

(a) A depiction of several variations on inverted pendulum models, which attempt to expand the
possible behaviors of the robot by accounting for more of the body inertia or by releasing the

constrained motion of the hip. (b) A depiction of the capture point for a LIP walking robot.
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where rx,yic is the horizontal location of the ICP. The main consideration of the locomotion

process is then to ensure that feet are placed such that rx,yic lies within the support polygon.

Satisfying this condition means that the COM will converge to the CP and come to a rest.

Despite this intuitive representation of stability, the LIPM walking simplifications come

with a steep cost due to the stringent requirements on the motion and actuation of the

robot. Yet it is precisely these characteristics which make the model most suitable for

performing complex multi-objective tasks which include manipulation during intermittent

conservative motions. The maturity and reliability of the LIPM made it prevalent in the

walking controllers used at the DARPA Robotics Challenge (39, 40, 41).

In an attempt to overcome issues associated with the strict assumptions of the LIPM,

researchers have introduced more complex pendulum models (illustrated in Figure 4(a)).

The largest constraint on LIPM walking is the constant center of mass height assumption,

leading to the development of a nonlinear inverted pendulum with variable mass height

(42). To account for the inertia of a swinging leg, the addition of a mass at the swing foot

was proposed and termed the Gravity Compensated LIPM (43). One of the most commonly

used models in the literature to address nontrivial angular momenta from the limbs of large

robots moving dynamically is to add a flywheel to the hip, which can be used to represent

the inertia of the robot body as it moves (44). A flywheel model of the robot has gained

recognition as a convenient representation of the robotic system particularly for CP control

(36, 45). Various pendulum models have been widely used in analysis of push recovery

and balance (46, 47, 48, 49). The CP approach has also been used to demonstrate walking

successfully on hardware (50, 38), and was famously used on Honda’s ASIMO (51, 52).

2.4. Spring Loaded Inverted Pendulum

Classic work by Raibert on hopping and running robots in the 1980s demonstrated the effi-

cacy of using compliant models in locomotion through the development of a planar hopper

which could bound at a speed of 1 m/s (11) and a 3D hopper which could achieve running

without a planarizing boom (12). These early successes drove researchers to investigate a

Spring Loaded Inverted Pendulum (SLIP) representation of bipedal robots, shown in Figure

5(a). The SLIP model provides a low-dimensional representation of locomotion which draws

inspiration from biological studies on animal locomotion (53, 54). The SLIP is particularly

Figure 5

(a) The SLIP model, with the mass at the hip and virtual compliant legs. (b) Contact forces
during walking, where the “double hump” profile is observed in biological walkers. (c) A periodic

orbit for the vertical COM coordinate, where a lack of impact yield no footstrike discontinuity.
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Periodic Notions of Stability

One can view steady state walking as a periodic motion which is not instantaneously stable, but is stable

from footstrike to footstrike (60)—in other words, walking is “controlled falling.” Concretely, a solution

φ(t, t0, x0) to a dynamical system ẋ = f(x) is periodic if there exists a finite T > 0 such that φ(t+T, t0, x0) =

φ(t, t0, x0) for all t ∈ [t0,∞) and a set O ⊂ X is a periodic orbit if O = {φ(t, t0, x0)|t ≥ t0} for some periodic

solution φ(t, t0, x0). In a seminal paper on passive dynamic walking (14), McGeer popularized the method

of Poincarè to determine the existence and stability of periodic orbits (61) for walking. In this approach,

one step is considered to be a mapping from the walkers state xk at a definite point within the motion of a

stride (typically defined at footstrike) to the walker’s configuration at the same point in the next step, xk+1.

Let S define the Poincarè section, for which we have a Poincarè map P : S → S that maps one step to the

next as xk+1 = P (xk). The periodic orbit yields a fixed point x∗ = P (x∗) with x∗ ∈ O ∩ S, and stability of

the orbit is equivalent to the stability of the Poincarè map which can be checked numerically (62, 63).

attractive due to its inherent efficiency and robustness to ground height variations.

In order to use this model to synthesize controllers for actual robots, the control objec-

tives are typically decomposed into three components: (1) achieving a particular footstrike

location to regulate forward speed, (2) injecting energy either through passive compliance

or motors to regulate the vertical height of the CoM, and (3) regulating the posture of the

robot. One then designs the walking and running motions with SLIP models and compen-

sates for model mismatch or disturbances with well tuned foot placement style controllers

(55, 56, 57, 58, 59) (see Section 5.2). To this end, the dynamics of the SLIP are derived by

assuming that the mass of the robot is concentrated at the hip with virtual springy legs:

0 = ml̈ −mlθ̇2 +mg sin(θ) + Fslip 11.

0 = m[l2θ̈ + 2ll̇θ̇] +mgl sin(θ),

where l is the stance leg length, θ is the stance leg angle, and Fslip is the force arising

from the spring compression. One of the signature characteristics of this model is the

“double hump” profile of the reaction forces, shown in Figure 5(b), described by the force

interactions observed in biological walkers (54). A key contribution introduced by the SLIP

community is the handling of underactuated behaviors, with many of the corresponding

robots having point-feet and flight phases of motion. Finding a stable gait thereon does

not rely on the quasi-static assumptions used for the fully actuated pendulum walkers of

the preceding sections—instead focusing on stable cyclic locomotion. Dynamic stability

is defined based on a constraint on the periodicity of the walking (detailed in the sidebar

“Periodic Notions of Stability”). To achieve forward walking, the initial states of the robot

and the angle of attack α for the swing leg are chosen to yield a periodic gait; see Figure

5(c). It is important to note that since the legs are massless, impacts are not considered,

and the resulting orbit will be closed with no instantaneous jumps in the velocity.

The SLIP representation of walking has been primarily used for legged robots which

have springs or series-elastic actuators (SEAs). Some of the earliest inclusions of compliant

hardware on bipedal robots was with spring flamingo and spring turkey (64). Later, the

COMAN robot included passive compliance to reduce energy consumption during walking

(65), and the Valkyrie robot from NASA was the first full-scale humanoid robot to heavily
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use SEAs (66). Using inspiration from the SLIP morphology, Hurst designed the planar

humanoid robot MABEL (67) and the 3D bipedal robot ATRIAS (68, 69) to include series

elastic actuation and thus return energy through impacts and shield the motors from impact

forces at footstrike. One of the latest robots in this series, the Cassie biped (shown in Figure

2(a)) also mechanically approximates SLIP design principles (70). Several running robots

have specifically considered SLIP model principles in their mechanical design such as the

ARL Monopod II (71), the CMU Bowleg Hopper (72), and the Keneken hopper (73).

3. HYBRID SYSTEM MODELS OF BIPEDAL LOCOMOTION

In the drive to obtain efficient legged locomotion and understand the stability thereof,

researchers have adopted more dynamic paradigms for robotic locomotion which consider

nontrivial impacts and periodic notions of stability. To formalize this perspective, it is

necessary to consider hybrid system models of walking, which include both continuous

(leg swing) and discrete (footstrike) dynamics. This section discusses to key paradigms

that leverage this framework: passive dynamic walking, which exploits the natural hybrid

dynamics of the system to obtain efficient walking, and hybrid zero dynamics which uses

actuation to achieve model reduction and thereby synthesize stable walking gaits.

3.1. Passive Dynamic Walking

Some of the first work to study hybrid systems for the purposes of synthesizing walking

were within the field of passive dynamic walking. Tad McGeer (14, 75) introduced several

passive walking robots that could ambulate down small declines when started from a rea-

sonable initial condition. While these early bipeds were completely passive and relied on

gravity, several bipeds were built to demonstrate that simple actuators could substitute for

gravitational power and compensate for disturbances. Small electric actuators were used

Hybrid Dynamical Systems

A hybrid dynamical system, used to model a walking robot (74), is defined as the tuple:

H = (Γ,D, S,∆, F )

• Γ = {V,E} is a directed cycle specific to the desired walking behavior, with V the set

of vertices and E the set of edges, e = (vs → vt) ∈ E with vs, vt ∈ V , in the cycle.

• D = {Dv}v∈V is the set of domains of admissibility. Each domain Dv can be inter-

preted as the set of physically realistic states of the robot.

• S = {Se}e∈E is the set of guards, with Se ⊂ Dvs which form the transition points

from one domain, Dvs to the next in the cycle: Dvt .
• ∆ = {∆e}e∈E is the set of reset maps, ∆e : Se ⊂ Dvs → Dvt from one domain to the

next. The reset map gives the post impact state of the robot: x+ = ∆e(x
−).

• F = {fv}v∈V is a set of dynamical systems where ẋ = fv(x) for coordinates x ∈ Dv,

i.e., of the form given in Equation 2 with u = 0.

10 Reher and Ames



Figure 6

A canonical example of passive dynamic walking is the compass biped. (a) The biped and its

configuration on the slope. (b) Directed graph of the corresponding hybrid dynamical system. (c)
Shown is a closed limit cycle for the biped walking down a 5 degree slope, implying stable walking.

for the Cornell walkers (76, 77, 78) and the MIT learning biped (79, 80), while the Delft

biped instead used a pneumatic actuator at the hip (81, 82). Controlled symmetries (83)

and geometric reduction (84) has been used to extend these ideas to actuated robots and

3D walking. Actuated environments have also been used to excite walking on passive robots

(85). Because of the care taken in mechanical design, these robots could all operate without

sophisticated real-time calculations—though at the cost of diminished control authority.

The governing equations of motion for passive dynamic robots are nonlinear, and corre-

spond to the continuous dynamics derived in Equation 1 rather than using an approximate

(or reduced order) model. They are also hybrid, meaning they consist of both continuous

and discrete nonlinear dynamics. A definition of the hybrid representation of the dynam-

ics of walking is summarized in the sidebar “Hybrid Dynamical Systems”, where the key

element that determines the behavior is a directed cycle of continuous domains.

3.1.1. Discrete Dynamics: Impacts and Poincarè Maps. An inherent feature of dynamic

walking is that the robot is moving quickly through the environment. Thus the resulting

motions cannot be slow enough for the feet to approach the ground with negligible velocity;

impacts with the ground, therefore, become an important consideration in dynamic walking.

Formally accounting for impacts underlies the basis for hybrid dynamical locomotion models

(16, 26, 74). Impacts during walking occur when the non-stance foot strikes the ground.

Concretely, consider the vertical distance (height) of a contact point (foot) above the ground:

He(x). Impacts occur when the system reaches the switching surface of the guard :

Se = {x ∈ X | He(x) = 0, Ḣe(x) < 0}. 12.

where this surface is also a Poincarè section that will be used to construct the Poincarè

map. At each transition, the new initial condition is determined through the reset map:[
q+

q̇+

]
=

[
Rq−

R∆q̇(q
−)q̇−

]
= ∆(q−, q̇−), 13.

where R is a relabeling matrix (16, 86), which “flips” the stance and non-stance legs.

Here ∆q describes the change in velocity that occurs at impact, and is typically calculated

using the assumption of a perfectly plastic impact (87, 88). Note that determining and

utilizing more complex impact models is an open problem. In real life, impacts are not truly
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instantaneous and do not always achieve stiction (89). Situations with multiple impacts can

arise (90) leading to Zeno behaviors (91, 92, 93), or slippage (94, 95).

A canonical example of passive dynamic walking is an unactuated compass biped walking

down a slope of angle γ (96), shown in Figure 6(a). This robot consists of two kneeless

legs each with a point-mass and a third mass at the hip. The directed cycle for the biped

consists only of a single-support domain, with transition occurring at footstrike (shown in

Figure 6(b)). The periodic nature of the stable walking behavior is best summarized by the

phase portrait given in Figure 6(c), where there are discrete jumps occurring at impact. The

stability of a cyclic gait is discussed in the sidebar “Periodic Notions of Stability”. Once a

fixed point x∗ has been found, we can examine a first order expansion of the Poincarè map:

P (x∗ + δx) ≈ x∗ +
∂P

∂x
(x∗)δx, with P (x∗) = x∗, x∗ ∈ O ∩ Se, 14.

where the fixed point is exponentially stable if the magnitude of the eigenvalues of ∂P
∂x

(x∗)

are less than one (61, 62, 63). This is straightforward to check numerically: one can

construct a numerical approximation of successive rows by applying small perturbations to

each corresponding state and then forward simulate one step to obtain P (x∗ + δx).

3.2. Hybrid Zero Dynamics

The method of hybrid zero dynamics (HZD) leverages nonlinear feedback control design to

induce stable locomotion on underactuated robots. Jessy Grizzle et al. (15, 98, 99) intro-

duced the concept and developed a set of tools which are grounded in nonlinear control

theory to deal formally with the nonlinear and hybrid nature of dynamic walking (cf. the

textbook (16)). The basis of the HZD approach is the restriction of the full-order dynamics

of the robot to a lower-dimensional attractive and invariant subset of its state space, the

zero dynamics surface, via outputs that characterize this surface. If these outputs are driven

to zero, then the closed-loop dynamics of the robot is described by a lower-dimensional dy-

namical system that can be “shaped”to obtain stability. As was the case for uncontrolled

hybrid models generalizing hybrid dynamical systems, a hybrid control system (see sidebar)

describes an actuated walking robot, leading to the notion of hybrid zero dynamics. The

primary consideration which governs the overall locomotion problem is the specification

of a directed cycle for the underlying hybrid (control) system. Because HZD incorporates

Hybrid Control Systems

Rather than describing a passive hybrid system as in the sidebar “Hybrid Dynamical Systems”, the incor-

poration of a feedback control allows for the realization of more advanced behaviors on complex actuated

bipedal robots. We therefore define a hybrid control system (74, 97) to be a tuple:

H C = (Γ,D,U , S,∆,FG).

• (Γ,D, S,∆) are defined as in Equation 3.1.

• U = {Uv}v∈V is the set of admissible control inputs.

• FG = (fv, gv)v∈V the set of control systems, ẋ = fv(x) + gv(x)u, as in Equation 2.
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Figure 7

Examples of directed cycles for hybrid representations of two domain walking with compliance

and four domain human-like robotic walking.

feedback control, significantly more complex motions are possible. Examples of directed

cycles for dynamic walking behaviors are given in Figure 7, illustrating how domain spec-

ification is governed largely by the evolution of the contacts through the course of a step.

The controlled compass walker (96) is presented in Figure 9 to provide a comparison to the

passive dynamic walking. In this example it can be seen that torques applied at the hip are

used to control the motion, while the robot walks with a stable limit cycle on flat ground.

3.2.1. Virtual Constraints and Stabilization. Dynamic walking which leverages the fullbody

dynamics must necessarily include specifications on how the robot should coordinate its

limbs in a holistic fashion. To this end, and analogous to holonomic constraints, virtual

constraints are defined as a set of functions that regulate the motion of the robot to achieve

a desired behavior (16). The term “virtual” comes from the fact that these constraints are

enforced through feedback controllers instead of through physical constraints. Let ya(q) be

functions of the generalized coordinates that are to be controlled, i.e., encoding the “actual”

behavior of the robot and yd(t, α) be the “desired” behavior where α is a matrix of real

coefficients that parameterize this behavior. A Bézier polynomial is the most typical choice

of representation for the desired outputs (16) for computational reasons, though it has been

shown that humans appear to follow spring-mass-damper type behavior (86). Given actual

ya and desired yd outputs, a virtual constraint is their difference:

y(q) := ya(q)− yd(τ(q), α), 15.

with τ(q) : Q → R a parameterization of time that is strictly increasing along periodic

motions. Driving y → 0 results in convergence of the actual outputs to the desired.

To synthesize controllers, note that differentiating y(q) along solutions to the control

system in Equation 2 yields the Lie derivatives:

ẏ(q, q̇) = Lfy(q, q̇), ÿ(q, q̇) = L2
fy2(q, q̇) + LgLfy(q, q̇)u, 16.

wherein y(q) has vector relative degree 2 (100) if the matrix LgLfy(q, q̇) is invertible. From

this, one obtains the following feedback linearizing controller:

u∗(x) = [LgLfy(x)]−1
(
− L2

fy(x) + µ
)

⇒ ÿ(q, q̇) = µ, 17.
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where µ is the auxiliary feedback component of the controller that can be chosen to stabilize

the system. In particular, one common choice is µ = 1
ε2
Kpy(x) + 1

ε
KdLfy(x), with Kp, Kd

feedback gains chosen so that the linear dynamics are stable, and ε > 0 a parameter used

to amplify convergence to the desired motion; rendering the output dynamics exponentially

stable. Applying Equation 17 with µ results in the closed-loop system:

ẋ = fcl(x) = f(x) + g(x)u∗(x). 18.

wherein for this system y → 0 exponentially fast.

3.2.2. Hybrid Invariance. The feedback control law of Equation 17 can be synthesized for

virtual constraints yv(q) = yav (q) − ydv(τ(q, t), αv) associated with each domain Dv, v ∈ V ,

and control system: ẋ = fv(x) + gv(x)u. This renders the zero dynamics manifold (101):

Zv = {(q, q̇) ∈ Dv | yv(q) = 0, ẏv(q, q̇) = 0}, 19.

forward invariant and attractive. Thus, the continuous dynamics in Equation 18 will evolve

on Zv given an initial condition in this surface. However, because the surface in Equation 19

has been designed without taking into account the hybrid transition maps of Equation 13,

the resulting walking cycle may not be invariant to impact. To enforce impact invariance,

the desired outputs can be shaped through the parameters αv in ydv such that the walking

satisfies the hybrid zero dynamics (HZD) condition:

∆e(Zvs ∩ Svs) ⊂ Zvt , ∀ e = (vs, vt) ∈ E, 20.

imposed as a constraint on the states through impact (Equation 13).

The overarching goal of these constructions is to provide a framework for the synthesis

of dynamic walking gaits. In this context, for simplicity (and without loss of generality)

assume a single domain V = {v} wherein we will drop the subscript “v.” For the full-

order dynamics, let φ
fcl
t (x0) be the (unique) solution at time t ≥ 0 with initial condition

x0. For a point x∗ ∈ S we say that φ
fcl
t is hybrid periodic if there exists a T > 0 such

that φ
fcl
T (∆(x∗)) = x∗. Further, the stability of the resulting hybrid periodic orbit, O =

{φfclt (∆(x∗)) : 0 ≤ t ≤ T}, can be found by analyzing the stability of the Poincaré map,

wherein x∗ is a fixed point, as previously presented in Equation 14. The main idea behind

the HZD framework is, due to the hybrid invariance of Z, if there exits a stable hybrid

periodic orbit, OZ, for the reduced order zero dynamics evolving on Z, i.e., the restriction

of fcl to Z, then OZ is a stable hybrid periodic orbit for the full order dynamics in Equation

19 (16). A visualization of the components of HZD walking design is given in Figure 8.

Figure 8

Key concepts related to hybrid zero dynamics: continuous convergence to a zero dynamics surface

Z, coupled with a hybrid invariance condition: ∆(Z ∩ S) ⊂ Z to obtain stable periodic walking.
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Figure 9

An example of HZD based control for a compass biped on flat ground. (a) The robotic

configuration. (b) Joint trajectories and torques over three steps of stable walking. (c) The
walking exhibits a stable limit cycle, with discrete jumps occurring at impact.

In the case of robots which have feet, as is the case for many humanoid robots, one can

extend the concept of HZD to modulate the forward velocity of the robot (102). In particu-

lar, one can generalize HZD through a velocity modulating output: y1(q, q̇) = ya1 (q, q̇)− vd,
with vd the desired forward velocity. One can augment the original virtual constraints y(q)

with this new (relative 1 degree) output. The partial hybrid zero dynamics surface PZ is,

again, given as in Equation 19 where the term “partial” is used since this surface does not

require the output y1 to be zero. Partial hybrid zero dynamics (PHZD) is the condition:

∆e(PZ ∩ S) ⊂ PZ. In the case of full actuation the existence of hybrid periodic orbit, OPZ

in PZ, is guaranteed implying the existence of a hybrid periodic orbit for the full order

dynamics. Thus, PHZD implies the existence of a stable gait for fully actuated robots.

3.2.3. Application of HZD. In the context of robotic implementations, HZD has proven

successful in realizing a wide variety of dynamic behaviors. Many of the early uses of the

method were on point-footed robots which were restricted to the sagittal plane. The first

robot used to study HZD was the Rabbit biped (103), followed later by MABEL (104) and

AMBER 1 (105). The ability of (P)HZD to handle multidomain behaviors led to its use

on more complex planar bipedal robots such as ATRIAS (106, 107), AMBER 2 (108) and

Θslip

mg

Fslip

m

Figure 10

A visualization of the human-like outputs (102) applied to DURUS (left), and a depiction of how
the physical morphology of Cassie follows principles from SLIP models (right). The robot then

has passive dynamics which can be embedded within the HZD framework via output selection.
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AMBER 3M (109). New challenges appeared while extending the method of HZD from

planarized robots to 3D robots, which exhibit additional degrees of underactuation. Con-

trol of fully actuated humanoids was demonstrated on a small-scale example with a NAO

robot (110) via PHZD, while point-footed 3D walking with HZD was first shown at the

University of Michigan with the MARLO biped (111). At the DARPA Robotics Challenge,

the humanoid DURUS (shown in Figure 10(a)) was featured in an efficiency walk-off (20)

where it demonstrated the first sustained humanoid HZD walking—over five hours con-

tinuously. DURUS went on to exhibit the most efficient walking on a humanoid to date,

while performing human-like multicontact behaviors and managing significant underactua-

tion (21). The method has been extended to powered prosthetic walking (112, 113, 114) and

to exoskeletons which can walk for patients with paraplegia (115, 116). The use of springs

in locomotion has also proven useful in the development of dynamic walking behaviors,

though it presents additional challenges both mathematically and in practice. The notion

of compliant hybrid zero dynamics was introduced in the late 2000’s (117), and was later

expanded upon to obtain compliant robotic running (18). One of the latest robots to suc-

cessfully demonstrate stable HZD walking is the Cassie biped, shown in Figure 2(a), where

it can be seen that the robot exhibits underactuated feet and passive springs in the legs.

Dynamic walking on Cassie has been successfully realized on hardware both by planning

under the assumption of sufficient rigidity in the legs to ignore compliant elements (118),

and for walking which considers the passive compliance in the zero dynamics (119).

Experimental Highlight: Hybrid Zero Dynamics

We highlight the application of HZD by considering its experimental realization

on hardware. Leveraging PHZD on DURUS and HZD on Cassie, the result is stable

periodic orbits—both in simulation and experimentally—as illustrated in Figure 7. The

evolution of the dynamic walking motion is tied to the morphology of the robot, with

the humanoid DURUS exhibiting human-like heel-toe walking (102, 21) and the Cassie

biped leveraging a domain structure and outputs which correspond to the SLIP inspired

mechanical design (119). In these specific examples, the virtual constraints chosen are

shown in Figure 10. This demonstrates one of the benefits of HZD: the ability to chose

virtual constraints to formally encoded reduced order models for complex robots and

correspondingly “shape” the zero dynamics surface to render it stable.

-1

0.5

-3

2

0-1

1

Figure 11

An example of HZD periodic orbits for dynamic walking on hardware with the DURUS (left) and
Cassie (right) robots. The nominal periodic walking motions resulting from the optimization

(Equation 21) are shown as a dashed line, superimposed on traces of experimental data.
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4. MOTION GENERATION FOR DYNAMIC BIPEDAL LOCOMOTION

Throughout the previous section, we outlined how the locomotion problem is fundamentally

different than traditional approaches to modeling fixed-base robots. It is because of this

inherent complexity that virtually all approaches to realize dynamic walking must transcribe

the locomotion problem into a motion planner which can handle the various constraints

naturally imposed on the problem. While several of the more classical walking paradigms

offer simple solutions to conservative walking, there has been a push over the last two

decades towards leveraging optimization to obtain increasingly dynamic maneuvers.

4.1. Step Planning with Linear and Reduced-Order Models

Often for the simplest models of walking, such as traditional ZMP and LIPM versions of CP,

the linear dynamics of the restricted system yield straightforward approaches to planning

the motion of the COM. The walking characterized by these linear models often implicitly

satisfy quasi-static stability assumptions, ultimately allowing a control designer to decouple

the high-level step planner and low-level balance controllers (120). In this vein, Kajita

(34) introduced the jerk of the COM as an input controlled by a discrete LQR controller

with preview action (121) to plan ZMP trajectories for predefined footsteps. However,

predefining the motions of the ZMP or footholds is not always necessary or desirable.

If planners for these simple models could instead be performed online, then the robot

may be able to mitigate issues related to reactivity. Weiber (122) proposed using linear

trajectory-free model predictive control (MPC) as a method for explicitly handling the

constraints imposed by the ZMP approach of Section 2.2 while continuously re-evaluating

the walking path. Stephens (123) presented the use of MPC for push recovery and stepping

on the SARCOS humanoid, which could be extended to obtain walking behaviors. The

example shown in Figure 3(c) visualizes the result of this MPC approach applied to LIPM

robotic walking. It has also been shown how optimization and model predictive control can

extend the notions of capture point to viable regions on which the biped can step (124), or

how push recovery can be planned over a horizon of multiple steps (38). Despite the ability

of these planners to adapt online, they cannot handle the discrete dynamics associated with

footstrike, and demand near-zero impact forces (125). This rules out the nontrivial impacts

which are naturally associated with dynamic walking. It also difficult to provide a priori

guarantees on whether any given reduced-order plan is feasible to execute on the full-order

dynamics. Such methods typically use inverse kinematics (126), or inverse dynamics (127)

sometimes in an operational-space formulation (128) to compute the full-order control inputs

at each instant. Solving such near-term inverse problems does not imply that future inverse

problems in the trajectory will be feasible, which requires additional planning (129, 130).

4.2. Nonlinear Optimization for Gait Generation

As a result of the rapid developments within the trajectory optimization community, re-

searchers began to move towards utilizing nonlinear dynamic gait optimizations rather than

relying on the constraints imposed by linear modeling assumptions. The use of nonlinear

optimization, i.e., numerical approaches, to generate stable walking behaviors on bipeds not

a new concept (131, 132), though computational limitations were a considerable hindrance

towards generating motions on 3D robots. Computation power finally increased sufficiently

throughout the mid 2000’s to begin handling 3D dynamic walking behaviors (133).
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4.2.1. Open-Loop Optimization. The simplest application of nonlinear optimization to

walking can be found in Section 3.1, wherein passive dynamic walking relies on the gen-

eration of fixed points associated with periodic orbits of a hybrid dynamical system. This

naturally lends itself to numerical approaches for the optimization of open-loop stable pe-

riodic motions (134), since passive dynamic walkers do not have any actuators to consider.

The use of open-loop optimization to generate feasible motions for actuated robots are a

natural extension of approaches used throughout the field of trajectory optimization, where

the planning problem is seen as “decoupled” from the feedback control applied to the actual

robot (135) and “approximately optimal” solutions are often sufficient. Further, in recent

years, the application of advanced trajectory optimization methods such as direct collo-

cation have allowed the optimization of the full body dynamics of Equation 1 to be more

computationally tractable, sparking a growing interest in considering the fullbody dynamics

of robot in the planning problem. For instance, in order to control the open-loop trajectory

that results from the direct collocation optimization, a classical linear quadratic regulator

(LQR) based feedback controller can be constructed to stabilize the resulting trajectory

obtained for the constrained dynamical system (136). In this type of approach, the walking

problem can be viewed as generating sequences of footholds for the nonlinear centroidal

dynamics given in Equation 7 (137, 40) or with respect to the full Lagrangian system given

in Equation 1 (138). Complementary Lagrangian systems (139) formed the basis of the

approach in (138), which allowed the optimizer to find walking behaviors without a priori

enumeration of the type and order of contact events. Open-loop trajectory optimization has

also been used to satisfy ZMP conditions in a nonlinear fashion (140), which considerably

improved the dynamical nature of the conservative walking presented in Section 2.2.

4.2.2. Closed-Loop Optimization. While the preceding nonlinear optimization approaches

do consider the fullbody dynamics of the robot, it is not always desirable to apply feedback

controllers to stabilize an approximately optimal open-loop plan. Rather, it is often benefi-

cial to couple the gait generation and controller synthesis problems into a single framework:

closed-loop optimization. This allows, among other things, for the generation of provably

stable walking behaviors which simultaneously satisfy the constraints on the system from

admissible configurations to torque bounds. This idea forms the basis of designing walking

gaits with the HZD method introduced in Section 3.2, where feedback control is used to

generate provable stable periodic orbits. A visual summary of this section is given in Figure

12. By applying these closed-loop feedback strategies in the optimization problem, ambigu-

ous contact sequences are no longer possible (141) and must be prescribed according to the

directed cycle which governs the underlying hybrid system (see Figure 7). Doing so allows

for one to enforce physical feasibility constraints, e.g., unilateral contact, in conjunction

with the synthesis of controllers that guarantee stability.

In the context of HZD methods, with the formal constructions of the zero dynamics

(Equation 19) and hybrid invariance (Equation 20) defined, the problem of finding stable

dynamic walking can be transcribed to a nonlinear programming (NLP) problem of finding

a fixed point x∗ and set of parameters α = {αv}v∈V parameterizing the virtual constraints

of Equation 15. The optimization problem is performed over one step cycle, e.g., footstrike

to footstrike, with a constraint imposed such that when the discrete impact (Equation 13) is

applied to the terminal state so that it satisfies the hybrid invariance condition of Equation

20. It is also critical that the motions respect the limitations of the physical system such as

the friction cone (Equation 5), actuator limits, and joint limits. These constraints can be
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Figure 12

A conceptual illustration of how locomotion models must be first transcribed into appropriate

representations for use with nonlinear programming approaches in order to yield dynamically
stable closed-loop plans for bipedal robots.

directly placed into a NLP problem that can be solved by a standard optimization solver:

w(α)∗ = argmin
w(α)

J (w(α)) 21.

s.t. Closed loop dynamics: Equation 18

HZD condition: Equation 20

Physical feasibility (e.g. Equation 5)

where w(α) ∈ RNw , with Nw being the total number of optimization variables and here we

made the dependence on the parameters, α, that dictate the closed loop dynamics explicit.

With the goal of achieving dynamic and efficient walking, a common objective is to minimize

the mechanical cost of transport (M-COT) of the walking gait through the cost (20, 141).

In classical HZD implementations, the candidate solutions were found via single shooting

formulations (15, 102), where the decision variables are the fixed point states x∗ and the

output coefficients α. Because single shooting optimizations are notoriously sensitive to poor

initial conditions, multiple shooting was also explored (142), with the eventual development

of direct collocation formulations (143) which would become the most successful to date.

The FROST optimization package (22) was developed based on these successes as an open-

source package to transcribe HZD locomotion into a direct collocation problem. While HZD

optimization problem determines one stable walking orbit, it has been shown that one can

expand the range of motions a robot can perform through systematic optimization to build

libraries of walking parameters (144). Reinforcement learning has also been used to handle

robust transitions for different speeds or unknown terrain height disturbances (145).

Experimental Highlight: Closed-Loop Optimization

The use of closed-loop optimization for HZD behaviors yields a set of outputs which

coordinate the motion of the robot. This is shown as the output of the process in Figure

12, where the nonlinear optimization problem has provided outputs which yield orbital

stability for compliant HZD (119). The outputs which are shown directly correspond to

the SLIP-like morphology of the robot, emphasized in Figure 10. Reference trajectories

can be shaped by the cost to yield desirable gait characteristics, such as efficiency

on DURUS, or for minimizing torque and extraneous movement on Cassie to obtain

behaviors which leverage the compliance for propulsion.
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5. FEEDBACK CONTROL AND MOTION REGULATION

While the dynamic walking paradigms introduced throughout the previous sections generate

stable walking motions in simulation, their actual implementation requires the deployment

of real-time feedback controllers capable of achieving the desired motions. As described

in Section 2.1, dynamic walking robots involve a high level of complexity in the form of

nonlinearities and tightly coupled equations of motion which must be considered. In the

case when locomotion has been planned using a simplified model (Section 2.1, the spa-

tial geometry of the robot must be translated into joint angles which can be controlled.

Even with a full-order hybrid model (Section 3) and closed-loop optimization (Section 4),

controllers must be synthesized in order to track these desired motions in practice. This

section describes feedback controllers and motion regulators that allow for the translation

of dynamic walking in simulation to be realized on real-world hardware platforms.

5.1. Controllers for Tracking Designed Motions

The simplest control scheme for determining motor torques is Proportional-Derivative (PD)

control (146). The strongest argument for using this approach is the sheer simplicity in

its implementation and the intuitive physical meaning with respect to tuning. Consider

desired positions and velocities, qd and q̇d (and possibly functions of time), either obtained

from inverse kinematics for reduced order walking models or the output of a optimization

problem. A feedback controller can be applied at the joint level:

u = −Kp(qa − qd)−Kd(q̇a − q̇d), 22.

generating desired torques (or currents) that are tracked at the motor controller level at a

fast loop rate. in the case of underactuated robots and/or virtual constraints (see Section

3.2.1), one can consider outputs of the form:

y(q) = ya(q)− yd(τ(q), α) or y(q, t) = ya(q)− yd(τ(t), α),

where the time-based variant is often considered in practice, especially in the case of 3D

walking and running, due to imperfect sensing of τ(q) wherein it is replaced by the more

robust signal τ(t) (19, 147). Let qm represent the joints with actuators, then the PD

controller can be applied in the Cartesian (or output) space:

u = −Y (q)−1(Kpy +Kdẏ) or u = −Y (q)T (Kpy +Kdẏ), 23.

where Y (q) := ∂ya

∂qm
(q) is the Jacobian of the Cartesian task or output with respect to the

actuated joints, and Kp,Kd are the PD gain matrices. This style of feedback control has

been used to enforce the behaviors of every locomotion paradigm detailed in Section 2 and

Section 3 at some point in time.

For underactuated dynamic walkers whose motions have been planned with virtual con-

straints, simply tracking the outputs with a well tuned PD controller is sometimes sufficient

to achieve walking on hardware (148, 104, 144, 21, 119), and even running (19). This is

because the trajectories (or outputs) implicitly encode the dynamic behavior and stabil-

ity constraints, even if it requires different torques on the actual robot to achieve these

behaviors. In addition, because dynamic behaviors are often rendered stable through this

behavioral encoding while satisfying appropriate physical constraints, almost all passive

dynamic and HZD walkers to date have opted not to include load cells in the feet – as
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feedback control of these quantities is not necessary for stability. An example of PD con-

trollers applied in experiment to two 3D bipedal robots is given in Figure 11, where it can

be seen that although the motions do not track the designed motions perfectly they do form

a closed orbit—implying stable walking.

In the context of reduced order models, plans for ZMP and CP have typically consid-

ered a point-mass representation of the robot under which whole-body momentum and force

regulation becomes an important concern when developing feedback controllers for imple-

mentation. This has led to a variety of approaches which concurrently regulate the COM

movement via some PD feedback element in combination with control of the whole-body

momentum (149, 150, 151, 152) and tracking of desired force interactions (153, 154).

When the dynamics of the system are well known, it is often beneficial to leverage them

in the feedback control design. One of the classical methods which was used for exploring

this in the context of bipedal robots is computed-torque control, which considers an inner

nonlinear compensation loop, and the design of an auxiliary control feedback (155, 43):

u = D(q)
(
q̈∗ −Kp(q − qd)−Kd(q̇ − q̇d)

)
+H(q, q̇), 24.

where q̈∗ is the nominal system acceleration. Note that this is mathematically equivalent

to feedback linearization, as given in Equation 17. (see (156)). Although both the standard

PD controller and computed-torque approach can overcome minor disturbances, they are

often not sufficient to formally ensure the stability or yield the performance that dynamic

walking requires. This motivates the use of a controller which can provide good tracking

performance while leveraging the robotic model. The remainder of this section will explore

several of the approaches which have been successful in the feedback control of bipedal

robots, and how these can be extended to provide formal stability guarantees.

Experimental Highlight: Trajectory Tracking

The trajectories found in Section 4.2 for HZD are well suited to feedback controllers

for output tracking problems. To demonstrate the simplest and yet effective imple-

mentations of PD controllers which have been successful in realizing dynamic walking,

Figure 13

Example of experimental results for the use of PD control (cf. Equation 23.) for tracking dynamic
walking on hardware. (left) Joint tracking for DURUS during multicontact walking (21). (right)

Leg length output tracking on Cassie while walking with compliant HZD gait (119).
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we show experimental results on hardware for DURUS and Cassie in Figure 13. This

shows that for controllers in the joint space (Equation 22) and output space (Equation

23) dynamic walking is can be achieved by simply tracking the designed motion.

5.1.1. Inverse Dynamics. While PD control is sufficient for many applications, it fails to

explicitly consider the model of the robot and the constraints under which it operates.

Inverse dynamics is a widely used method to approach model-based controller design for

achieving a variety of motions and force interactions, typically in the form of task-space

objectives. Given a target behavior, the dynamics of the robotic system are inverted to

obtain the desired torques. In most formulations, the system dynamics are mapped onto

a support-consistent manifold using methods such as the dynamically consistent support

null-space (157), linear projection (158), and orthogonal projection (159). When prescribing

behaviors in terms of purely task space objectives, this is commonly referred to as task- or

operational-space control (OSC) (128). In recent work, variations of these approaches have

been shown to allow for high-level tasks to be encoded with intuitive constraints and costs

in optimization based controllers, some examples being (160, 40, 161, 152, 162).

A benefit of inverse dynamics approaches to feedback control on robotic systems is

that low gain feedback control can be used, while feedforward terms which respect the

constrained rigid body dynamics of the physical system are used to produce the majority

of the control action. If the walking is not significantly disturbed from the planned motion

found in Section 4.2 then a linear null-space projection operator PF (q) can be used to

eliminate the contact forces λ from the floating-base dynamics in Equation 1 (158), using

QR decomposition (159) to obtain an orthogonal projection into the null-space of Jh(q).

The inverse dynamics problem can also be posed using a quadratic program (QP) to

exploit the fact that the instantaneous dynamics and contact constraints can be expressed

linearly with respect to a certain choice of decision variables. Specifically, let us consider

the set of optimization variables X = [q̈T , uT , λT ]T ∈ Xext := Rn × U × Rmh , which are

linear with respect to Equation 1 and Equation 4,

[
D(q) −B −Jh(q)T

Jh(q) 0 0

]
X +

[
H(q, q̇)

J̇h(q)q̇

]
= 0, 25.

and a positional objective in the task space of the robot written as Jy(q)q̈+J̇y(q, q̇)q̇−ÿ∗2 = 0,

where Jy(q) = ∂ya/∂q and ÿ∗ = KP y + KD ẏ is a PD control law which can be tuned to

achieve convergence. An additional benefit to using an optimization-based approach is the

ability to include feasibility constraints such as the friction cone (Equation 5). However, this

constraint is nonlinear, and cannot be implemented as a linear constraint. An alternative

solution is to use a pyramidal friction cone approximation (26),

P =

{
(λx, λy, λz) ∈ R3

∣∣λz ≥ 0; |λx|, |λy| ≤
µ√
2
λz

}
, 26.

which is a more conservative model than the friction cone but is advantageous in that it

is a linear inequality constraint. In it’s most basic case, we can combine these elements to
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pose this QP tracking problem as:

X ∗(x) = argmin
X∈Xext

||Jy(q)q̈ + J̇y(q, q̇)q̇ − ÿ∗||2 + σW (X ) ID-QP.

s.t. Equation 25 (System Dynamics).

umin ≤ u ≤ umax (Torque Limits).

Equation 26 (Friction Pyramid).

where W (X ) is included as a regularization term with a small weight σ such that the

problem is well posed. Although this kind of control satisfies the contact constraints of

the system and yields an approximately optimal solution to tracking task-based objectives,

it does not provide formal guarantees with respect to stability. In increasingly dynamic

walking motions this becomes an important consideration, wherein impacts and footstrike

can destabilize the system requiring more advanced nonlinear controllers.

5.1.2. Control Lyapunov Functions for Zeroing Outputs. The methods presented thus far

demonstrate how feedback control can drive the dynamics of the robotic system to be-

have according to the planned motions found in Section 4. However, these designs often

intrinsically ignore the natural dynamics of the system, which is a critical component in

the realization of efficient and dynamic walking. Thus, for practical systems, additional

considerations for selecting our control input are often required. Rapidly exponentially sta-

bilizing control Lyapunov functions (RES-CLFs), were introduced as methods for achieving

(rapidly) exponential stability for walking robots (17, 163). A function, V , is a RES-CLF

if it satisfies:

γ‖x‖2 ≤ Vε(x) ≤ γ

ε2
‖x‖2 27.

inf
u∈U

[
V̇ε(x, u)

]
= inf

u∈U

[ ∂Vε
∂x

(x)f(x)︸ ︷︷ ︸
LfVε(x)

+
∂Vε
∂x

(x)g(x)︸ ︷︷ ︸
LgVε(x)

u
]
≤ −γ

ε
Vε(x) 28.

for γ, γ, γ > 0, and 0 < ε < 1 a control gain that allows one to control the exponential

convergence of the CLF, and is the basis for the term “rapid” in RES-CLF. Importantly, if

the robotic system is feedback linearizable per Section 3.2 it automatically yields a Lyapunov

function. In particular, defining η(x) := (y(x)T , ẏ(x)T )T , we obtain RES-CLF: Vε(x) =

η(x)TPεη(x) where Pε = IεP Iε with Iε := diag
(
1
ε
I, I
)

and P the solution to the continuous

time algebraic Riccati equations (CARE) for the linear system ÿ = µ obtained by feedback

linearization in Equation 17.

The advantage to controller synthesis with CLFs is that they yield an entire class of con-

trollers that provably stabilize periodic orbits for hybrid system models of walking robots,

and can be realized in a pointwise optimal fashion via optimization based controllers. In

particular, consider the set of control inputs:

Kε(x) = {u ∈ U : LfVε(x) + LgVε(x)u ≤ −γ
ε
Vε(x)}, 29.

which is a set of stabilizing controllers. To see this, note that for u∗(x) ∈ Kε(x):

V̇ε(x, u
∗(x)) ≤ −γ

ε
Vε(x) ⇒ V (x(t)) ≤ e−

λ
ε
tV (x(0)) 30.

⇒ ‖η(x(t))‖ ≤ 1

ε

√
λmax(P )

λmin(P )
e−

γ
2ε
t‖η(0)‖.
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Thus, this gives the set of control values that exponentially stabilize the outputs and we

can control the convergence rate via ε. The selection of an appropriate choice for the “best”

control value possible leads to the notion of optimization based control with CLFs.

The advantage of Equation 29 is that it gives a set of controllers that result in stable

walking on bipedal robots. That is, for any u ∈ K(x) the hybrid system model of the

walking robot, per the HZD framework introduced in 3.2, has a stable periodic gait given

a stable periodic orbit in the zero dynamics (17). This suggests an optimization-based

framework nonlinear controller synthesis, with specific application to dynamic locomotion.

Specifically, the optimization formulation of CLFs allows for additional constraints and

objectives to be applied as a QP with the form (as first introduced in (156)):

u∗ = argmin
u∈U⊂Rm

uTH(x)u+ ρδ2 CLF-QP.

s.t. LfVε(x) + LgVε(x)u ≤ −γ
ε
Vε(x) + δ (CLF Convergence).

umin ≤ u ≤ umax (Torque Limits).

Equation 26 (Friction Pyramid).

where H(x) is a user specified positive-definite cost, δ is a relaxation to the convergence

constraint which can be added if infeasibility of the solution is a concern, and ρ > 0 is a large

value that penalizes violations of the CLF constraint. If the relaxation term is included then

the formal guarantees on convergence are no longer satisfied in lieu of achieving pointwise

optimal control actions which satisfy the physical constraints of the robot. Ground reaction

forces on the robot also appear in an affine fashion in the dynamics; thus one can also use

the CLF-based QP framework in the context of force control (156).

The CLF-based controllers presented throughout this section have recently been ex-

plored of interest for application on hardware, because much like the optimization con-

trollers of Section 5.1.1 they can be solved in real-time. Experimental results have been

shown on MABEL (17, 164) and DURUS-2D (165), with recent results indicating how

robust formulations can be used (166) and how alternative representations can make the

problem more tractable for implementation on 3D robots (167). Additionally, it was im-

plemented at over 5 kHz as an embedded level controller on series elastic actuators (168),

indicating possible future uses on explicitly controlling compliant dynamic walking. The

Figure 14

A visualization of a CLF driving a Lyapunov function to zero, with data from an experimental

implementation (left) and walking simulation (right). Because CLFs consider the model to enforce
convergence, outputs are closely tracked with minimal error (left). The rapid exponential zeroing

the outputs (Equation 30) is critical to achieve sufficient convergence before impact (right).
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use of CLFs has also been used to automatically generate stable walking gaits through SLIP

approximations (169), and also to enforce planned motions for reduced order models (170)

along with realizing 3D bipedal jumping experimentally on Cassie (171).

Experimental Highlight: Real-Time CLF QP Control

We highlight the application of CLF based QPs on hardware in real-time in the

context of dynamic crouching maneuvers on Cassie, shown in Figure 14 (119). Because

the CLF-QP can be run at a sufficient control frequency (in this case at 1 kHz), these

experiments show how convergence properties combined with inclusion of the model

can lead to desirable tracking performance on complex bipedal robots. These methods

are directly extensible to tracking walking trajectories, where the constrained pointwise

optimization can select torques which satisfy the contact constraints governed by the

discrete structure of the hybrid system model (see Figure 7).

5.2. Stabilizing Walking with Trajectory Modification

The prior sections detailed how dynamic walking behaviors are formulated, synthesized

and tracked; yet, these components alone are often not sufficient to realize sustained and

robust robotic walking on hardware. The final step in achieving robustness involves the

“artful implementation” of modifying the desired behavior to account for unknown and

unmodified disturbances – both specific to the hardware, e.g., unmodified compliance, and

in the external environment, e.g., rough terrain. Approaches such as MPC planners and

analytical expressions for the CP, presented in Section 4.1, can be evaluated in real-time

to adapt the motion of the robot to avoid falling or recover from large pushes (123). In

these cases the planning and the real-time compensation are inherently tied (172), though

they still are re-planning over an approximate the model of the robot and can lead to

constrained motions which are prohibitive to truly dynamic walking. On the other hand,

while the nominal trajectories of offline plans which consider the full-body continuous and

hybrid dynamics are generated with high fidelity models (such as the motions found via

Section 4.2) it is evident in experimental trials that some additional feedback is crucial to

stabilizing the robot for sustained periods of walking. These nominal trajectories are often

superimposed with some form of regulator in order to overcome uncertainties due to model

HZD Orbit

regulatorformal gait
correct swing leg to
catch upon landing

kinematic
command (       )

kinematic
command (        )

Figure 15

A visualization of how a regulator action is used to drive a perturbed zero dynamics surface back
to the nominal motion (left). This can take the form of direct joint changes or Cartesian foot

placement (right), making a kinematic adjustment in response to torso lean or velocity.
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Figure 16

(a) Experimental data from walking on the DURUS humanoid (20), where the shaded region is 1
std. dev. of over 200 steps. Trajectories are modified by a regulator proportional to torso lean.

(b) An example of a motion transition (173) applied to an output for the swing foot position.

mismatch and tracking errors, typically in the form of adding trajectory level feedback

(see Fig. 15). The development of these regulators is a largely heuristic task, but has often

proven critical to stability on hardware. A variety of different regulators have proven useful,

though implementation largely dependents on the robotic system and desired behavior.

When performing dynamic maneuvers it is inevitable that the actual linkages of hu-

manoid robots, which have large masses and inertias, can subject rotational joints to back-

lash and unsensed compliance. For these problems, using an experimentally measured

stiffness coefficient to augment commanded positions based on anticipated torque at the

joint has shown to be an effective compensation strategy (21, 39). The combination of

uncertainty in the kinematics and dynamics of the robot can also lead to predictable is-

sues with gait timing on periodic walking behaviors. For dynamic walking which has been

planned with a monotonic phase variable τ(q) dependent on the state of the robot, there

can be a large amount of uncertainty with regards to the estimation of the floating-base

coordinates and therefore the phase (19, 147). In these cases it can be beneficial to employ

a combination of time and state based progression of the variable (144).

Another type of regulation comes in form of small modifications to the shape of the

robot (i.e. superimposed perturbations to virtual constraints) from stride-to-stride. How

this can be conceptually interpreted within the HZD framework is shown in Figure 15,

where control designers seek to shape a perturbed zero dynamics surface such that the

hybrid system returns to an orbit which satisfies hybrid invariance. In early developments

for control of HZD walking, the restricted Poincarè map was viewed as a discrete-time

control system (174). Through consideration of the linearized map at the fixed point x∗

(see Equation 14), a discrete LQR algorithm can then be used to acquire a feedback gain to

modify the configuration of the next footstrike (107). This can be straightforward to design

for 2D robots, but extensions to 3D become more difficult. Perhaps the most common

approach is to instead utilize foot placement routines inspired by Raibert (11). This simple

deadbeat step-to-step controller most often takes the form of a discrete PD controller to

augment the footstrike locations in the sagittal and frontal planes during locomotion:

∆pnsf = K̃p(v̄k − vref) + K̃d(v̄k − v̄k−1), 31.

where the average velocity of the current step v̄k and previous step v̄k−1 are computed

directly from an estimate of the floating-base velocity, and the reference velocity vref is taken

from the nominal trajectory. In addition, because outputs for HZD walking are typically
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Figure 17

Experimental examples of dynamic walking on DURUS and Cassie. Gait tiles are provided,
showing the robots in various phases of their natural strides along with plots of data detailing the

efficiency of the walking for DURUS and a plot of the sagittal walking velocity on Cassie.

parameterized by a Bézier polynomial, the update value ∆pnsf can directly augment the

last two parameters of the corresponding output polynomials (173). This kind of smooth

transition is demonstrated in Figure 16(b), where the position has been smoothly modified,

but the velocity at impact will remain the same. This simple foot placement regulator has

been successfully implemented on several dynamic walking robots (144, 175, 119). Rather

than considering hand-tuned regulation, the notion of nonholonomic virtual constraints

was introduced (176), aiming to formalize a representation of virtual constraints which are

insensitive to a predetermined and finite set of terrain variations and velocity perturbations.

Implementation of this approach required intensive optimizations, as the walking was made

to be stable amid a variety of perturbations in each step of the optimization. This type

of output-level feedback has also been proven to be successful in a more directly hand-

tuned fashion, such as in (20, 21), where the position-level feedback of the outputs was

governed by a proportional gain with respect to the pitch and roll of the robot’s torso.

The superimposed motion will then be zero if the walking is directly on the orbit, but will

smoothly apply a superimposed positional command if necessary. One interpretation of

this regulator feedback is simply that ya has been made a function of the floating base

coordinates of the robot, with an example shown on the DURUS humanoid in Figure 16(a).

Experimental Highlight: Dynamic Walking

The experimental highlights considered throughout this this paper culminates with

efficient and agile locomotion on DURUS and Cassie, as shown in Figure 17. The mul-

ticontact walking on DURUS demonstrated efficiency as evidenced by an exceptionally

low cost of transport (21), achieved by leveraging hybrid models, to closed loop opti-

mization, to real-time feedback controllers and regulators. The compliant walking on

Cassie (119) demonstrates agility, through a wide range of walking speeds up to 1 m/s,

along with the ability to walk on unplanned rough terrain outdoors.
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6. CONCLUDING REMARKS

This review article outlined the general methodology for achieving dynamic walking on

bipedal robots. As outlined in “Summary Points,” we begin by considering reduced order

models that capture the essentials of locomotion – yet these models are not sufficient for

handling the full complexity of walking robots. This led to full order models that include

impacts as represented by hybrid systems, wherein we considered hybrid zero dynamics. To

generate walking gaits with these models, and corresponding dynamically feasible trajecto-

ries, the role of optimization was discussed. Finally, connecting models with walking gaits,

real-time controllers that enable hardware realization were discussed; ranging from simple

control methods, to advanced QP based controllers, together with the modification of these

nominal desired values due to uncertainty in the system and environment. This end-to-end

process was illustrated throughout on the bipedal robots DURUS and Cassie, wherein the

translation to hardware and corresponding experimental results were highlighted.

Looking forward, the process of realizing dynamic walking that is efficient and agile is

ripe with opportunities. Some of these challenges are highlighted in “Future Issues.” In

essence, these can be subdivided into two categories: theoretic and practical. The overar-

ching goal, theoretically, is to formally and holistically extend the methodologies presented.

The hope is to, as a result, develop a framework that is capable of realizing aperodic dynamic

motions that are stable and safe which are planned in real-time and robust to uncertainties

in the robot and environment. From a practical perspective, hardware is ever improving

and becoming more accessible. This gives the ability to better test approaches for agile

and efficient walking in real-world scenarios. The goal is to finally realize the promise of

dynamic walking: imbuing legged robots with the locomotion capabilities that will enable

them to do everything from traversing everyday environments to exploring the cosmos.

SUMMARY POINTS

1. Reduced order models. At the core of dynamic walking is the idea of reduced order

models. These are either hierarchical—representing desired behavior on simple

models, e.g., inverted pendula and compass gait bipeds—or formally determined—

low-dimensional systems rendered invariant by controllers, e.g., HZD.

2. Full order nonlinear dynamics. Bipedal robots are inherently nonlinear with hybrid

dynamical behaviors. These full order dynamics must be accounted for, either

through assumptions thereon that yield reduced order models, through nonlinear

controllers, or via optimization algorithms.

3. Optimization for gait generation. Reduced order models must be instantiated on the

full order dynamics via optimization algorithms. This can leverage reduced order

models, exploit the full order dynamics, or any combination thereof. Algorithms

that allow for these optimization problems to be solved efficiently are essential in

instantiating walking gaits on hardware platforms.

4. Control laws for hardware realization. Control laws allow for the generated gaits to,

ultimately, be realized on hardware. These can range from simple control laws to

complex nonlinear real-time optimization-based controllers, and can be modulated

via inspiration from reduced order models. These control algorithms are the final

step in realizing dynamic walking on bipedal robots.
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FUTURE ISSUES

1. Generalized notions of stability and safety. The walking considered herein, and

the notions of stability, was largely periodic in nature. To better represent a wide

variety of behaviors, the idea of stability should be extended to include aperiodic

walking motions (177, 178). More generally, safety as represented by set invariance

(179) could provide a powerful tool for more generally understanding locomotion.

2. Real-time optimal gait planning. It was seen that nonlinear constraint optimization

plays an essential role in generate dynamic walking behaviors that leverage the full-

body dynamics. These methods have become very efficient, even allowing for online

calculation in simple scenarios (180). Further improving computational efficiency

will enable real-time implementation yielding new paradigms for gait generation.

3. Bridging the gap between theory and practice. As indicated by the methods dis-

cussed in Section 5, there is often an “artful implementation” step that translates

model-based controllers to a form that can actually implemented on hardware. Ide-

ally, methods can be developed that allow the exact transcription of model-based

methods to hardware in a robust fashion and without heuristics.

4. Robustness, adaptation and learning. Dynamic walking behaviors often work in

isolated instances and predefined environments. Translating these ideas to the real-

world will require robustness to uncertainty – both in the internal dynamics and

external environment. Adaptive and learning-based controllers can help mitigate

model uncertainty and unplanned interactions with the world, from uncertain con-

tact conditions to walking on surfaces with complex interactions, e.g., sand.

5. Real-world deployment of bipedal robots. The ultimate challenge is the ability to

deploy bipedal robots in real-world scenarios. This ranges from everyday activities,

to aiding humans, to venturing into dangerous environments. Examples include

bipedal robotics in a healthcare setting, e.g., exoskeletons for restoring mobility

(116), to humanoid robots capable of exploring Mars.
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134. Mombaur KD, Bock HG, Schlöder JP, Longman RW. 2005. Open-loop stable solutions of

periodic optimal control problems in robotics. ZAMM-Journal of Applied Mathematics and

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and

Mechanics 85:499–515

135. Dai H, Valenzuela A, Tedrake R. 2014. Whole-body motion planning with centroidal dynamics

and full kinematics. In 2014 IEEE-RAS International Conference on Humanoid Robots, pp.

295–302. IEEE

136. Posa M, Kuindersma S, Tedrake R. 2016. Optimization and stabilization of trajectories for

constrained dynamical systems. In 2016 IEEE International Conference on Robotics and Au-

tomation (ICRA), pp. 1366–1373. IEEE

137. Herzog A, Rotella N, Schaal S, Righetti L. 2015. Trajectory generation for multi-contact

momentum control. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots

(Humanoids), pp. 874–880. IEEE

138. Posa M, Cantu C, Tedrake R. 2014. A direct method for trajectory optimization of rigid bodies

through contact. The International Journal of Robotics Research 33:69–81

139. Moreau JJ. 1966. Quadratic programming in mechanics: dynamics of one-sided constraints.

SIAM Journal on control 4:153–158

140. Denk J, Schmidt G. 2001. Synthesis of a walking primitive database for a humanoid robot

using optimal control techniques. In Proceedings of IEEE-RAS International Conference on

Humanoid Robots, pp. 319–326

141. Hereid A, Cousineau EA, Hubicki CM, Ames AD. 2016. 3D dynamic walking with underactu-

ated humanoid robots: A direct collocation framework for optimizing hybrid zero dynamics. In

Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 1447–1454.

IEEE

142. Hereid A, Hubicki CM, Cousineau EA, Hurst JW, Ames AD. 2015. Hybrid zero dynamics

based multiple shooting optimization with applications to robotic walking. In 2015 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pp. 5734–5740. IEEE

36 Reher and Ames



143. Hereid A, Hubicki CM, Cousineau EA, Ames AD. 2018. Dynamic humanoid locomotion: A

scalable formulation for hzd gait optimization. IEEE Transactions on Robotics 34:370–387

144. Da X, Harib O, Hartley R, Griffin B, Grizzle JW. 2016. From 2D design of underactuated

bipedal gaits to 3D implementation: Walking with speed tracking. IEEE Access 4:3469–3478

145. Da X, Hartley R, Grizzle JW. 2017. Supervised learning for stabilizing underactuated bipedal

robot locomotion, with outdoor experiments on the wave field. In 2017 IEEE International

Conference on Robotics and Automation (ICRA), pp. 3476–3483. IEEE

146. Ziegler JG, Nichols NB, et al. 1942. Optimum settings for automatic controllers. trans. ASME

64

147. Kolathaya S, Hereid A, Ames AD. 2016. Time dependent control lyapunov functions and

hybrid zero dynamics for stable robotic locomotion. In 2016 American Control Conference

(ACC), pp. 3916–3921. IEEE

148. Westervelt ER, Buche G, Grizzle JW. 2004. Experimental validation of a framework for the

design of controllers that induce stable walking in planar bipeds. The International Journal

of Robotics Research 23:559–582

149. Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, et al. 2003. Resolved momentum

control: Humanoid motion planning based on the linear and angular momentum. In Pro-

ceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2003)(Cat. No. 03CH37453), vol. 2, pp. 1644–1650. IEEE

150. Popovic M, Hofmann A, Herr H. 2004. Zero spin angular momentum control: definition and

applicability. In 4th IEEE/RAS International Conference on Humanoid Robots, 2004., vol. 1,

pp. 478–493. IEEE

151. Lee SH, Goswami A. 2010. Ground reaction force control at each foot: A momentum-based

humanoid balance controller for non-level and non-stationary ground. In 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 3157–3162. IEEE

152. Koolen T, Bertrand S, Thomas G, De Boer T, Wu T, et al. 2016. Design of a momentum-

based control framework and application to the humanoid robot Atlas. International Journal

of Humanoid Robotics 13:1650007

153. Fujimoto Y, Kawamura A. 1996. Proposal of biped walking control based on robust hybrid

position/force control. In Proceedings of IEEE International Conference on Robotics and Au-

tomation, vol. 3, pp. 2724–2730. IEEE

154. Saab L, Ramos OE, Keith F, Mansard N, Soueres P, Fourquet JY. 2013. Dynamic whole-body

motion generation under rigid contacts and other unilateral constraints. IEEE Transactions

on Robotics 29:346–362

155. Tzafestas S, Raibert M, Tzafestas C. 1996. Robust sliding-mode control applied to a 5-link

biped robot. Journal of Intelligent and Robotic Systems 15:67–133

156. Ames AD, Powell M. 2013. Towards the unification of locomotion and manipulation through

control lyapunov functions and quadratic programs. In Control of Cyber-Physical Systems.

Springer

157. Sentis L. 2007. Synthesis and control of whole-body behaviors in humanoid systems. Stanford

university USA

158. Aghili F. 2005. A unified approach for inverse and direct dynamics of constrained multibody

systems based on linear projection operator: applications to control and simulation. IEEE

Transactions on Robotics 21:834–849

159. Mistry M, Buchli J, Schaal S. 2010. Inverse dynamics control of floating base systems using

orthogonal decomposition. In 2010 IEEE international conference on robotics and automation,

pp. 3406–3412. IEEE

160. Apgar T, Clary P, Green K, Fern A, Hurst JW. 2018. Fast Online Trajectory Optimization

for the Bipedal Robot Cassie. In Robotics: Science and Systems

161. Feng S, Whitman E, Xinjilefu X, Atkeson CG. 2015. Optimization-based full body control for

the DARPA robotics challenge. Journal of Field Robotics 32:293–312

www.annualreviews.org • Dynamic Walking 37



162. Herzog A, Rotella N, Mason S, Grimminger F, Schaal S, Righetti L. 2016. Momentum con-

trol with hierarchical inverse dynamics on a torque-controlled humanoid. Autonomous Robots

40:473–491

163. Ames AD, Galloway K, Grizzle JW. 2012. Control lyapunov functions and hybrid zero dynam-

ics. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 6837–6842.

IEEE

164. Galloway K, Sreenath K, Ames AD, Grizzle JW. 2015. Torque saturation in bipedal robotic

walking through control lyapunov function-based quadratic programs. IEEE Access 3:323–332

165. Cousineau E, Ames AD. 2015. Realizing underactuated bipedal walking with torque controllers

via the ideal model resolved motion method. In 2015 IEEE International Conference on

Robotics and Automation (ICRA), pp. 5747–5753. IEEE

166. Nguyen Q, Sreenath K. 2020. Optimal robust safety-critical control for dynamic robotics.

arXiv preprint arXiv:2005.07284

167. Reher J, Kann C, Ames AD. 2020. An Inverse Dynamics Approach to Control Lyapunov

Functions. In 2020 American Control Conference (ACC). IEEE

168. Ames AD, Holley J. 2014. Quadratic program based nonlinear embedded control of series

elastic actuators. In 53rd IEEE Conference on Decision and Control, pp. 6291–6298. IEEE

169. Hereid A, Powell MJ, Ames AD. 2014. Embedding of SLIP dynamics on underactuated

bipedal robots through multi-objective quadratic program based control. In Decision and Control

(CDC), 2014 IEEE 53rd Annual Conference on, pp. 2950–2957. IEEE

170. Xiong X, Ames AD. 2018. Coupling reduced order models via feedback control for 3D un-

deractuated bipedal robotic walking. In 2018 IEEE-RAS 18th International Conference on

Humanoid Robots (Humanoids), pp. 1–9. IEEE

171. Xiong X, Ames AD. 2018. Bipedal hopping: Reduced-order model embedding via optimization-

based control. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 3821–3828. IEEE

172. Wieber PB, Chevallereau C. 2006. Online adaptation of reference trajectories for the control

of walking systems. Robotics and Autonomous Systems 54:559–566

173. Powell MJ, Hereid A, Ames AD. 2013. Speed regulation in 3D robotic walking through motion

transitions between human-inspired partial hybrid zero dynamics. In 2013 IEEE International

Conference on Robotics and Automation (ICRA), pp. 4803–4810. IEEE

174. Chevallereau C, Westervelt E, Grizzle J. 2005. Asymptotically stable running for a five-link,

four-actuator, planar bipedal robot. The International Journal of Robotics Research 24:431–

464

175. Rezazadeh S, Hubicki CM, Jones M, Peekema A, Van Why J, et al. 2015. Spring-mass Walking

with ATRIAS in 3D: Robust Gait Control Spanning Zero to 4.3 KPH on a Heavily Under-

actuated Bipedal Robot. In Proceedings of the ASME 2015 Dynamic Systems and Control

Conference

176. Griffin B, Grizzle J. 2015. Nonholonomic virtual constraints for dynamic walking. In 2015

54th IEEE Conference on Decision and Control (CDC), pp. 4053–4060. IEEE

177. Nguyen Q, Hereid A, Grizzle JW, Ames AD, Sreenath K. 2016. 3d dynamic walking on stepping

stones with control barrier functions. In 2016 IEEE 55th Conference on Decision and Control

(CDC), pp. 827–834. IEEE

178. Ames AD, Tabuada P, Jones A, Ma WL, Rungger M, et al. 2017. First steps toward formal

controller synthesis for bipedal robots with experimental implementation. Nonlinear Analysis:

Hybrid Systems 25:155–173

179. Ames AD, Xu X, Grizzle JW, Tabuada P. 2016. Control barrier function based quadratic

programs for safety critical systems. IEEE Transactions on Automatic Control 62:3861–3876

180. Hereid A, Kolathaya S, Ames AD. 2016. Online optimal gait generation for bipedal walking

robots using legendre pseudospectral optimization. In 2016 IEEE 55th Conference on Decision

and Control (CDC), pp. 6173–6179. IEEE

38 Reher and Ames


